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The transition from Tayor vortex flow to wavy-vortex flow is revisited. The self-
sustaining process (SSP) of Waleffe [Phys. Fluids 9, 883 (1997)] proposes that a key
ingredient in transition to turbulence in wall-bounded shear flows is a three-step process
involving rolls advecting streamwise velocity, leading to streaks which become unstable to
a wavy perturbation whose nonlinear interaction with itself feeds the rolls. We investigate
this process in Taylor-Couette flow. The instability of Taylor-vortex flow to wavy-vortex
flow, a process which is the inspiration for the second phase of the SSP, is shown to
be caused by the streaks, with the rolls playing a negligible role, as predicted by Jones
[J. Fluid Mech. 157, 135 (1985)] and demonstrated by Martinand et al. [Phys. Fluids
26, 094102 (2014)]. In the third phase of the SSP, the nonlinear interaction of the waves
with themselves reinforces the rolls. We show this both quantitatively and qualitatively,
identifying physical regions in which this reinforcement is strongest, and also demonstrate
that this nonlinear interaction depletes the streaks.
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I. INTRODUCTION

The first successful linear stability analysis for a viscous fluid was carried out in 1923 by Taylor
[1] for the flow between two concentric differentially rotating cylinders. What then became known
as Taylor-Couette flow has played a central role in hydrodynamic stability theory ever since. In
the standard configuration of a stationary outer cylinder, as the inner cylinder rotation rate is
increased, laminar flow is succeeded by axisymmetric Taylor vortices via the centrifugal instability
first explained by Rayleigh [2]. The Taylor vortices subsequently develop azimuthal waves, seen
in experiments by researchers such as Coles [3], Swinney and co-workers [4–6], and others [7,8].
Wavy-vortex flow was studied computationally when this became possible in the 1980s by authors
such as Jones [9,10], Marcus [11,12], and others [13,14].

Taylor-Couette flow has also been studied as a way of approaching plane Couette flow, which
undergoes transition to three-dimensional turbulence despite being linearly stable at all Reynolds
numbers. The azimuthal, radial, and axial directions of Taylor-Couette flow play the role of the
streamwise, cross-channel, and spanwise direction, respectively. As the ratio between the cylinder
radii approaches one, the correspondence between the two flows becomes exact. The possibility of
approaching plane Couette flow via Taylor-Couette flow has been used by many authors for many
different purposes. Nagata [15] used homotopy to calculate otherwise inaccessible unstable steady
states of plane Couette flow. Hristova et al. [16] and Meseguer et al. [17] compared transient growth
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rates between the two flows. Prigent et al. [18] extended the observation of coexisting turbulent and
laminar regions seen in Taylor-Couette by Coles [3] to plane Couette flow. Faisst and Eckhardt [19]
used Taylor-Couette flow to approach the turbulent lifetimes and intermittency of plane Couette
flow. A very narrow gap Taylor-Couette geometry was used as a proxy for plane Couette flow by
Shi et al. [20] to calculate the statistical threshold of sustained turbulence and by Lemoult et al. [21]
to establish that this transition was manifested as a directed percolation phase transition.

Here we take the analogy in the opposite direction: extending an idea developed for plane
Couette flow to Taylor-Couette flow. Waleffe [22–24] has proposed a now widely accepted three-part
mechanism, by which streamwise rolls (damped in the plane Couette case) cause streamwise
streaks (by simple advection of the streamwise velocity contours), which become wavy (through
instability), acquiring streamwise dependence. The nonlinear self-interaction of the wavy streaks
drives the streamwise rolls, thus closing the cycle. The mechanism is similar to that proposed by
Hall and co-workers [25–27] and by Beaume and co-workers [28–30]. Experimental evidence for
the SSP in plane boundary layer and channel flow has been reported by Wesfreid and colleagues
in Refs. [31,32]. These experiments show a strong correlation between the growth of rolls and the
presence of waves: both phenomena occur above the same Reynolds-number threshold.

Although the SSP was influenced by these phenomena in Taylor-Couette flow, it has not actually
been applied to Taylor-Couette flow itself. The main purpose of this paper is to see how the SSP
plays out in Taylor-Couette flow, where the analogous structures, i.e., axisymmetric and wavy Taylor
vortices, are actually stable equilibrium states.

