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Abstract Steady states and traveling waves play a fundamental role in under-
standing hydrodynamic problems. Even when unstable, these states provide the
bifurcation-theoretic explanation for the origin of the observed states. In turbulent
wall-bounded shear flows, these states have been hypothesized to be saddle points
organizing the trajectories within a chaotic attractor. These states must be computed
with Newton’s method or one of its generalizations, since time-integration cannot
converge to unstable equilibria. The bottleneck is the solution of linear systems
involving the Jacobian of the Navier-Stokes or Boussinesq equations. Originally
such computations were carried out by constructing and directly inverting the Jaco-
bian, but this is unfeasible for the matrices arising from three-dimensional hydro-
dynamic configurations in large domains. A popular method is to seek states that
are invariant under numerical time integration. Surprisingly, equilibria may also be
found by seeking flows that are invariant under a single very large Backwards-Euler
Forwards-Euler timestep. We show that this method, called Stokes preconditioning,
is 10 to 50 times faster at computing steady states in plane Couette flow and trav-
eling waves in pipe flow. Moreover, it can be carried out using Channelflow (by
Gibson) and Openpipeflow (by Willis) without any changes to these popular spec-
tral codes. We explain the convergence rate as a function of the integration period
and Reynolds number by computing the full spectra of the operators corresponding
to the Jacobians of both methods.
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1 Motivation and history

One of the fundamental properties of nonlinear systems is the existence of multiple
solutions. Many, in fact, most of these are unstable and hence not accessible to time
integration. Yet, they play a crucial role in organizing the solution sets and possibly
the dynamics actually realized by the system. Bifurcation diagrams have long been
studied in connection with classical hydrodynamic instabilities which form patterns,
namely Taylor-Couette flow and Rayleigh-Bénard convection. In 1989, a method
was formulated by Tuckerman [1] by which an explicit-implicit time integration
code could be easily transformed to carry out steady state solving. More specifically,
it was shown that taking the difference between successive widely spaced timesteps
was equivalent to preconditioning the Jacobian with the inverse Laplacian or Stokes
operator. This allowed the linear systems whose solution is required by Newton’s
method to be solved economically by matrix-free iterative methods, which in turn
allowed steady states in large systems (O(105)–O(107) degrees of freedom) to be
computed. This method, called Stokes preconditioning, was applied to calculate bi-
furcation diagrams in spherical Couette flow by Mamun & Tuckerman [2], convec-
tion in Cartesian [3–12], cylindrical [13–19] and spherical [20–24] geometries by
researchers such as Xin, Chenier, Henry, and Feudel, to von Kármán flow [25–27]
by Daube, Nore, and Le Quéré and to Bose-Einstein condensation [28,29] by Huepe,
Brachet and co-workers

One of the problems to which Stokes preconditioning has been applied most
extensively is that of double diffusive convection [30–41]. In 2006, a comprehensive
theory of localized states via homoclinic snaking was developed by Knobloch and
co-workers [42], following earlier ideas by Champneys, Coullet, Fauve, Pomeau and
others [43–47]. This theory predicts and explains the existence of a large number of
branches linked by saddle-node bifurcations and thus spotlights the crucial role of
unstable steady states and their computation. The first instances of localized states
and homoclinic snaking in realistic physical systems were computed in 2006–8 by
researchers such as Alonso, Assemat, Batiste, Bergeon, and Mercader [48–52], all
for double diffusive convection and all using the Stokes preconditioning method,
followed by further studies of these phenomena by Beaume, LoJacono and others
[53–61]. In the Appendix, we will show examples of the more exotic or interesting
bifurcation diagrams that have been calculated by various groups using the Stokes
preconditioning method.

The cases studied above involved flows which undergo linear instabilities from
a homogeneous state, leading to patterns. We now turn to shear flows confined be-
tween rigid or free-slip boundaries, namely plane Couette flow, plane Poiseuille
flow and pipe flow, which are linearly stable over the parameter range of interest.
In 1990, Nagata [62] computed the first non-trivial steady state for plane Couette
flow; this was followed by computations of other steady states and traveling wave
solutions for plane Couette and Poiseuille flow by Waleffe [63–65] who coined the
term Exact Coherent Structure (ECS) to describe unstable steady states, traveling
waves, periodic orbits, and other low-dimensional dynamically relevant invariant
solutions with low-dimensional unstable manifolds in these shear flows. These and
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other contemporaneous computations [66–69] used dedicated steady-state codes in
which the Jacobians were constructed and the linear systems required by Newton’s
method were solved directly. Many used homotopy to modify steady states or travel-
ing waves already known to exist in convection or in Taylor-Couette flow. In 2003–
4, the first traveling waves in pipe flow were computed by Eckhardt, Kerswell and
co-workers [70, 71], also using Jacobian matrices and direct matrix inversion. All
of these solutions were computed in small periodic domains or minimal flow units,
which are the smallest domains in which turbulence can be maintained. The moti-
vation for these searches was provided by Cvitanović and Eckhardt [72, 73] and by
Kawahara [74, 75]. Building on previous ideas by Smale, Ruelle, Bowen and Sinai,
the authors proposed that turbulence could be viewed from a deterministic dynam-
ical systems perspective as a collection of trajectories ricocheting between ECSs
along their unstable directions.

Influential work on numerical methods [76–80] by authors such as Sánchez, Net,
van Veen, Viswanath, and others led to the adoption of iterative matrix-free methods
and to many additional solutions [81–85] by reseachers such as Duguet, Gibson,
Halcrow, Pringle and Willis. Catalogs of solutions computed by 2009 were given
in [69,86,87]. In a development parallel to what was happening at the same time in
double diffusive convection, focus was extended from the minimal flow unit to lo-
calized and snaking solutions. Since these consist of one or more active regions sur-
rounded by possibly wide quiescent regions, computations of localized states are far
more costly. The codes Channelflow [85, 88] by Gibson and Openpipeflow [89] by
Willis took advantage of the matrix-free iterative approach to treat larger domains,
leading to the discovery of localized states in plane Couette flow by Schneider et
al. [90] in 2010 and in pipe flow by Avila et al. [91] in 2013, followed by many
others [92–95]. Mellibovsky and Eckhardt [96] used Stokes preconditioning to in-
vestigate a Takens-Bogdanov scenario for travelling waves in pipe flow. Beaume
and co-workers [97,98] used the method to calculate ECSs for an asymptotic reduc-
tion of the free-slip version of plane Couette flow called Waleffe flow [63–65] and
were able to reproduce the high-Reynolds-number scaling calculated in [99–101].

