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As a cell moves over a surface, the distribution of membrane proteins that ad- 
here to the surface will be changed relative to the distribution of these mole- 
cules on a static cell. Observations of this redistribution offer, in principle, evi- 
dence as to the mechanisms of membrane dynamics during cell locomotion. 
Toward extracting such information we present and analyze a mathematical 
model of receptor transport in the membrane by diffusion and convection, 
as affected by the making and breaking of the bonds between the receptors 
and the surface as the cell moves. 

We show that the disruption of receptor-surface bonds at the tail of the 
cell provides a mechanism by which the frictional force opposing a cell’s mo- 
tion is exerted, and calculate the magnitude of this force as a function of cell 
velocity. Assuming this to be the major contribution to the frictional force, 
we show that when the shear force on a cell is above a critical value it is no 
longer possible for the cell to slide across the surface. For such large forces, 
it is still possible for the cell to roll; alternatively the cell can be torn free 
of the surface. 

Our analysis of existing data on movement of polymorphonuclear leuko- 
cytes indicates that cell motion is not accompanied by a bulk flow of mem- 
brane from the front to the back of the cell. The data also indicate that cells 
do not tend to roll as they move over a surface under normal conditions. The 
data are most consistent with a model where the membrane as a whole is sta- 
tionary but where receptors that bind to the surface become coupled to sub- 
membrane contractile proteins. 

Key words: capping of receptors, cell locomotion, cell-surface interactions, frictional force, membrane 
flow, polymorphonuclear leukocytes 

I NT R 0 D U CTI ON 

Locomotion of polymorphonuclear leukocytes (PMNs) (also called granulocytes) is 
associated with formation of a tapered process or tail at the posterior end of the cell which 
we will call the uropod [Robineaux, 1954; Greenwood, 1969; Ramsey, 1972b; Armstrong 
and Lackie, 1975; Stossel, 19771. Observers frequently remark that the uropod gives the 
impression of close attachment to the substratum [Armstrong and Lackie, 1975; Stossel, 
1977; King et al, 19801. This impression is reinforced by the observations that, as the cell 
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moves, the tail seems to stick from time to  time, causing the cell body to stretch, and 
that retraction fibers are occasionally drawn out from the uropod and can be considerably 
stretched before detaching from the substrate [Armstrong and Lackie, 1975; Stossel, 19771, 
The upper surface of the uropod also appears to be sticky, since small particles such as 
platelets and bacteria are seen to adhere to these areas [Greenwood, 19691. 

Fluorescein isothiocyanate (FITC) demonstrates that during cell motion there is a pro- 
nounced redistribution of this marker to the region of the uropod [Ryan et al, 19741. We 
will call the brightly fluorescent spots thus formed “monomer caps.” Polymerization of 
surface proteins by agents such as concanavalin A or immunoglobulin will also cause cap- 
ping (ie, polymer caps). 

Ryan et a1 [ 19741 report several observations whch  clearly indicate that monomer 
caps and polymer caps are formed by different mechanisms. These are: 1 )  Monomer caps 
are not endocytized to an observable degree, whereas polymer caps are rapidly endocytized. 
2 )  Monomer caps have an absolute requirement for cell motion, whereas polymer caps do 
not; inhibition of cell locomotion by agents such as cytoclasin B eliminated monomer caps, 
although polymer caps were not inhibited. 3 )  With monomer capping the cells retain a slight 
diffuse staining over the cell body, whereas polymer caps have a more clearly defined 
boundary. 4) Monomer caps occur only at the uropod, whereas polymer caps can occur at 
the uropod or at the center of the cell. 

The occurrence of polymer capping and the related phenomenon of centripetal 
particle transport on moving cells has been attributed to  coupling of receptors to a convec- 
tive flow of the membrane as a whole [Abercrombie et al, 1972; Harris and Dunn, 1972; 
Bretcher, 1976; Harris, 19761. It has also been proposed that the membrane as a whole is 
stationary but that receptors activated by cross-linking can be coupled to the motion of 
submembrane contractile proteins by means of certain intermediates such as protein x 
[Bourguignon and Singer, 19771 or calcium binding protein [IUausner et al, 19801. 

are incidental but revealing features of PMN motility. The essential idea is that adhesive 
sites on a moving cell react with the surface and remain stuck to the surface for some 
period of time as the cell moves past. This relative motion results in a tendency for adhe- 
sive sites to be conveyed toward the tail. When adhesive attachments between the cell and 
the surface reach the tail, they sometimes result in the stretched-out retraction fibers which 
extend from the uropod to the surface. As the cell continues to move, however, the ten- 
sion placed on the adherent sites at the back of the cell eventually becomes sufficient to 
break off pieces of the tail or to pull the sites free from the surface. Over time, this process 
can lead to an accumulation of adhesive sites at the rear of the cell, whch  in effect gives 
rise to the uropod. This view of the nature of the uropod has been stated previously by 
Robineaux [I9541 and Ramsey [1972b]. 