II. EQUATIONS, METHODS, AND PARAMETERS

The equations governing Taylor-Couette flow and the methods for computing it are sufficiently
well known as to warrant only a very brief exposition. The inner and outer cylinders have radii and
angular velocities Rj and �j . From these, along with the kinematic viscosity ν, can be constructed
the length scale d ≡ R2 − R1, the timescale d2/ν, the two Reynolds numbers Rej ≡ Rj�j d/ν, and
the radius ratio η ≡ R1/R2. The nondimensionalized governing equations and boundary conditions
are then

∂tU = U × ∇ × U − ∇P + ∇2U, (1a)

∇ · U = 0, (1b)

U = Rej eθ at r = rj ≡ Rj/d, j = 1, 2. (1c)

We will restrict our consideration to the classic inner-cylinder-rotation case with �2 = 0 so that
Re2 = 0, and hence we use Re to denote the inner Reynolds number Re1. Nonlinear Taylor-vortex
and wavy-vortex flows, denoted by TVF and WVF or UTVF and UWVF, are calculated by solving
the evolution equations (1) numerically. For linear stability analysis, the nonlinear code has been
adapted to solve the linearized equations

∂tu = U × ∇ × u + u × ∇ × U − ∇p + ∇2u, (2a)

∇ · u = 0, (2b)

u = 0 at r = rj , j = 1, 2, (2c)

where U is the flow whose stability is sought. Temporal integration of (2) effectively carries out
the power method, converging to the eigenvector whose eigenvalue has largest real part. Most
commonly, we take U to be Taylor-vortex flow, UTVF, and the power method returns the wavy
vortex eigenvector uwvf and corresponding eigenvalue.

The code we use represents functions on a spatial Chebyshev grid in the radial direction r and
on equally spaced points in the azimuthal θ and axial z directions, with spatial derivatives taken
via finite differences in r and by differentiation of Fourier series in θ, z. Multiplications are carried
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FIG. 1. (a) Dependence of critical Reynolds number ReTVF on the radius ratio η for transition to Taylor-
vortex flow (right scale). Also shown is the relationship between azimuthal wave number M0 and η for
circumferential wavelength Lθ = 5 (left scale). Our chosen parameter values are η = 0.92 and M0 = 15.
(b) Schematic decomposition of flow into UCou, Umean, Uroll, Ustreak, Uwave according to axial and azimuthal
Fourier modes k and m.

out in the grid space representation by Fourier transforming in θ, z. Taylor-vortex flow is calculated
in an axisymmetric domain with Nr = 33 radial points and Nz = 16 points over the axial domain
[0, Lz] or, equivalently, multiples of the wave number 2π/Lz. Computations of wavy-vortex flow
eigenvectors use a single azimuthal mode M0. Nonlinear wavy-vortex flow is calculated using Nθ =
16 points in the azimuthal sector [0, 2π/M0] or, equivalently, multiples of the wave number M0.

One difficulty is deciding which of the many TVFs or WVFs to study. Each TVF is characterized
by an axial wave number, and each WVF has an axial and an azimuthal wave number. States
with different wave numbers can be simultaneously stable, as emphasized by Coles [3] and by
many subsequent researchers [4,5,7]. Jones [10] and Antonijoan and Sanchez [14] have shown the
complexity of the bifurcations and ranges of existence of wavy-vortex states with different azimuthal
wave numbers as the radius ratio and the axial wavelength are varied. We select the radius ratio to be
η = 0.92, corresponding to r1 = 11.5 and r2 = 12.5. To make a connection with the SSP in plane
Couette flow, we take the axial wavelength to be Lz = 2, corresponding to a spanwise wavelength
of 4 half-gaps, near the length considered by Waleffe [22–24]. (Note that the length scale in the
Taylor-Couette problem is the full gap.) We use the term circumferential wavelength to denote a
length at the midgap r = r̄ , in contrast with an azimuthal wavelength, which is expressed in radians
and necessarily a fraction of 2π . To approximate the streamwise wavelength of 10 half-gaps studied
by Waleffe, we first express the circumferential wavelength Lθ of a wavy-vortex state with azimuthal
wave number M0 in units of the gap

Lθ = 2πr̄

M0
= 2π

M0

(r2 + r1)/2

r2 − r1
= π

M0

1 + r1
r2

1 − r1
r2

= π

M0

1 + η

1 − η
. (3)