The primary purpose of this Chapter is to compare the method used in Chan-
nelflow and Openpipeflow with the Stokes preconditioning method. We show that
the Stokes preconditioning method can be carried out by using the options al-
ready present in Channelflow and Openpipeflow without any changes to the codes
themselves. The user must simply liberate him or herself from standard notational
convention and allow the timestep ∆ t to approach infinity, as will be explained
in Section 2. In Section 3, we will give examples of steady states and traveling
waves calculated by Channelflow and Openpipeflow using the Stokes precondition-
ing method. We will show that these computations are up to 50 times faster than
when they are carried out via the classical approach previously used by Channelflow
and Openpipeflow, emphasizing again that this is accomplished only by the choice
of different parameters.
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2 Stokes preconditioning

We begin with the schematically written differential equation, or dynamical system:

∂U
∂ t

= LU +N(U), (1)

for a flow-field U , where L stands for the linear terms, typically the viscous or diffu-
sive terms in hydrodynamics and N for the nonlinear terms, typically the advective
terms. We seek steady states of (1), i.e. roots of L+N, or U such that

0 = LU +N(U). (2)

There are other ways to define steady states. In particular, we may seek

0 =U(T )−U(0)≡ (ΦT − I)U(0), (3)

where U(T ) is computed from U(0) by time-integration of (1), and where ΦT is the
operator which takes an initial condition U(0) to the field U(T ) at time T . We note
that, in addition to equilibria, definition (3) is satisfied by T -periodic orbits of the
dynamical system, which we will not consider here.

In practice, temporal integration of nonlinear evolution equations cannot be car-
ried out exactly. A notable exception to this, useful for conceptual purposes, is if N
is in fact linear, so that we may write

U(T ) = e(L+N)TU(0). (4)

In general, however, ΦT must be approximated as the product of many small ap-
proximate timesteps. That is,

ΦT ≈ (B∆ t)
T/∆ t , (5)

where B∆ t is a numerical timestepping operator with step size ∆ t. One straight-
forward approach combines backward-Euler timestepping for L with forward-Euler
timestepping for N, leading to the BEFE algorithm

B∆ t ≡ (I−∆ tL)−1(I +∆ tN), (6)

which is used in the Stokes preconditioning method.
Despite the use of the notation L and N, the necessary distinction is actually be-

tween the implicitly and explicitly integrated parts of the operator; although L must
be linear, N may include some of the linear terms. In the interests of keeping the
notation simple, we will not always be rigorous about distinguishing between an
operator such as N and its linearization NU about a solution U . We will also not dis-
tinguish between the spatially continuous equations and their spatially discretized
versions. Nor will we consider the constraints, i.e. boundary conditions, incompress-
ibility, and the crucial related question of determination of the pressure, assuming
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the constraints to be incorporated into the implementation of (I−∆ tL)−1, although
we will later briefly address these questions.

We make a few comments about (6). First, the expression (I−∆ tL)−1 should
be understood as making a rational approximation to e∆ tL, called implicit, meaning
in this case that it requires an operator inversion. The expression (I +∆ tN) should
be understood as a polynomial approximation to e∆ tN and is called explicit because
it requires only operator actions. The reason for which L is integrated implicitly is
that it has widely spaced eigenvalues, a property called stiffness in the context of
differential equations. Stiffness implies that a polynomial (explicit) approximation
of the exponential would require unacceptably small ∆ t in order to remain finite.
The polynomial approximation (I + ∆ tN) also limits the size of ∆ t, but far less
than the limitation that would be imposed by the explicit integration of L. It is very
fortunate that it is the linear term L that bears most of the responsibility for the
stiffness of (1), since implicit formulas involving the nonlinear term N would be
much harder to evaluate, requiring Newton iteration at each timestep, rather than
merely the inversion of a linear operator. Hence, mixed explicit-implicit formulas
such as (6) are almost universally used in hydrodynamics.

For small ∆ t, the Taylor expansion of (6) shows that

B∆ t ≡ (I−∆ tL)−1(I +∆ tN)

≈ (I +∆ tL+(∆ tL)2 + . . .)(I +∆ tN)

≈ I +∆ t(L+N)+∆ t2(L2 +LN)+ . . . (7)

while (4) shows that the exact flow satisfies

Φ∆ t = I +∆ t(L+N)+∆ t2(L+N)2/2+ . . . (8)

Thus, (6) is first-order accurate, meaning that the Taylor series agree to order ∆ t.
Note that the disagreement between (7) and (8), here at order ∆ t2, is not a function
of L+N, a property called time-splitting error. Other, more accurate, timestepping
operators may be used instead of BEFE to approximate ΦT , but time-splitting errors
are always present when different formulas are used to integrate L and N.

Let us now calculate the increment produced by evolving with the Backwards-
Euler Forwards-Euler method (6) over a single timestep:

B∆ t − I = (I−∆ tL)−1(I +∆ tN)− I

= (I−∆ tL)−1 [(I +∆ tN)− (I−∆ tL)]

= (I−∆ tL)−1
∆ t(L+N). (9)

We emphasize that, unlike (7), equation (9) is an exact algebraic calculation and not
a Taylor expansion: it is valid for all values of ∆ t. Thus, (9) demonstrates the simple
and powerful result that roots of B∆ t − I are also exact roots of L+N, regardless of
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the value of ∆ t. Equation (9) follows from the definition (6) of the BEFE algorithm:
it is not a general property of timestepping schemes.

We recall that a wide distribution of eigenvalues of an operator is called stiffness
in the context of differential equations; the same property is called poor condition-
ing in the context of linear operators. Poor conditioning can be counteracted by
preconditioning, i.e. multiplication by an operator which resembles the inverse of
the poorly conditioned operator, but whose action is more easily or cheaply carried
out. Thus, (9) shows that B∆ t − I is a version of L + N that has been precondi-
tioned by (I − ∆ tL)−1. Since, in the hydrodynamic context, ∂U/∂ t = LU is the
time-dependent Stokes (rather than Navier-Stokes) equation, for which (I−∆ tL)−1

is the (implicit) timestepping operator, we call this Stokes preconditioning.
In the limit of small ∆ t, we have

(B∆ t − I) = (I−∆ tL)−1
∆ t(L+N)≈ ∆ t(L+N), (10)

while in the limit of large ∆ t, we have

(B∆ t − I) = (I−∆ tL)−1
∆ t(L+N)≈−L−1(L+N). (11)

Varying ∆ t interpolates between these two cases, that of L+N preconditioned by
L−1 and that of L+N itself. (The conditioning or stiffness of operators is unaffected
by scalar multiplication, since it is the ratio between eigenvalues or timescales that
is significant.) We emphasize that Stokes preconditioning is not carried out as a
separate operation: that is, we do not apply L+N followed by (I−∆ tL)−1. Instead,
we carry out B∆ t − I, which (9) shows to be equivalent to the product of these two
operators. In what follows, we will write BT − I, keeping in mind that T may be of
any size.

