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The Eckhaus instability can be analyzed by means of the real Ginzburg-Landau equation:

∂tA = µA+∂xxA−|A|2A (1)

This equation governs pattern formation in a wide variety of systems. A is considered to be the complex

amplitude of a pattern, via, e.g.:

w(x, t) = A(x, t)eiqcx +A∗(x, t)e−iqcx (2)

Let us begin by assuming that A is horizontally periodic, with arbitrary periodicity length. One solution

to (1) is the trivial solution, zero, implying the absence of spatial structure. Another set of solutions:

AQ ≡
√

µ−Q2eiQx, for |Q|< qc (3)

describes a pattern of spatial wavenumber qc +Q. These are created by primary pitchfork bifurcations

from the trivial state at:

µQ ≡ Q2 (4)

and exist for µ > µQ. The bifurcations are supercritical, meaning that, as µ is increased past µQ, the trivial

state is destabilized and the pattern AQ is created.

The linear stability of the patterns AQ is governed by the equation which results from replacing A by

AQ + eλta(x) in (1) and neglecting terms which are nonlinear in a:

λa = µa+∂xxa−2|A|2a−A2a∗ (5)

The solutions to (5) are the eigenpairs (λk,ak) with eigenvectors:

ak(x)≡ αkei(Q+k)x +βkei(Q−k)x, k > 0 (6)

and:

a0(x)≡ α0eiQx (7)

with αk, βk, and α0 real. Using:

|A|2ak = (µ−Q2)
(

αkei(Q+k)x +βkei(Q−k)x
)

A2a∗k = (µ−Q2)ei2Qx
(

αke−i(Q+k)x +βke−i(Q−k)x
)

= (µ−Q2)
(

αkei(Q−k)x +βkei(Q+k)x
)
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we find that eigenpairs (λk,ak) satisfy:

λk

(

α

β

)

=

(

µ− (Q+ k)2 −2(µ−Q2) −(µ−Q2)
−(µ−Q2) µ− (Q− k)2 −2(µ−Q2)

)(

α

β

)

leading to eigenvalues:

λk± =−(µ−Q2)− k2 ±
√

(2Qk)2 +(µ−Q2)2 (8)

Using

|A|2a0 = (µ−Q2)α0eiQx

A2a∗0 = (µ−Q2)ei2Qxα0e−iQx = (µ−Q2)α0eiQx

we find that the eigenvalues λ0 are:

λ0 = µ−Q2 −2(µ−Q2)− (µ−Q2) =−2(µ−Q2) (9)

Secondary bifurcations, changing the stability of AQ, occur whenever one of the eigenvalues λ0 or λk±

crosses zero. We see that λ0 ≤ 0 for µ>Q2, i.e. whenever AQ is a solution; it is the eigenvalue responsible

for the creation of branch AQ from the trivial state. The eigenvalue λk− is always negative. Crossings of

zero by λk+ are determined by solving:

0 = −(µ−Q2)− k2 ±
√

(2Qk)2 +(µ−Q2)2

(µ−Q2)+ k2 = ±
√

(2Qk)2 +(µ−Q2)2

((µ−Q2)+ k2)2 = (2Qk)2 +(µ−Q2)2

2(µ−Q2)k2 + k4 = (2Qk)2

µ−Q2 +
1

2
k2 = 2Q2

µQk ≡ 3Q2 −
1

2
k2 (10)

Secondary pitchfork bifurcations from the branch of states AQ occur at µQk. These bifurcations are

subcritical, meaning that, as µ is increased past successive values µQk, the solution AQ is stabilized against

eigenvector ak as λk+ decreases through zero. Simultaneously, a mixed-mode state combining different

wavenumbers is created. Since these mixed-mode states are always unstable, they are never realized by

the system, but serve as basin boundaries, separating the domains of attraction of the periodic states AQ.