All these models of monomer and polymer capping are structurally similar in that 
they propose that material that reacts with receptors on a cell is subject t o  transport by 
convective flow of some other material. We will refer to this general view as the reaction- 
convection hypothesis. 

In the context of cell motion, the external material is the surface over which the 
cell is moving and the receptors are the adhesive sites that bind to the surface. The coupling 
between the receptors and the convective flow presumably produces the force responsible 
for cell motion and the necessity to break receptor-surface bonds at the uropod is respon- 
sible for the principal frictional force on a cell. 

Labeling of cell surface proteins on PMNs with the monovalent fluorescent dye 

In our analysis, the occurrence of monomer capping and the stickiness of the uropod 
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The question of the frictional force on a cell moving along a surface is important to 
studies of cell adhesion. In such studies, it is often the hydrodynamic shear force required 
to remove adherent cells from a surface that is measured as a primary datum [Bell, 19791. 
If the bonds holding the cell to the surface cannot break and reform rapidly or if they are 
rigidly connected to the cytoskeleton, then the cells will remain stationary under hydro- 
dynamic shear until some element of the structure fails. However, if the bonds are not part 
of a rigid structure, then the cells will slide or roll along the surface, forming and breaking 
attachments exactly as if they were undergoing normal locomotion. The terminal velocity 
of such cells will be such that the frictional force just balances the shear force. 

In the case of PMNs, these considerations are relevant during the formation of 
thrombi under flow conditions. Madras et a1 [1971] have observed that, after attachment 
at the site of growing thrombi, “white cells were seen to drag over the surface and be 
appreciably slowed by their attraction to the surface.” In addition, Atherton and Born 
[ 19721 have made in vivo measurements of the velocity of adherent granulocytes in ex- 
posed venules of mice and hamsters. These cells were observed to roll and slide along the 
walls of the venules with a velocity (10-20 p/sec) between 10 and 100 times slower than 
the mean fluid velocity but 100 times faster than granulocytes can move in stationary fluid. 
This indicates that the fluid is pushng the cells along but that there is considerable friction 
between the cells and the surface of the blood vessel. The amount of this friction is pre- 
sumably important in determining the rate of emigration from venules, since the cells 
must come to a stop before they can move through the vessel wall. 

In this paper we shall present quantitative formulations of the various forms of the 
reaction-convection hypothesis. Our aim is to clarify the predictions of these models con- 
cerning the details of receptor redistribution and concerning the frictional force on a 
moving cell. We will calculate the spatial distribution of adhesive sites on a cell for several 
important cases. We will look at how this distribution depends on time and on the size, 
shape, and speed of the cells as well as on other parameters such as the adhesiveness of 
the surface. 

various models. We will also point out how certain measurements can be interpreted to 
yield information on quantities such as the rate constants of receptor binding to  the sur- 
face and the diffusion constants of the receptors in the cell membrane. 

for the present simple problem will be instructive to those interested in the treatment of 
other theories concerning convective flow, diffusion, and chemical reaction of molecules 
in the cell membrane. The bulk of the mathematical details have been confined to appen- 
dices. 

At appropriate points we shall call attention to experiments that test the validity of 

We hope that the mathematical formulation and techniques of analysis we utilize 

THE MODEL 

Let us assume that a rectangular cell of length L and half-width W is moving at uni- 
form velocity v in the positive X direction. We adopt a frame of reference, moving at the 
same velocity as the cell. Furthermore, we choose the origin of coordinates at the middle 
of the tail end of the cell (see Fig. 1). 

Real cells clearly do not maintain a fixed shape during motion and they frequently 
do not look rectangular. Nevertheless, the assumption of rectangular geometry captures 
the essence of the cellular geometry (ie, that the cell has a front, a back, and two sides) 
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in a way whch  greatly simplifies the mathematics. The qualitative aspects of the results 
we shall present do not depend on the details of cell shape. 