We summarize what we have said above by defining various nonlinear operators
G whose roots are the exact, or approximate, steady states of (1). We define two
theoretical operators:

Grhs ≡ L+N, (12)
Gflow = Gflow

T ≡ ΦT − I, (13)

whose roots are steady states of the underlying dynamical system (1), in accordance
with the definitions given in (2) and (3) respectively. These roots may be computed
by seeking the zeros of the following two numerical operators, whose comparison
will be the main focus of this Chapter:

GStokes = GStokes
T ≡ BT − I, (14)

Gint = Gint
T ≡ (B∆ t)

T/∆ t − I. (15)

We omit the time T when it is not important.



Stokes preconditioning in Channelflow and Openpipeflow 7

These two operators are fundamentally different. Unlike Gint, GStokes is not a
time-discretized version of Gflow. Instead, as shown in (9), the roots of GStokes are
those of Grhs if BEFE is used for BT . This is true for any value of T , but only a
large value of T leads to a well-conditioned Jacobian. In contrast, Gint corresponds
to standard time-integration of Gflow. Although any scheme including BEFE may
be used, typically higher-order methods, such as Crank-Nicolson Adams-Bashforth
or semi-implicit Runge-Kutta are preferred. For Gint to approximate Gflow, ∆ t must
have a small value in order for the time integration to be accurate and stable. With the
usual non-dimensionalization of space and time, and at Reynolds or Rayleigh num-
bers in the pattern-forming or transitional range, this usually means ∆ t = O(0.01).
Despite their very different natures, the coding for the two operators is identical.
The difference is only quantitative: for GStokes, one BEFE timestep is taken, with
∆ t = T large, while for Gint, many timesteps with small ∆ t are taken.

Steady states, i.e. roots of an operator G, are calculated via Newton’s method.
For an estimated steady state U , we write the linear approximation to G

G(U−u)≈ G(U)−GU u, (16)

where GU is the linearization of G about U and select u such as to make the right-
hand-side of (16) zero:

GU u = G(U), (17)

updating U as
U ←U−u. (18)

Traveling waves can be considered to be steady states in a moving frame. Rather
than ∂U/∂ t = 0, waves traveling in the x-direction satisfy

∂U
∂ t

=−C
∂U
∂x

, (19)

where the wavespeed C is an additional unknown. Therefore, they may be computed
as steady states of

0 = LU +N(U)+C
∂U
∂x

, (20)

by adding C∂U/∂x to the operator N and imposing an additional condition to fix
the spatio-temporal phase of the traveling wave.

The bottleneck for Newton’s method is the solution of the linear system (17).
Assuming that the dimension of GU is too large for (17) to be solved directly via
Gaussian elimination, it must be solved iteratively using a matrix-free approach
that avoids explicit construction of the Jacobian. The method of choice is conjugate
gradient iteration or, rather, one of its suitable generalizations for non-symmetric
positive definite operators GU . The most widely used of these is GMRES, General-
ized Minimum RESidual [102], but BiCGSTAB [103] also has its adherents. These
methods calculate an approximation to u in a Krylov space, i.e. in the space spanned
by successive actions of the linear operator GU on G(U):
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G(U), GU G(U), G2
U G(U), . . . Gk

U G(U), . . . GK−1
U G(U). (21)

The CPU time required to solve (17) thus depends on two factors:
–the time required for a single action by GU ,

determined by the number of timesteps T/∆ t, and (22)
–the number K of actions needed to approximate the solution u,

determined by the conditioning of GU . (23)

The action of GU on u can be carried out by taking N→ NU , i.e. substituting

(U ·∇)U→ (u ·∇)U+(U ·∇)u (24)

and replacing all inhomogeneous terms such as boundary conditions, pressure gradi-
ents or fluxes, by corresponding homogeneous terms. This can typically be accom-
plished with very little modification to a code. Alternatively, it can be approximated
via finite differences as

[G(U + εu)−G(U)]/ε (25)

In either case, evaluation of GU u typically takes approximately the same time as
evaluation of G(U). Therefore the time required to compute one such action is pro-
portional to the number of timesteps T/∆ t. For an optimized pseudospectral code,
the most time-consuming portion of a timestep is spent in the spectral-to-physical
transforms, which take a time roughly proportional to

MxMyMz (logMx + logMy + logMz)≡M logM, (26)

where Mx,My,Mz are the number of gridpoints or modes in each of the three Carte-
sian directions and M is their product. For finite-difference discretizations, the most
time-consuming portions may be the inversion of elliptic operators, which in tensor-
product geometries can be carried out [1, 104–106] in a time proportional to

MxMyMz (Mx +My +Mz)∼M4/3. (27)

We will consider that the CPU time spent in carrying out actions by GU is propor-
tional to K (T/∆ t) M1+α with 0 ≤ α ≤ 1. The number K of actions is determined
by the nature of the operator GU , more specifically its spectrum, a simple measure
of which is given by its condition number, which is roughly the ratio of absolute
values of the largest to the smallest eigenvalue. The total number of timesteps taken
in each Newton step is the product K×T/∆ t.

Other considerations can enter into the timing. The most important one we have
found is related to the GMRES algorithm without restarts, which requires the or-
thogonalization of all of the Krylov vectors (21) to each other, requiring K(K−1)/2
scalar products of vectors of length proportional to M. For K sufficiently large, the
CPU time required to take these scalar products may approach or even exceed that
taken by the timesteps. We may write the total time required to take one Newton
step as
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CPU≈ caction
T
∆ t

KM1+α + corthK2M, (28)

where caction � corth are prefactors measuring the CPU time taken to perform a
timestep or a scalar product.

3 Stokes preconditioning using Channelflow and Openpipeflow

We have carried out computations of steady states in plane Couette flow using Chan-
nelflow and traveling waves in pipe flow using Openpipeflow. In the plane Couette
case, the computations using the Stokes preconditioning method take about 10% of
the time required by computations using the classic integration method when mea-
sured in terms of number of timesteps required. For pipe flow, the Stokes precon-
ditioning method is 35 to 50 times faster than the classic integration method. This
section gives details of these computations and explores the conditioning properties
of the operators GStokes and Gint.

3.1 The flows

The mathematical framework for plane channel flows assumes flow between infinite
parallel plates, with velocities which are prescribed on the plates and which are
assumed periodic in the two directions parallel to the plates. Each periodic boundary
condition must be completed by specifying either the flux or the pressure gradient in
that direction. Plane Couette flow prescribes a finite velocity difference between the
plates and no pressure gradient in the directions parallel to the plates, while standard
plane Poiseuille flow prescribes no velocity difference between the plates, a finite
pressure gradient or flux in one parallel direction and zero flux in the other. The
direction between the plates is called cross-channel or wall-normal, the direction
of the fixed velocity difference in the Couette case or of the fixed pressure gradient
or flux in the Poiseuille case is called streamwise and the remaining direction is
called spanwise. (Any combination of Poiseuille and Couette flow is possible and,
in addition, the flux can be chosen to be zero in either flow by the appropriate choice
of velocity at the walls.) Pipe flow, in a cylindrical geometry, also has two periodic
directions, with a prescribed velocity on the pipe surface, a pressure gradient or flux
in the streamwise direction and zero pressure gradient in the azimuthal direction.