Setting η = 0.92 and Lθ = 5, corresponding to 10 in half-gaps, leads to

M0 = π

Lθ

1 + η

1 − η
= π

5

1.92

0.08
≈ 15. (4)
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FIG. 2. Visualizations in the meridional (r, z) plane of (a) Taylor-vortex flow (without laminar Couette
flow), (b) the M0 = 15 eigenvector leading to wavy-vortex flow, and (c) nonlinear interaction of this eigenvector
with itself. The parameters are Re = 300 and η = 0.92. The inner cylinder is on the left, and the outer cylinder
on the right. In each case, the meridional velocity within the plane is indicated by arrows, and the azimuthal
velocity perpendicular to it is indicated by colors. Red indicates a positive deviation of the azimuthal velocity
from laminar Couette flow, blue a negative deviation, and green no deviation. Thus, in panel (a) the arrows
show the rolls and the colors show the streaks of Taylor-vortex flow. The white dashed boxes in panels (c) and
(a) highlight the alignment between the axial components (arrows) of 〈uwvf × ∇ × uwvf〉 and of the rolls of
UTVF, which comprise the third step of the SSP.

The critical Reynolds number for onset of Taylor-vortex flow in which only the inner cylinder rotates
is approximately

ReTVF ≈
√

1708

η(1 − η)

1 + η

2
, (5)

which diverges as the narrow-gap (or plane Couette) limit η → 1 is approached [19]. The
dependence of the critical Reynolds on η is shown in Fig. 1(a), together with the relationship
between M0 and η for Lθ = 5. For η = 0.92, Taylor vortices appear above ReTVF ≈ 146. For these
values of η, Lz, and M0, Taylor-vortex flow remains stable until ReWVF ≈ 201, above which the
flow becomes unstable to wavy Taylor vortices. Figure 2(a) shows the Taylor-vortex flow, and Fig. 3
shows the wavy-vortex flow, both computed at Re = 300.

III. ANALYSIS IN TERMS OF SELF-SUSTAINING PROCESS

We begin our analysis by introducing notation. Flow fields U can be decomposed as follows [see
Fig. 1(b)]:

U =
∑

k

∑
m

[
Û k,m

r (r )er + Û
k,m
θ (r )eθ + Û k,m

z (r )ez

]
ei(kz/Lz+mM0θ ) (6a)

= UCou + Umean + Uroll + Ustreak + Uwave, (6b)
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FIG. 3. Wavy-vortex flow (including Taylor-vortex flow but not laminar Couette flow) at Re = 300. Above:
four meridional planes over azimuthal period [0, 2π/15]. Azimuthal velocity indicated by colors, meridional
velocity by arrows. Below: one azimuthal period [0, 2π/15] at midgap r̄ = 12. Radial velocity indicated by
colors. The dashed lines indicate the positions of the four meridional planes shown above.

where

UCou ≡
(

Ar + B

r

)
eθ , (7a)

Umean ≡ Û
0,0
θ (r )eθ − UCou, (7b)

Uroll ≡
∑
k �=0

[
Û k,0

r (r )er + Û k,0
z (r )ez

]
eikz/Lz , (7c)

Ustreak ≡
∑
k �=0

Û
k,0
θ (r )eθ eikz/Lz , (7d)

Uwave ≡
∑

k

∑
m�=0

Ûkm(r )ei(kz/Lz+mM0θ ). (7e)

Note that (7b) defines Umean to be the (θ, z)-independent deviation from laminar Couette flow
UCou, in contrast to Waleffe [22–24], whose mode M includes the laminar Couette solution (7a). In
terms of this decomposition, Taylor-vortex flow and wavy-vortex flow take the form

UTVF = UCou + Umean + Uroll + Ustreak, (8a)

UWVF = UCou + Umean + Uroll + Ustreak + Uwave. (8b)

Waleffe’s SSP [22–24] describes three steps involving the components Uroll, Ustreak, and Uwave:
(A) Uroll =⇒ Ustreak. This is a statement of kinematic advection of the azimuthal velocity.
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FIG. 4. Comparison of linearization about UTVF and about UTVF − Uroll. Eigenvectors uwvf resulting from
linearization about (a) only UTVF − Uroll and (b) the full UTVF for Re = 300. Azimuthal velocity designated by
color (red for positive, blue for negative, green for zero) and radial and axial velocity by arrows. (c) Growth rate
(real part of eigenvalue) for linearization about UTVF (black, solid), UTVF − Uroll (blue, dashed), as a function
of Re. Since omitting Uroll from the base flow barely changes the eigenvector or eigenvalue, it is clear that it
plays no role in the instability.