Diffusion 

with the medium and a lower membrane in contact with the surface. Receptors which are 
free to diffuse can be on either membrane. Let the number of free receptors per unit area 
on the upper and lower membranes of the cell be given by R,(X, Y) and RQ(X, Y), respec- 
tively. If there are several classes of receptors on the cell we will assume that each class be- 
haves independently of the others. 

Binding and Release of Receptors 

to which receptors on the bottom of the cell can adhere according to the scheme 
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In actuality, the cell is three-dimensional, there being an upper membrane in contact 

We shall assume that the surface contains a large number of sites per unit area, B,, 

In Equation (l), C(X, Y) denotes the surface density of receptor-surface bonds and 
kt and k- are the forward and reverse rate constants of the binding reaction. Note that 
both the surface binding sites B, and the complexes C are fixed with respect to the surface 
and consequently do not diffuse. This implies that 

B, t C = B, 

where B,, the total density of sites on the surface, is a constant. 

the adhesive sites on a cell saturate a significant fraction of the sites on the surface. This 
simplification implies that 

In order to obtain the advantage of a linear model we will neglect those cases where 

C < B, = B,, (3) 

so that Bs is approximately constant. 

Membrane Flow 

where receptors are coupled to convective flow of submembrane elements only when they 
are activated by binding to the surface. Since there is no bulk flow of the membrane under 
these circumstances, receptors on the upper surface and unbound receptors on the lower 
surface move only by diffusion. We refer to this model as that of the “sliding cell” (see 
Fig. 2 ) .  

If the cell has a tendency to roll as it moves across the surface, then in the reference 
frame of the moving cell it will appear that there is a bulk flow of the upper membrane 
toward the front of the cell and a corresponding flow of the lower membrane toward the 
rear (similar t o  a “tank tread”). Note that, if the velocity of the flow of the upper mem- 
brane is v,, then continuity of the flow requires that the flow of the lower membrane 
be -vm. 

The simplest situation to formulate from a mathematical point of view is the case 
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Fig. 1. Top and side view of a cell in contact with a surface. Notation for the dimensions of the cell 
and for the various states of receptors on the cell are indicated. 
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RECl RCUL AT ING /,&=:2/L 
Fig. 2. Several modes of motion of the cell membrane. 
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Let us define 6 as the ratio of the velocity of membrane flow on the upper surface 
to the velocity of the cell as a whole, 

6 = v,/v. (4) 

As shown in Figure 2, if 6 > 0 we have the case of the forward rolling cell, if 6 = 0 the cell 
slides with no rolling, and if 6 < 0 the cell rolls in a direction counter to its overall motion. 
It is difficult t o  think of a physically plausible justification for the case of the counter- 
rolling cell. 

Abercrombie et a1 [ 19721 proposed that there was a bulk flow of membrane from 
the front to the back of moving cells over both the upper and lower membranes. Further 
support and elaboration of this hypothesis were provided by Harris and Dunn [I9721 and 
Harris [1973]. In t h s  model, it is asserted that the flow of membrane implies the insertion 
of membrane material at the leading edge of the cell and the resorption of membrane at 
the tail followed by recycling of the resorbed material back to the leading edge. We will 
refer to this particular scheme of membrane flow during cell motion as recirculating flow 
(see Fig. 2). 

There is no fundamental difficulty in dealing with the consequences of recirculating 
flow within the context of the present formalism. Nevertheless, since there is a discontinuity 
of membrane flow at the front and back boundaries of the cell, recirculating flow is some- 
what complicated to formulate mathematically. Therefore, we will initially work out the 
detailed characteristics of the rolling and sliding cell and after this has been digested we 
will return, in the last part of the Results section, to the analysis of recirculating flow. 

Differential Equations 

along with the cell. At every point (X, Y) within the rectangle representing a cell of length 
L and width 2W, we have contributions from diffusion for R, and RQ; contributions from 
convection to all three quantities; and contributions from association and dissociation 
with surface sites to RQ and C. Writing the terms in that order we have: 

We calculate the rates of change of R, , RQ, and C as seen by an observer moving 

at 

and 

Boundary Conditions 

the boundary of the cell 
For boundary conditions, we must require continuity of diffusing species along 

(6a) R,(x,Y) = R ~ ( x , Y )  if Y = +W or if X =  0 or L 
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If v # 0, we must also require that the number of receptor-surface complexes at the lead- 
ing edge of the cell is zero. 

C(L,Y)= 0 -- w < Y  < w. (6b) 

In addition, since receptors cannot leave the cell surface, we require that the normal com- 
ponent of the total flux of receptors vanish at the boundaries. Thus, for a rolling or sliding 
cell, 

[Da(R, + RQ)/aX] t VC + Gv(RQ - R,) = 0 if X = 0 or if X = L (6c) 

and 

Da(Ru + RQ)/aY = 0 if Y = +W. 