Although the three flows are qualitatively different, their overall behavior is ex-
tremely similar. All have simple laminar states which are homogeneous in the pe-
riodic directions, All undergo transition to turbulence despite the fact that the lam-
inar states are linearly stable in the Reynolds number range relevant for transition.
(Plane Couette flow and pipe flow are linearly stable for all Reynolds numbers,
while plane Poiseuille flow becomes unstable for a Reynolds number which is con-
siderably higher than that at which transition takes place.) All possess an abundance
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of unstable states, which we investigate below. Two differences are relevant for our
discussion. First, when there is an imposed flux (or pressure gradient) along the
streamwise direction of the pipe or channel, states which break the streamwise ho-
mogeneity are not steady, but traveling waves or more complex flows. Second, the
Reynolds numbers defined for the three flows use different conventions. Since for
all of these flows the instability mechanism is shear, a common Reynolds number
based on a single-sign shear layer would be more appropriate. Laminar plane Cou-
ette flow (Ulam = y over −1 ≤ y ≤ 1) possesses one single-sign shear layer with
∆U = 2 and ∆Y = 2, while the y = 0 plane divides laminar plane Poiseuille flow
(Ulam = 3(1−y2)/2 over−1≤ y≤ 1) into two opposite-sign shear layers each with
|∆U | = 3/2 and ∆Y = 1, which yields a factor of 4/(3/2) = 8/3 = 2.67 between
the conventional Reynolds numbers for Couette and Poiseuille flow. For pipe flow
(Ulam = 2(1−4r2) over 0≤ r≤ 1/2) the length scale used in defining the Reynolds
number is the diameter, so that ∆U = 2 and ∆Y = 1/2. Hence the conventional
Reynolds numbers for pipe flow are roughly four times those for plane Couette flow
with similar phenomenology. Evidence for this is that transition to turbulence begins
in plane Couette flow at Re∼ 325 [107], in plane Poiseuille flow at Re∼ 1000, and
in pipe flow at Re ∼ 2040 [108], a factor of 6.3 higher than for transition in plane
Couette flow. The lowest known non-trivial states appear at 127 for plane Couette
flow [65, 66] and at 773 for pipe flow [87], a factor of 6.

3.2 The codes

The Channelflow [85,88] and Openpipeflow [89] software packages are widely used
in the hydrodynamic stability community. As their names imply, Channelflow and
Openpipeflow simulate flows in a planar and in a cylindrical geometry, respectively.
Both treat tensor-product geometries, with two periodic directions and one non-
periodic direction. Both represent the two periodic directions as Fourier series, tak-
ing derivatives in the Fourier space, where they are sparse. This means that inverting
Laplacian (L) and Helmholtz (I−∆ tL) operators is cheap and easy: these inversions
are carried out exactly and not iteratively, contrary to what is done in spectral ele-
ment or finite volume codes meant to treat general geometries. Both use the influ-
ence matrix technique to impose incompressibility so that the solutions calculated
are divergence-free to machine accuracy and not merely to some power of ∆ t. In
addition to timestepping, i.e. action by B∆ t , both have also implemented steady-
state solving, using Newton’s method to find roots of Gint. It can be seen from (14)
and (15) that the operator GStokes can be represented via Gint merely by setting the
parameters T and ∆ t to be equal and selecting the BEFE scheme to perform the
timestepping, rather than the higher order methods that are usually preferred for
evaluation of Gint. No changes at all need to be made to the codes, which makes
them ideal for comparing the calculation of steady states and traveling waves via
Gint versus GStokes.
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We complete the description of the two codes by mentioning a few other ele-
ments which are less relevant for our purpose. Channelflow discretizes the spatial
derivatives in the direction between the two bounding planes via Chebyshev poly-
nomials, while Openpipeflow discretizes the nonperiodic radial direction via finite
differences. Both codes use a Chebyshev grid spacing in the nonperiodic direction,
with points concentrated near the solid boundaries. Both use the pseudospectral
method, with derivatives taken in the Fourier space and multiplications carried out
by transforming to a gridspace representation, multiplying the values at each point
and then transforming back. Both use GMRES to solve the linear systems (17). Both
approximate the action of GU as a difference (25) between two actions of G. Both
implementations improve the convergence radius of Newton’s method by including
the complementary hookstep [79] feature, which constrains the Newton step so that
it remains within a trusted region of validity for linearization (16).

3.3 Computations with Channelflow

Fig. 1 Visualization of the steady state EQ1, also called NCBW. Left: Cutaway perspective view.
Colors show streamwise velocity, arrows show velocity in various planes. Right: Streamwise cross-
section showing deviation of streamwise velocity from the laminar state. Adapted from Gibson,
Halcrow, Cvitanović [86].

Many steady states of plane Couette flow have been computed using Chan-
nelflow; see [86]. Here, we investigate a branch called EQ1 or NCBW, since it
was discovered separately by Nagata [62], by Clever & Busse [66] and by Wal-
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Fig. 2 Performance of Newton’s method with GMRES in Channelflow for single-step Stokes pre-
conditioning method GStokes

T and for multi-step integration method Gint
T for various values of T .

The initial condition is the steady EQ1 state [62, 63, 65, 66] at Re = 400 and Re is lowered to
380. Ordinate shows log ||G(U)|| at each Newton iteration, while abscissa shows the number of
timesteps taken thus far. Each curve is labelled by its value of T . Left: Performance of single-step
GStokes

T ≡ BT − I. Convergence is fastest when T is highest, achieving approximately asymptotic
performance for T = 100 (solid curve). Right: Performance of multi-step Gint

T ≡ (B∆ t)
T/∆ t− I with

timestep ∆ t = 0.03125. Convergence is fastest when T is lowest, achieving approximately asymp-
totic performance for T = 1 (solid curve). Shown for comparison is the convergence curve for
GStokes with T = 100. Short black lines highlight the difference in speed between the two methods:
the classic integration method takes 9500 timesteps in this case, while the Stokes method takes 860
timesteps, a ratio of 11.

