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Computational stability analysis is the most powerful method for the precise determination of
transition points and instability mechanisms in fluid flows. Yet the field of hydrodynamic sta-
bility has not undergone the advances seen in other areas of computational fluid dynamics. We
present a new method for solving linear stability problems, requiring minimal computational

time and storage.

In previous work [1,2], we showed how a code for time-stepping the Navier-Stokes equations,
written schematically as dU/dt = L + N could be adapted to find steady flows, i.e. roots of
the equation 0 = L + N, via Newton’s method. Here, L stands for the viscous damping and
pressure projection and NV is the nonlinear advection term. The key idea is that the difference
between two Forward-Euler/Backwards-Euler (FEBE) timesteps

U(t+At) —U(t) = [(I-AtL)"Y I+ AtN) - NU(t)
= (I - AtL)'AH(N 4+ L)U(t)

yields an operator whose roots are identical to those of (N + L), but whose Jacobian matrix

is far better conditioned.

We now apply this idea to solve the related linear stability problem.
Au= (Ny+ L)u=\u

where U is a steady flow and N7 is, e.g., Nyu = —U-Vu—u-VUIf N(U) = =U-VU. Complete
diagonalization of the large (10* x 10* to 10° x 10°) matrices A arising from realistic two or
three dimensional flows is prohibitively expensive and wasteful, when only the eigenvalues

producing instability are important. (Leading eigenvalues are those of largest real part.)

An alternative is to use the power method on exp(AAt), since the leading eigenvalues of A
are the dominant (largest magnitude) eigenvalues of exp(AAt). Moreover, any code for time-
stepping du/dt = Au already acts repeatedly with an approximation to exp(AAt), effectively
carrying out the power method on the exponential. The fundamental drawback of this method
is that the approximation to exp(AAt) is only valid for small A¢. In this case, exp(AA¢) is
near the identity, so each step accomplishes little to separate the eigenvectors. This method
has nevertheless been successfully used to calculate leading eigenvalues near bifurcations in
a variety of hydrodynamic configurations including spherical Couette flow [2], flow down an
inclined plate [3], and channel flow [4, 5].

The inverse power method is the method of choice for finding eigenvalues closest to zero. The

difficulty, as in steady-state solving, lies in the inversion of the large operator A, which may be



neither banded nor well-conditioned. However, A’s condition number may be greatly improved

by the same Stokes preconditioner we have used for steady-state solving.

We write:
Aty = uy (Nv + L)upyr = up (1)
CAupgy = Cuy, (I = AtL) ' At(Ny + Lyuygr = (I — AtL)™ ' Atu, (2)
Au=10 [(I — AtL)~Y(I + AtNy) — I upyr = (I — AtL)~' Atu, (3)

where the equations on the left define abbreviations for those on the right. The inversion of
Ain (1) has been replaced by that of A= CA in (2)-(3). This has two advantages. The first
is that C'A is the difference between two timesteps and hence already available in a FEBE
timestepping code. The second is that for At large, C' = (I — AtL)"'At =~ —L~!, partially
inverting (i.e. preconditioning) the badly conditioned operator A = Ny + L. In (2)-(3) At
may be taken arbitrarily large, since it has become an algebraic parameter no longer playing

the role of a timestep.

Conjugate gradient iteration [6] converges rapidly to the solution of the well conditioned
system Au = b. Two inputs are required from the user:

—the right-hand-side b, which here is produced by taking a backwards Euler step on u,,.

—a subroutine which acts with the matrix A on a vector, which here merely takes the difference

between two widely spaced FEBE timesteps.

Complex conjugate eigenvalues signaling imminent Hopf bifurcations may have large imaginary
parts and hence be far from zero. These can be detected by applying the inverse power method
to (A4 AT)/2, a self-adjoint operator whose eigenvalues are the real parts of the eigenvalues

of A. Complex shifts may also be applied to move imaginary eigenvalues to the origin.

One of the attractive features of the method is that the inversion speeds up as w, approaches
an eigenvector. The reason for this is that conjugate gradient methods construct the solution
to Au = b from the vectors b, Ab, A%b, .... When b contains components of only K eigenvectors

of A, u can be constructed from K powers of A on b.

We apply the method to spherical Couette flow, the flow between differentially rotating con-
centric spheres, and to Rayleigh-Bénard convection to demonstrate its speed for realistic

hydrodynamic problems. DB thanks the Nuffield Foundation for supporting this research.
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