Finally, we note that the geometry of the problem is symmetric to the left and right of 
the axis along whch  the cell is moving. Consequently, if the initial conditions are also 
symmetric, then 

Global Conservation of Receptors 

with respect t o  X and from -W to W with respect to Y and applying boundary conditions 
(6c) and (6d) shows that the total number of receptors per cell is a constant 

Adding together differential equations a, b, and c, integrating the sum from 0 to L 

N = 4WLRo. (7) 

In this equation, N is the total number of receptors on the cell and Ro is the average den- 
sity of receptors on the cell surface. 

Nondimensional Formulation* 

R, provides a convenient scale with which to measure R,, RQ, and C. Consequently, 
we introduce nondimensional variables 

^TQ E Re/Ro, ;u Ru/Ro and c C/Ro. @a) 

We shall also define nondimensional time 

and nondimensional distances 

*This section and the following one deal primarily with mathematical issues. They can be skipped 
without a major loss of continuity. 



212 Dembo, Tuckerman, and Goad 

In terms of these variables, the differential equations (5a-5c) become: 

--P.(- t - - i p  t sp(aiQ/ax) - i p  + YcQ 
aiQ a7 - ax2 a2 w 2 a y 2  Lz a 2 )  

where 

Y k-/k+Bs, S = v/Lk+Bs, and e = D/vL. (1 0) 

For convenience of reference, the fundamental nondimensional parameters of the model 
are listed and defined in Table 11. 

Reduction of Equations to One Space Dimension 

boundary conditions (6d) and (6e) we obtain 
If we integrate equations 9a, 9b, and 9c from zero to one with respect to y and apply 

where 

are the average values off,, i ~ ,  and C over a cross section of the cell parallel to the y axis 
and 

@(x, 7) = (L2/w2)(a/ay)i,(x, 1) = -(L2/w2)(a/ay)iQ(X, 1). (1 3 )  

In Appendix A, we show that an approximate expression for @ is 

where o2 z 1.86 f 0.62 and p 

of the cell due to diffusion over the side edges. Equation (14) implies that to first approx- 
imation this transport is proportional to the difference between the average number of re- 
ceptors on the lower and upper surfaces, and that the constant of proportionality is p2. 

wL/W. 
Physically, @ represents the net transport of receptors from the bottom to the top 
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Nondimensionalization of the boundary conditions 6a-6e followed by integration 
with respect t o  y between 0 and 1 yields the following boundary conditions on Equations 
1 1 a-1 lc .  

ru = rp at x = 0 , l  

e(a/ax)(ru t rg) t c = 0 at x = 0, l  

and 

c = O a t x = l .  

The Frictional Force 

From the discussion in the Introduction it is clear that the frictional force on a cell 
will be somehow related to  the number of adhesive bonds to  the surface that must be 
broken per unit time as the cell moves. This idea can be formulated in a precise way if we 
assume that when a membrane-surface bond reaches the tail of the cell it results in the 
formation of a microscopic retraction fiber which exists for a short time before the mem- 
brane-surface bond ruptures.* If each fiber is identical and tends to  retard the forward mo- 
tion of the cell by an equal amount, then the total frictional force on the cell will be pro- 
portional t o  the number of such fibers. 

In this equation Nfib is the number of retraction fibers per cell and is the force 
with which a retraction fiber pulls on the cell. It is also clear that, before it ruptures, the 
forces on a membrane-surface bond must balance, so that is equal to the force tending 
to cause rupture of this bond. 

time that it will rupture is increased by this force according to a relation of the form [Bell, 
1978,19791, 

If a bond is under stress due to an applied force, a, then the probability per unit 

where k- is the rate constant for spontaneous rupture and 6' is a constant that characterizes 
the bond with respect to its ability to resist stress. 

*Although it is convenient for purposes of exposition to assume the existence of retraction fibers, our 
considerations are independent of the mechanism by which the force between the bound receptor and 
the substratum is transmitted to  the remainder of the cell. 
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Since the rate at which bonds reach the back edge of a moving cell is given by 

v J-,C(O, Y)dY, the number of fibers pulling on the cell at any given time will satisfy the 

differential equation 

W 

Consequently, when Nfib is in steady state, d/dt Nfib = 0, and 

Adding together the forces produced by each retraction fiber, we see that the total fric- 
tional force on a cell in steady motion is 

Note that Fr is proportional t o  the cell velocity as in first approximation a frictional force 
must be. 