Fig. 3 Left: Dependence of the number K of GMRES iterations (hollow circles) required for con-
vergence for a typical Newton step as a function of T , plotted along with the number T/∆ t of
timesteps (crosses) per action of the operator. As T increases, the number T/∆ t of timesteps re-
quired per action obviously increases, while the K required by Gint (hollow circles) decreases from
152 to 7, showing that its condition number improves. In contrast, for GStokes, T/∆ t = 1 but the K
required is much larger, decreasing with T and saturating at around 230 for T & 10. Circles contain-
ing crosses shows log(K)+ log(T/∆ t) = log(KT/∆ t), the log of the total number of timesteps in a
typical Newton step. Right: Convergence during the solution of linear equations for four successive
Newton steps at Re = 500 for Gint

T=1 and for GStokes
T=100. For each curve, convergence is interrupted by

plateaus. The linear system involving Gint requires fewer actions with GU than GStokes, a conse-
quence of the fact that Gint is better conditioned than GStokes. The number K of actions required by
GStokes increases at each successive Newton step.
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effe [63, 65]. It is illustrated in Fig. 1. We begin from a member of EQ1 at
Re = 400 and lower the Reynolds number to Re = 380. We use a domain of size
2π/1.14× 2× 2π/2.5 with a numerical resolution of (Mx,My,Mz) = (48,35,48).
At each Newton iteration, the L2 norm ||G(U)|| is measured. Each Newton step re-
quires the solution of a linear system, which in turn requires K×T/∆ t timesteps.
We plot ||G(U)|| as a function of the timesteps executed. The left portion of
Fig. 2 shows that the best performance for the multi-step time-integration-based
Gint with ∆ t = 0.03125 is achieved for T . 1, while the right portion shows that the
best performance for the single-step Stokes-preconditioned GStokes is achieved for
∆ t = T & 100. The most striking result of Fig. 2, however, is that the Stokes method
takes about 10% of the number of timesteps of the classic integration method.

In order to better understand the performance of these two methods, we recall
that the number of timesteps per Newton iteration is the product of T/∆ t and K. For
Gint, T/∆ t obviously increases with the total integration time T , while K decreases
with T , i.e. Gint becomes better conditioned. Figure 3 (left) illustrates this tradeoff.
The two effects combine to show a slight increase in number of timesteps with final
time T . In contrast, for GStokes, the number K of operator actions needed is far higher
than is needed for Gint, but only a single timestep is needed per operator action. This
leads to a far lower cost for GStokes than for Gint. For GStokes, increasing T makes
the preconditioning more effective, leading to a decrease in K and therefore in the
number of timesteps taken as shown in the left portions of Fig. 2 and 3. The decrease
is monotonic and saturates at around T = 100. (However, in [109] a local minimum
is found, with optimal performance at T = 0.1.) We emphasize that changing T in
GStokes affects only the rate of convergence. In contrast, the roots themselves of Gint

necessarily depend somewhat on ∆ t and, to a lesser extent, on T as well. Figure
3 (right) shows the convergence of the solution of the linear systems arising in the
successive Newton steps at Re = 500 for Gint

T=1 and GStokes
T=100. Convergence is inter-

rupted by plateaus, whose understanding might lead to better preconditioners. Note
that K increases from one Newton step to the next, which is especially noticeable
for GStokes.

We have calculated the EQ1 branch from Re = 400 up to Re = 3000. The condi-
tioning of both operators worsens: for Re = 2000, the number of timesteps required
by the Stokes preconditioning and the integration methods is about 4000 and 40 000,
respectively, while for Re = 3000, it is about 9000 and 90 000. Thus, the time re-
quired increases for both methods, but the ratio between the two methods in terms
of number of timesteps remains approximately the same: on the order of 10. For the
case of a lid-driven cavity, Brynjell-Rahkola et al. [110] show that the number of
GMRES iterations required by GStokes using Nek5000 [111] is approximately pro-
portional to Re, as Re is increased from 100 to 500. It was previously shown [112]
that the condition number of GStokes is unaffected by an increase in spatial resolu-
tion.
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3.4 Computations with Openpipeflow

Fig. 4 Traveling wave states N4L (left) and M1L (right), visualized via the deviation of the stream-
wise velocity from the laminar profile. From Pringle, Duguet and Kerswell [87].

We now turn to calculations carried out using Openpipeflow. Since there is a
mean flow along the streamwise direction x of the pipe, bifurcations breaking the x
symmetry are always to traveling waves. Visualizations of two such states, namely
the N4L and M1L waves computed by Pringle, Duguet and Kerswell [87], are
given in Fig. 4. Figure 5 presents the convergence of the calculation of N4L at
Re = 2600 with Openpipeflow, starting from the solution at Re = 2500. (We recall
that Reynolds numbers for pipe flow are defined in such a way that that they are 4 to
6 times the equivalent Reynolds numbers for plane Couette flow.) The axial length
is π/1.7 diameters and the resolution is (Mr,Mθ ,Mz) = (64,36,54). Measured in
terms of the number of timesteps, the calculation using GStokes is 35 times faster than
that using Gint. We then calculate states along the highly symmetric M1L branch as
a function of Reynolds number. The axial length is π/1.437 diameters and the reso-
lution is (Mr,Mθ ,Mz) = (64,48,54). The speedup is even more dramatic, reaching
a ratio of 50 in terms of timesteps between the Stokes and integration methods. This
ratio remains approximately constant as the Reynolds number is increased, as shown
in the left portion of Fig. 6.

In the right portion of Fig. 6 we contrast the CPU time in seconds required by
the two methods on a single processor of a Xeon X5650@2.67GHz. The Stokes
method remains much faster than the integration method, but far less than when it is
measured in terms of number of timesteps. The reason for this has been alluded to
before, in Eq. (28). For sufficiently large K (which occurs at sufficiently high Re),
the CPU time taken by GMRES to orthogonalize the Krylov vectors to one another,
which scales like K2, becomes comparable to and even exceeds the CPU time taken
by the operator actions.
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Fig. 5 Performance of Newton’s method with GMRES in Openpipeflow for single-step Stokes
preconditioning method GStokes

T and for multi-step integration method Gint
T for various values of

T . The initial condition is the N4L traveling wave state at Re = 2500 and Re is raised to Re =
2600. Ordinate shows log ||G(U)|| at each Newton iteration, while abscissa shows the number of
timesteps taken thus far. Each curve is labelled by its value of T . Left: Performance of single-step
GStokes

T ≡ BT − I. Convergence is fastest when T is highest, achieving approximately asymptotic
performance for T = 50 (solid curve). Right: Performance of multi-step Gint

T ≡ (B∆ t)
T/∆ t − I with

timestep ∆ t = 0.01. Convergence is fastest when T is lowest, achieving approximately asymptotic
performance for T = 1 (solid curve). Shown for comparison is the convergence curve for GStokes

with T = 50. Short black lines highlight the difference in speed between the two methods: the
classic integration method takes 87600 timesteps, while the Stokes method takes 2520 timesteps,
a ratio of about 35.