(B) Ustreak =⇒ Uwave. This is described by Waleffe as a linear instability.
(C) Uwave =⇒ Uroll. The nonlinear interaction of the wave with itself reinforces the rolls.

A. Rolls to streaks

The SSP begins with streamwise invariant rolls Uroll and considers the development of streaks
from these rolls. Rolls transport fluid with high azimuthal velocity from the inner cylinder towards
the outer cylinder and vice versa, causing the azimuthal velocity profile to vary along z with the axial
periodicity of the rolls. In plane Couette flow, or Waleffe’s free-slip version [24] now sometimes
called Waleffe flow [28–30,33,34], rolls are not themselves an equilibrium state. Hence in the planar
case it is necessary to initiate the SSP by inserting rolls into the flow and observing the resulting
streak development. Permanent rolls and streaks have been produced in variants of plane Couette
flow by including a spanwise-oriented wire or ribbon experimentally [35–37] or numerically [38].
For the Taylor-Couette problem, however, this phase is straightforward. The rolls and the streaks that
they generate are contained in Taylor-vortex flow, which bifurcates supercritically and exists as a
stable nonlinear equilibrium. In Fig. 2(a), calculated at Re = 300, the rolls are the meridional-plane
flow indicated by arrows. The streaks are the axial variation in the azimuthal flow driven by the rolls
and are seen as the colored patches.

B. Streaks to waves

We now turn to the second stage of the SSP in which the streaks become unstable to waviness.
Once again, the situation in the Tayor-Couette problem is much more clear-cut than in the planar
case. The onset of waviness is a distinct supercritical instability—the transition from Taylor-vortex
flow UTVF to wavy-vortex flow UWVF. In the UWVF state shown in Fig. 3, the flow has azimuthal
variation (waviness) and is an azimuthally traveling wave. In 1985 Jones [10] suggested that the
instability arose from the streaks, i.e., the axial variation of the azimuthal flow, which he called
azimuthal jets. Thirty years later, Martinand, Serre, and Lueptow [39] confirmed this idea by
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FIG. 5. (a) Energy decomposition for UTVF and UWVF. [See Fig. 1(b) for definitions of this decomposition.]
Curves marked with crosses correspond to the components of UTVF originating at Re = 146. Curves marked
with circles correspond to the energy components of UWVF, which bifurcates at Re = 201. The streak energy
is lower for WVF than it is for TVF; the difference between the two is close to the energy in the waves (which
is necessarily zero for TVF). The energy in the deviation of the mean from Couette flow is also lower for
WVF than for TVF. The energy in the rolls is approximately the same for the two flows. (b) Normalized inner
product of nonlinear self-interaction 〈NL, Uroll〉/||Uroll||, 〈NL, Ustreak〉/||Ustreak|| and 〈NL, Umean〉/||Umean|| for
rolls, streaks, and deviation of the mean from Couette flow. The nonlinear term NL feeds the rolls and mean
but drains the streaks.

constructing the linear operator governing the wavy instability and showing that the eigenvalues
of the portion of the operator arising from the azimuthal shear, i.e., the streaks, best matched the
eigenvalues of the entire operator. They also demonstrated a number of common features between
the transition to wavy vortex flow and the Kelvin-Helmholtz instability, notably a phase speed
intermediate between that of the two cylinders and the multiplicity of possible azimuthal wave
numbers.

We show this by a different procedure, carrying out linearization about UTVF and about UTVF −
Uroll, i.e., the Taylor vortex flow without its radial or axial components; see Eqs. (8). Figure 4
compares the eigenvectors and growth rates resulting from these two linearizations. Since omitting
Uroll from the base flow barely changes the eigenvector or eigenvalue, it is clear that it plays no role
in the instability. In contrast, linearization about UTVF − Ustreak, i.e., omitting the axial dependence
of the azimuthal flow, leads to eigenvalues with very small growth rate and eigenvectors with no
resemblance to those of UTVF. (These results are not displayed.) These numerical experiments
confirm that the instability mechanism responsible for the transition of UTVF to UWVF is the axial
variation of the azimuthal velocity.