Since a and 0 are constants, the term in brackets in Equation (20)is a constant with 
units of force which we will call a'. We also find it convenient to define the nondimen- 
sional frictional force per cell surface receptor as 

In terms of the nondimensional variables defined in Equation (lo), Equation (21) 
becomes 

METHODS 

In the figures which follow the solid dots represent the results of numerical integra- 
tion of Equations 11-15. Finite differences were used to approximate derivatives with re- 
spect to the space variable, x. Increasingly finer grid points were used near the boundaries 
owing to  the occurrence of boundary layers. This procedure reduced the partial differen- 
tial equations to a large system of ordinary differential equations which were then solved 
using the method of Gear [1973]. 

RESULTS 

The Sliding Cell 

absence of membrane flow. Thus, it will be assumed that there is no rolling of the cells 
and that no recirculation of membrane takes place. We will present some results concern- 
ing rolling and recirculation after we have finished with the sliding cell. 

*Recall that N = 4LWRo is the total number of receptors per cell. 

We will initially concentrate our analysis on the special case of cells moving in the 
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Table I presents typical values of the relevant parameters of the sliding cell model 
for the case of human PMNs. As can be seen from this table, most of the parameters (ie, 
L, W, v, vm,  and D) can be fixed to within at least an order of magnitude on the basis of 
previous work. The only parameters that are unknown in advance are the rate constants 
for dissociation and binding of receptors and the surface, k- and k+Bs. Very little is known 
about these quantities since the chemical natures and density of the receptors on the cell 
and of the surface binding sites are unknown. Nonetheless, as initial guesses for k- and 
k+Bs, Table I gives the estimates of Bell [1978] and Bell [1979]. These estimates are based 
on the presumption that receptor-surface bonds are similar to antibody-hapten or lectin- 
monosaccaride bonds and that the density of sites on the surface is similar to other sur- 
face densities commonly encountered in biology (eg, the density of cell surface antibody 
molecules on B cells or the density of Con A receptors). 

Table I1 lists the nondimensional parameters of the model together with the values 
corresponding to the estimated dimensioned parameters of Table I. As can be seen from 
this table, k- and k+Bs occur only in the definitions of and y. We shall examine the pre- 
dictions of the model for all possible values of p and y and compare these predictions 
with experiment in order to narrow the range of acceptable values for the unknown ele- 
ments of the model. 

TABLE I. Parameters of the Model for the Case of the Sliding Cell* 

Parameter Symbol Best estimate Range Reference 

Length of cell L 3 x 1 0 - ~ c m  1.5-5 x 1 0 - ~  (1, 2, 3) 
Width of cella 2w 7.5 x 10-4cm 5-10 x 10-4cm (1 ,2 ,3 )  
Velocity of cell motion v 2 X 10-5cm/~ec 1-5 X lO”cm/sec (3,4) 
Velocity of membrane vm 0 0 (5) 

Diffusion constant of D lo-’’ cm’/sec 10-9-10-” cm’/sec ( 6 7 )  

Rate constant of re- k+Bs 1 sec-’ 10-5-105 sec-’ (8,9) 

Rate constant of recep- k- 1 sec-’ 10-5-105 sec-’ (8,9) 

motion due to rollingb 

cell surface receptors 

ceptor-surface binding 

tor-surface dissociation 

*Applicable to human PMNs during spontaneous random or chemotactic motion under conditions 
of in vitro observation. 
aRecall that W is defined as one-half the width of the cell. 
bRolling of cells has been observed only under in vivo conditions involving fluid flow; consequently 
we assume in the first part of the Results section that vm = 0 so that the cell slides without rolling. 
Subsequently, we consider the cases of vm # 0 both for cell rolling and for membrane recirculation. 
References: 1) Ryan et a1 [1978], 2) Ramsey [1972b], 3) Senda et  a1 [1975], 4) Ramsey [1972a], 
5) Atherton and Born [1972], 6) Elson et a1 [1976], 7) Cherry [1979], 8) Bell [1979], 9)Bell [1978]. 

TABLE 11. Nondimensional Parameters of the Model 

pa 3 wL/W = 10 
= D/VL = 2 x 10-3 

0 v/Lk+Bs z 
Y k/k+Bs = 1 
Sb = vm/v = 0 

aAs shown in Appendix A, wz = 1.86. 
bThis is for the case of the sliding cell. 6 
recirculating membrane. 