Fig. 6 Time taken to compute the highly symmetric M1L state as a function of Reynolds number.
Comparison in terms of number of timesteps (left) and CPU time in seconds (right). Computation
with single-step GStokes

T uses T = 50 while computation with multi-step Gint
T uses T = 5. The time

taken to calculate the traveling waves increases for both the Stokes and the integration method. The
ratio of timesteps between the two methods, about 50, changes very little, while the ratio of CPU
times decreases from 55 to about 2.
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3.5 Operator Spectra
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Fig. 7 Spectra in the complex plane of the single-step operators GStokes
0.0001 (green), GStokes

0.1 (blue),
GStokes

100 (ochre) and the multi-step operator Gint
10 (magenta) for EQ1 at Re = 500. (a) The very large

negative real eigenvalues of GStokes
0.001 near −360 are not present in GStokes

0.1 , for which the dominant
eigenvalues have real parts near−10 and imaginary parts near±12. When T is further increased to
100, most of the real parts cluster within ±0.2 of −1, while the imaginary parts extend to ±35. (b)
Close-up showing the spectra near the point (−1,0). The plotted area is indicated by an overlaid
black square in part (a). At this scale, the spectra of the single-step operators are so close as to be
indistinguishable, save for a few outliers. Consequently, GStokes

100 and Gint
10 have been plotted with

larger points for emphasis and only every third point from GStokes
0.0001 and GStokes

0.1 has been included.
The outlying Gint

10 point near 0.6 is approximately T = 10 times the leading eigenvalue [99] of
L + NU . (c) Highly enlarged plot showing the spectrum of Gint

10 only. Most eigenvalues of this
well-conditioned multi-step operator cluster tightly around −1, since the black circle of radius
8.4×10−4, centered at (−1,0), contains 95% of the spectrum.
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Fig. 8 Spectra in the complex plane of the single-step operators GStokes
0.0001 (green), GStokes

0.1 (blue),
GStokes

100 (ochre) and the multi-step operator Gint
10 (magenta) for EQ1 at Re = 1750. (a) The most

negative eigenvalue of GStokes
0.0001 is now near−105, while that of GStokes

0.1 is near−10. An enlargement
showing the shape of these two spectra near the origin is included in the top left; its drawing region
is indicated by the gray rectangle in the larger plot and its aspect ratio is 1 : 2. The real parts of the
eigenvalues of GStokes

100 continue to cluster around −1, but the imaginary parts now extend higher
than in the Re = 500 case, to ±100. (b) Close-up showing the spectra near the point (−1,0). The
plotted area is indicated by an overlaid black square in part (a). The spectra of Gint

10 and GStokes
100

have been plotted with larger points to distinguish them from the very dense regions of the GStokes
0.0001

and GStokes
0.1 spectra, for which we include only every fourth point at this level of enlargement. The

outlying Gint
10 point near 0.35 is T = 10 times the leading eigenvalue [99] of L+NU . (c) Slightly

closer enlargement showing only the Gint
10 eigenvalues. The black circle of radius 0.153, centered at

(−1,0), contains 95% of the spectrum. This should be contrasted with the Re = 500 case in which
the eigenvalues are more tightly clustered by roughly two orders of magnitude.



18 Laurette S. Tuckerman and Jacob Langham and Ashley Willis

We have seen that the Stokes preconditioning method is much faster than the
integration-based method because the time required to act with GStokes is so much
less than that required by Gint. However, the conditioning of GStokes is much worse
than that of Gint. We want to understand why this is so and also why the conditioning
of both operators worsens as the Reynolds number increases and improves as T
increases. To do so, we calculate spectra of branch EQ1 of plane Couette flow using
Channelflow. This is done by constructing the full Jacobian matrix by acting with
Gint or GStokes on successive basis vectors to form each column. The eigenvalues are
determined using Julia, which in turn uses Lapack’s geevx routine.

Figure 7 shows the spectra at Re = 500 of the Jacobians GU of operators
GStokes and Gint for various values of T , linearized at EQ1 with spatial resolu-
tion (Mx,My,Mz) = (39,29,39). Note that these spectra are in general not those
of L+NU , whose eigenvalues determine the stability of the steady states via the
sign of their real parts. Instead, the G’s are operators whose roots are the same as
those of L+N but whose spectra may be quite different. Newton’s method finds the
roots of the G operators independent of their stability. (We do not recommend any
of these operators as a means of determining eigenvalues of L+NU . Other, more
precise and more economical methods are given in [99] via exact diagonalization
of the Jacobian, in [78, 79, 85] via more accurate use of Gint, and in [112–115] via
the inverse Arnoldi method with Stokes preconditioning.) Our interest is instead in
the distribution of the eigenvalues of the Jacobians GU , which determines the rate
of convergence of GMRES in solving the linear systems (17). Broadly speaking, a
tightly clustered spectrum leads to fast convergence, a highly dispersed spectrum to
slow convergence. In order to compare the spectra of GStokes

T at different values of
T , we have followed [109] and rescaled the eigenvalues λ Stokes via:

λ
Stokes 7→ 1+T

T
λ

Stokes. (29)

(Note that scaling does not change the condition number of an operator.) The scal-
ing factor is 1/T in the limit of small T and 1 for large T . It is designed to remove
the ∆ t (= T ) dependence from the limiting behaviors of the Stokes operator given
in (10) and (11) and thereby facilitate the visual comparison of the spectra at differ-
ent values of T at approximately the same scales. Using (29), the eigenvalues tend
to those of L+NU as T → 0 and to those of −L−1(L+NU ) as T → ∞. The green
points show the spectrum of GStokes for T = 10−4, a value small enough for GStokes

to resemble L+NU . The large negative eigenvalues of the Laplacian (or rather its
vector analogue, the Stokes operator) are prominent outlying features. Here, the
spectrum extends to −360, but these eigenvalues depend on the spatial resolution,
becoming more negative as the resolution is increased. It is these eigenvalues that
are responsible for the poor conditioning of L+NU , or equivalently, the stiffness of
the Navier-Stokes equations. As T =∆ t is increased to 10−1 (blue points), the eigen-
values retract towards zero and are contained approximately within the convex hull
of the points (−11,0), (−1,±13 i), and the origin. When T = ∆ t is increased to 100
(ochre points), in the asymptotic regime used in steady-state solving, the spectrum
lies very close to the line segment between (−1,−30i) and (−1,30i); over 95% of
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the eigenvalues possess real part within ±0.2 of −1. The real range has decreased
drastically, but the imaginary range has increased. Brynjell-Rahkola et al. [110] also
show that the eigenvalues of GStokes

T converge towards a curve as T is increased for
the model problem of a Ginzburg-Landau equation.