In addition to linearization, we examine the energy content in the flow components of the
nonlinear states. We decompose both Taylor-vortex flow UTVF and the wavy-vortex flow UWVF

into components given in Eqs. (6)–(8) and compute the energy of each. Figure 5(a) shows the
variation of the energy components as a function of Reynolds number. (The much larger energy
of UCou and a contribution combining UCou and Umean are not shown.) UTVF appears at Re = 146
and UWVF appears at Re = 201. It can be seen that EWVF

streak, the energy of the streaks in UWVF, is
substantially decreased from the analogous quantity ETVF

streak in UTVF. This decrease is almost exactly
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counterbalanced by the energy in the waviness, EWVF
wave , suggesting that the energy in the waviness is

extracted from the streaks. The energy in the rolls is small and is almost the same in the two states.
Thus, in addition to the linear instability mechanism, the comparison between the energy content of
the saturated nonlinear states with and without waves shows that streaks feed the waves. As stated
by Waleffe [24], it is not the rolls but the streaks whose energy is drained by the waves.

C. Waves to rolls

The key novelty of the SSP is the positive feedback of the waviness on the rolls. To study this
in Taylor-Couette flow, we calculate the eigenvector uwvf responsible for the bifurcation to wavy
vortices, shown in Fig. 2(b). (This complex eigenvector is shown here at one spatial or temporal
phase.) We then compute the nonlinear interaction of uwvf with itself, in the form uwvf × ∇ × uwvf .
Since uwvf ∼ e±iM0θ , this quadratic term leads to azimuthal dependence of the form e±2iM0θ (second
harmonic) and 1 (constant). We are interested in the constant contribution, which has the form

NL ≡ 〈uwvf × ∇ × uwvf〉 ≡ uR
wvf × ∇ × uR

wvf + uI
wvf × ∇ × uI

wvf . (9)

This term feeds back on the θ -independent contributions Uroll, Ustreak, and Umean. A visualization
of this vector quantity is shown in Fig. 2(c). On a qualitative level, by comparing the arrows of
Fig. 2(c) with those of Fig. 2(a), one can see the feedback of this term on Uroll. The white-dashed
boxes highlight regions in which the axial component of the Taylor-vortex flow is strong and aligned
with the axial component of NL. The resemblance is especially strong on near-axial curves in NL
converging towards saddles above and below regions with high azimuthal component shown in red.

A more quantitative picture of the feedback is presented in Fig. 5(b). Shown is the normalized
inner product between NL and each of Uroll, Ustreak, and Umean defined by

〈NL, U−−−〉 =
∫ Lz

0
dz

∫ r2

r1

r dr NL(r, z) · U−−−(r, z), (10)

where U−−− is any of Uroll, Ustreak, and Umean. It can be seen that NL has a positive overlap with
Uroll, meaning that, indeed, the nonlinear interaction of uwvf with itself acts as a driving mechanism
for rolls. NL also drives Umean. In contrast, NL has a negative overlap with Ustreak and hence this
term tends to suppress the streaks.

IV. CONCLUSION

According to the self-sustaining process (SSP) of Ref. [24], the building block of transition to
turbulence in plane Couette flow and other wall-bounded shear flows, rolls induce streaks, which in
turn undergo an instability to waviness, whose nonlinear interaction feeds the rolls. In plane Couette
flow, laminar flow (the analog of UCou) is stable for all Reynolds numbers; there is no equivalent
of the steady Taylor-vortex flow. For Taylor-vortex flow, however, most of the steps of the SSP are
already in place. Vortices (rolls) induce streaks (axially periodic variation of the azimuthal flow)
kinematically via advection, as in plane Couette flow. We have confirmed that the instability to
wavy-vortex flow is due to this variation [39]. In addition, we have shown that the energy of the
waves in nonlinear wavy-vortex flow compensates almost exactly for the decreased energy in the
streaks, as compared to the energy in the streaks of nonlinear Taylor-vortex flow. The third step is
the feedback of the waves on the rolls, which is crucial for the SSP since in plane Couette flow the
rolls do not arise from a linear instability leading to a nonlinear equilibrium. We have shown that
this feedback mechanism exists in Taylor-Couette flow and that it is the rolls that are fed and not
the streaks. The nonlinear self-interaction of the waves generates localized regions with strong axial
forcing: this is the nature of the feedback on the Taylor vortices which closes the SSP.
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