The pattern described by AQ is stable when all of its eigenvalues have become negative. For a domain of

infinite length, this criterion yields the classic Eckhaus curve given by:

µ∞ = max
k>0

(

3Q2 −
1

2
k2

)

= 3Q2 (11)
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Now consider a domain of any finite horizontal length L, with qc and Q given in units of 2π/L. Recalling

(2), the periodic patterns AQ permitted in the domain must satisfy qc + Q = n, with n integer. The

potentially unstable eigenvectors ak, with k > 0, must also fit in the domain, so that k must satisfy

qc+Q+k = n+k integer. Thus k must be a positive integer. The pattern AQ is stable in the finite domain

if:

µfinite = max
k=1,2,...

(

3Q2 −
1

2
k2

)

= 3Q2 −
1

2
(12)

Thus:

µfinite = µ∞ −
1

2
(13)

independently of the actual size of the domain.

Figure 1 shows the finite-domain Eckhaus curves µQk of equation (10) along which the patterns AQ are

stabilized and secondary bifurcations occur. The highest of these, corresponding to k = 1, is the Eckhaus

curve µfinite of equation (12) above which the patterns AQ are stable in a finite domain. Also shown

is the marginal stability curve µQ of equation (4) along which the trivial state loses stability and the

primary bifurcations to patterns AQ take place. The portions of the Eckhaus curves for µ < µQ have no

significance, since, where AQ does not exist, it cannot undergo a bifurcation. These curves are universal:

they do not depend on the size of the domain. Specific bifurcation points located on these curves do,

however, depend on the fractional part of qc. In the figure, we have fixed qc − [qc] = −1/4 in order to

indicate the primary and secondary bifurcations by dots. The pattern which is the first to be created as µ

is increased is that whose wavenumber Q0 is closest to qc (Q closest to 0). It is stable when it is created.

The pattern which is next created has a wavenumber Q1 which is second closest to qc (Q closest to −1)

and undergoes one restabilizing Eckhaus bifurcation. Those which are third and fourth closest (Q2 and

Q3) to qc (Q closest to +1 and to −2) undergo two and three restabilizing Eckhaus bifurcations, and so

on.

The classic Eckhaus curve µ∞ of equation (11), which is tangent to the marginal stability curve and above

which patterns AQ are stable in a domain of infinite length, is also included in the diagram. This curve

cannot describe the stability of patterns in a finite domain since there exists a range of µ over which the

trivial state is unstable to a wavenumber Q fitting in the domain, but the resulting pattern AQ is below the

infinite-domain Eckhaus curve and hence would also be unstable. The absence of any stable solution is

inconsistent with the variational character for all values of µ of the Ginzburg-Landau equation (1), which

implies that any initial condition approaches asymptotically a stable steady state. Hence the classic

infinite-domain curve µ∞ of equation (11) cannot be the Eckhaus boundary for any finite-length domain.

Figure 1 remains valid for domains of any finite length.

For details and justifications of the analysis above, see references.
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Figure 1: Stability curves. The thick parabola shows the marginal stability curve µQ = Q2 along which

the trivial state is destabilized by primary bifurcations to periodic patterns AQ. Thin parabolas show the

finite-domain Eckhaus curves µQk = 3Q2 − k2/2 for k = 1,2, . . . along which the periodic patterns are

stabilized by successive secondary bifurcations to unstable mixed-mode states. The highest of these,

µfinite = µQ1 = 3Q2 −1/2, is the finite-domain Eckhaus boundary above which pattern AQ is stable. The

dotted portions of the Eckhaus curves below the marginal stability curve have no significance, since states

AQ do not exist in this region. Primary and secondary bifurcations for the specific case qc − [qc] =−1/4

are shown as solid and hollow dots, respectively. The infinite-domain Eckhaus curve µ∞ = 3Q2 is shown

for contrast as a dashed curve.
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Figure 2: Bifurcation diagram. Branches with wavenumbers Q0,Q1,Q2 · · · are created at successive

primary pitchfork bifurcations (solid dots) as µ is increased through the values Q2
0,Q

2
1,Q

2
2, · · · . All but

the first (Q0) branch is unstable; each branch is restabilized by successive secondary Eckhaus bifurcations

(hollow dots) at µ= 3Qn−k2. For clarity, only the lowest-µ portions of the mixed-mode branches created

at the Eckhaus bifurcations are shown. Thick curves indicate stable portions of the trivial and primary

branches.
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