The eigenvalues of the multi-step operator Gint
T=10 with ∆ t = 0.03125 are shown

as magenta points. The Jacobian of (B∆ t)
T/∆ t should approach exp(T (L+NU )) as

∆ t → 0. This leads to the following limits for the eigenvalues λ int of Gint, in terms
of the eigenvalues λ of L+NU :

λ
int ≈ exp(λT )−1≈

{
λT
−1

}
for

{
|λT | � 1
|λT | � 1, with λ < 0

}
(30)

which explains why the Jacobian of Gint typically enjoys superior conditioning prop-
erties. This can be seen by examining Fig. 7, parts (b) and (c), which indeed contain
values tightly clustered around −1 as well as a positive eigenvalue near 0.6, which
is approximately T = 10 times the known [99] leading eigenvalue 0.06 of EQ1 at
Re = 500. In contrast, while the ochre points of the GStokes

100 spectrum cluster in the
real direction, their imaginary parts are spread out and the operator is therefore more
poorly conditioned.

Comparable spectra for Re = 1750 are shown in Fig. 8. These differ quantita-
tively but not qualitatively from those in Fig. 7 for Re = 500. We use these differ-
ences to test the representation of the spectrum of L+NU by that of a 1D model for
an advection-diffusion equation with analytical eigenvalues:

λ
model
k =−k2/Re± ikU (31)

where k represents a wavenumber associated with eigenmodes eikx, whose images
under the diffusion and linearized advection operators, respectively, lead to the real
and imaginary parts of λ model

k . (Although k has been used previously to designate
a member of the sequence of Krylov vectors, we use it again here because it is the
universal notation for a wavenumber.) In the following, we assess this model us-
ing quantitative comparisons with the eigenvalues for GStokes

T , rescaled according to
Eq. (29), and Gint

10 . We first consider the most negative real eigenvalue of L+NU ,
which is predicted by (31) to be proportional to 1/Re. The most negative eigen-
value among the green points of GStokes

0.0001 in Fig. 8(a) is −105, compared to −360
for Re = 500. The ratio of eigenvalues 360/105 is 3.4, almost exactly the inverse
of the ratio of Reynolds numbers 1750/500 = 3.5, as predicted by (31). Our second
test concerns the imaginary part of the spectrum of GStokes

T . For T large, the model
spectrum (31) is transformed under Stokes preconditioning to the vertical line

λ
Stokes
k ≈

λ model
k

k2/Re
=−1± iURe/k, (32)

which resembles the spectrum of GStokes
100 aligned along the imaginary axis. To verify

the scaling, note that for Re = 1750, the largest imaginary part among the ochre
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points of GStokes
100 is ±100, compared with ±35 for Re = 500. The ratio between

these values is 2.9, close to the ratio between the Reynolds numbers.
For our third test, we use (31) to estimate the radius r of the circle surrounding

(−1,0) which contains 95% of the eigenvalues of Gint. Using the limits in (30), we
assume that these eigenvalues correspond to those of (31) with k > k∗. We have∣∣∣λ int

k +1
∣∣∣. e−T k2

∗/Re = r (33)

and therefore

T k2
∗/Re = ln(1/r), (34)

yielding another expression for the ratio between Reynolds numbers Re1 and Re2:

Re2

Re1
=

ln(1/r1)

ln(1/r2)
. (35)

The radii measured for Re1 = 500 and Re2 = 1750 are r1 = 0.00084 and r2 = 0.153,
respectively, leading to

ln(1/0.00084)
ln(1/0.153)

=
7.08

1.877
= 3.77, (36)

which is again very close to 1750/500 = 3.5.
When T is changed and Re kept constant, (34) implies that the left-hand-side of

(35) should be replaced by T1/T2. We have verified this for Re = 500 by computing
the radius 0.049 containing 95% of the eigenvalues for Gint

T=1. Comparing this to the
radius corresponding to Gint

T=10 yields

ln(1/0.00084)
ln(1/0.049)

= 10.003 (37)

very close to the ratio of the T values. To preserve the conditioning of Gint as Re is
increased, the ratio T/Re should be kept constant. Since the time taken to act with
Gint is proportional to T/∆ t, we arrive at the useful result that the CPU time taken
by Gint to calculate steady states or traveling waves is, in the absence of changes in
the spatial or temporal resolution, proportional to the Reynolds number. The number
of timesteps taken by GStokes is also approximately proportional to Re, as shown in
Fig. 6(left) and in [110].

The true spectrum of L+NU is certainly more complicated than (31). The green
dots in Fig. 7 and 8 show many features not present in (31) and indeed, the eigen-
values of L and NU are not as simple as −k2/Re and ±ikU . Note, however, that the
only features of (31) that we have used are shared by the more general model

λ
model
k

′
=− f (k)/Re± ig(k) (38)
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in which k serves merely as an index enumerating the eigenvalues. The astonishing
accuracy of the predictions of this model leads us to believe that it provides a good
representation of the basic shape of the actual spectra and operators. Moreover, it
provides a simple explanation of the dependence of the spectra on Re and T and by
extension, the conditioning properties of the operators.

3.6 Challenges

We close by mentioning the limitations and applicability of the Stokes precondition-
ing method. First, the single-step Stokes operator can be used only for computing
steady states and traveling waves and not for calculating general periodic orbits or
more complex dynamical states. It seems unlikely that any generalization would be
possible, since even describing or defining these objects necessarily requires mul-
tiple time steps. However, Stokes preconditioning can be used to rapidly compute
leading eigenvalues [112–115] and optimal forcing [110] via the inverse power or
Arnoldi method. Second, Stokes preconditioning is based on the utility and speed
of inverting elliptic (Laplacian, Stokes, or Helmholtz) operators. Concerning utility,
Stokes preconditioning is an effective preconditioner for the Jacobian L+NU under
precisely the same conditions that implicit timestepping of the diffusive/viscous op-
erator L is effective. Concerning speed, the most favorable conditions occur when
the elliptic operators are inverted directly rather than iteratively, which is easy in a
tensor-product domain [1,104–106]. Codes such as Nek5000 [111], which use spec-
tral elements to represent flexible user-defined geometries, typically do not do so. In-
stead, these codes use iterative methods whose convergence relies on the Helmholtz
operators I−∆ tL being close to the identity, which is not the case when ∆ t is taken
large. Similarly, codes sometimes impose constraints, notably incompressibiity, to
a power of ∆ t rather to machine accuracy; this too is not compatible with large ∆ t.
However, based on the experience of previous researchers using spectral element
methods we believe that these objections can be overcome.

We have seen that Stokes preconditioning is extremely economical at the lower
Reynolds number ranges of our investigation, achieving a 50-fold economy in CPU
time. This factor, however, decreases as the Reynolds number increases, and we have
been able to understand the reason for this. As Re increases, the Jacobian L+NU
deviates increasingly from L, preconditioning by L−1 becomes less effective, and
so the number K of iterations necessary to solve each linear system increases. The
consequences of this are particularly severe when GMRES is used, since part of its
algorithm requires a time which is quadratic in K. We can propose several remedies
for this, in increasing order of difficulty and effectiveness. First, K may be reduced
by relaxing the convergence criterion for solving the linear equation (17). This has
the counterbalancing effect of increasing the number of Newton steps required, but
some improvement is possible. A more promising approach is to use a different
method for solving the linear systems. Conjugate-gradient-type methods other than
GMRES, notably BiCGSTAB, do not retain all K Krylov vectors throughout the cal-
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culation. Hence, they do not store K velocity fields and no portion of their operation
count scales like K2. Although BiCGSTAB has been widely used in the applications
of Stokes preconditioning detailed in the introduction, we have not succeeded in do-
ing so in Channelflow or in Openpipeflow. The reason for this is probably given in
Figs. 7 and 8: as the Reynolds number is increased, the eigenvalues associated with
GStokes acquire large imaginary parts and BiCGSTAB is known to converge badly in
this case [116,117]. Related methods, such as BiCGSTAB(`) and IDR [118] that act
better with such matrices have been proposed. The most promising idea, inspired
by Figs. 7 and 8 and the model (38) is to incorporate linear portions of N into L, in
particular the linearization around the laminar flow

(Ulam ·∇)u+(u ·∇)Ulam (39)

so as to include a large part of the advective term in the preconditioning.
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Appendix

This Appendix presents samples in Figs. 9, 10, 11 and 12 of previous computations
carried out by Stokes preconditioning.
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Fig. 9 Rayleigh-Bénard convection in a cylinder of aspect ratio with radius / height = 2, Pr = 6.7
and insulating lateral boundaries. Left: Bifurcation diagram shows 17 branches of steady states,
with azimuthal symmetries m = 2 (pizza, four-roll), m = 0 (two-tori, torus), m = 3 (marigold,
Mitsubishi, cloverleaf, Mercedes), m = 1 (dipole, three-roll, tiger, asymmetric three-roll). Right:
Partial schematic diagram showing branches with m = 3 symmetry. Transition from conductive
state to marigold and then Mitsubishi branches occur via circle and ordinary pitchfork bifurcations,
respectively, and to cloverleaf and Mercedes branches via two successive saddle-node bifurcations.
The only stable states are on a portion of the Mercedes branch, shown by the thick curve. The
results are from a pseudospectral simulation with (Mr,Mθ ,Mz) = (60,130,30). From Borońska &
Tuckerman [17].
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Fig. 10 Binary fluid convection in a domain with aspect ratio width / height = 14, Neumann
boundary conditions, Prandtl and Lewis numbers Pr = 7, Le = 0.01 and separation ratio S =−0.1.
Left: Partial bifurcation diagram showing two-pulse point-symmetric states based on 15 rolls.
Right: Temperature and concentration fields for the three solutions indicated as dots on the bi-
furcation diagram. From Mercader, Batiste, Alonso & Knobloch [55].
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Fig. 11 Three-dimensional binary fluid convection in a porous medium of size 6×6×1. Left: bi-
furcation diagram. Right: vertical velocity at mid-layer. The transition from a four-armed structure
with arms oriented along the diagonals (panels (c) and (d), black curve) to an eight-armed structure
with arms oriented along both the diagonals and the principal axes of the domain (panel (a), orange
curve) via a target pattern (panel (b)). Simulations use a spectral element method with 6 elements
in the quarter domain, each with (23,23,17) points. From LoJacono, Bergeon & Knobloch [61].

Fig. 12 Steady states of a streamwise-independent reduced model for plane Couette flow. Bifur-
cation diagram on left. Representative states from lower (middle) and upper (right) branches at
Re≈ 1000. Colored contours show the streamfunction of streamwise rolls, while the black curves
show contours of the streamwise velocity. From Beaume, Chini, Julien & Knobloch [97, 109].
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33. Gérald Bardan, Alain Bergeon, Edgar Knobloch, and Abdelkader Mojtabi. Nonlinear doubly
diffusive convection in vertical enclosures. Physica D, 138:91–113, 2000.

34. Alain Bergeon and Edgar Knobloch. Natural doubly diffusive convection in three-
dimensional enclosures. Phys. Fluids, 14:3233–3250, 2002.

35. Alain Bergeon, R Mollaret, and D Henry. Soret effect and slow mass diffusion as a catalyst
for overstability in Marangoni-Bénard flows. Heat Mass Transf., 40:105–114, 2003.

36. Esteban Meca, Isabel Mercader, Oriol Batiste, and Laureano Ramı́rez-Piscina. Blue sky
catastrophe in double-diffusive convection. Phys. Rev. Lett., 92:234501, 2004.

37. Esteban Meca, Isabel Mercader, Oriol Batiste, and Laureano Ramı́rez-Piscina. Complex
dynamics in double-diffusive convection. Theoret. Comput. Fluid Dyn., 18:231–238, 2004.

38. Isabel Mercader, Arantxa Alonso, and Oriol Batiste. Numerical analysis of the Eckhaus
instability in travelling-wave convection in binary mixtures. Eur. Phys. J. E, 15:311–318,
2004.

39. Oriol Batiste, Arantxa Alonso, and Isabel Mercader. Hydrodynamic stability of binary mix-
tures in Bénard and thermogravitational cells. Journal of Non-Equilibrium Thermodynamics,
29:359–375, 2004.

40. Arantxa Alonso, Oriol Batiste, and Isabel Mercader. Numerical analysis of binary fluid
convection in extended systems. In J. Phys. Conf. Ser., volume 14, page 180. IOP Publishing,
2005.

41. Arantxa Alonso, Oriol Batiste, Alvaro Meseguer, and Isabel Mercader. Complex dynam-
ical states in binary mixture convection with weak negative soret coupling. Phys. Rev. E,
75:026310, 2007.

42. John Burke and Edgar Knobloch. Localized states in the generalized Swift-Hohenberg equa-
tion. Phys. Rev. E, 73:056211, 2006.

43. Alan R Champneys. Homoclinic orbits in reversible systems and their applications in me-
chanics, fluids and optics. Physica D, 112:158–186, 1998.



Stokes preconditioning in Channelflow and Openpipeflow 27

44. Pierre Coullet, C Riera, and Charles Tresser. Stable static localized structures in one dimen-
sion. Phys. Rev. Lett., 84:3069, 2000.

45. Stephan Fauve and Olivier Thual. Solitary waves generated by subcritical instabilities in
dissipative systems. Phys. Rev. Lett., 64:282, 1990.

46. Yves Pomeau. Front motion, metastability and subcritical bifurcations in hydrodynamics.
Physica D, 23:3–11, 1986.
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