1 for the rolling cell and 6 - -0.25 for the 
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Figure 3 illustrates the way in which the distribution of the total receptor density, 
rtot(x) = r, t rQ t c, changes with time. In this computation, the nondimensional param- 
eters were chosen as shown in Table 11, and the cell was assumed to be initially stationary 
and at equilibrium with the surface. 

It can be seen from Figure 3 that there is a progressive transport of receptors toward 
the rear of the cell after it begins to move. T h s  transport eventually leads to the develop- 
ment of a stable gradient from the tail t o  the front of the cell in which there is a >, 10-fold 
increase in the density of receptors at the tail of the moving cell as opposed to the resting 
cell. It is clear that an effect of this magnitude is sufficient to account for the observation 
of monomer capping of cell surface proteins labeled with monovalent fluorescent dyes 
[Ryan et al, 19741. 

to occur, we note that the nondimensional time required is 7 = 100. The number of cell 
lengths moved in this time is 
values monomer capping can be completed in the time it takes for the cell t o  move 1-10 
cell lengths. Reference to the values of v and L in Table I shows that this time is on the 
order of a few minutes. This is certainly a desirable feature since Ryan et a1 [1974] have 

In order to gauge the “real” time necessary for the redistribution shown in Figure 3 

1. Thus, the model shows that for appropriate parameter 

I l l  I I I I I  
20 40 

0 + 
+ X 
3 

L4 
I1 I 
I- 
0 + 
L 

Nondimensional Time 

X 

0 

Fig. 3. Numerical computation of the time course of receptor redistribution for the parameter values 
in Table 11. 
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observed that monomer caps are formed and fairly stable in 5 minutes. Since a stable dis- 
tribution is reached so rapidly, we will henceforth restrict our discussion to the equilibrium 
properties of the model. 

velocity of cell motion assuming other parameters are fixed. This is equivalent to varying 
p in  direct proportion to v while holding p ,  y and the product I$ fixed. 

Figure 4 shows that, as v gets large, there is a progressive increase in the density of 
receptors at the back versus the front of the cell. Furthermore, the redistribution is satur- 
able so that, after a certain point, further increases in the velocity of the cell produce a 
neghgible change in the overall pattern of redistribution. 

Figure 4 also shows that as v + 0, the receptors are uniformly distributed over the 
cell and that rtot = 2. The reason for this is clear from the solution to Equation (1 1 )  for 
the trivial special case f l  = 0, 

Figure 4 shows how the equilibrium (ie, t = m) distribution of rtot depends on the 

rg = ru = 2y/(l + 27) (23) 

and 

c = 2/(1 + 27). 

X 

Fig. 4. Effect of the velocity of cell motion on the equilibrium distribution of receptors. Parameters 
other than v were fixed at values given in Table I. 
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Thus, when the cell is stationary, rQ, ru,  and c are uniform and depend only on the 
dissociation constant, y. As a consequence of this behavior, measurement of the densities 
of receptors on the upper or lower surface of a stationary cell should provide the most 
direct way to determine y. 

min and fibronectin, then by measuring y on a series of such surfaces, the dimensional 
binding constant e l k -  can also be determined. 

Superficially, the result that receptor redistribution for the sliding cell model requires 
cell motion seems to contradict the experimental observation that capping of Con A can 
occur on stationary cells. This is not a real contradiction because, in the case of cell motion, 
the external ligand (ie, the surface) has infinite mass, whereas the mass of a Con A molecule 
is negligible. The infinite mass of the surface means that a bound receptor must be station- 
ary with respect to the observer even though it may experience a considerable force. There- 
fore, if the cell is also stationary, there can be no redistribution of receptors. The small 
mass of Con A means that a bound receptor is not held stationary with respect to the ob- 
server. Thus, if Con A (or some other small object) induces receptor coupling to submem- 
brane contractile proteins on a stationary cell, receptor redistribution is a natural conse- 
quence. 

eters, the relative change in the density of receptors at the tail of a moving versus nonmov- 
ing cell provides a useful measure of the degree of receptor redistribution in terms of a 
single quantity. Figure 5 shows the way in which rtot(0) depends on the unknown param- 
eters 0 and y when p and E are fixed at the values given in Table 11. As can be seen from 
this figure, the amount of redistribution approaches a maximum as y and 0 go to zero. 
Also, if y > lo2 or if 0 > lo2, then the amount of receptor redistribution is insignificant. 
For a given curve in Figure 5 ,  increasing = v/LLBs corresponds to decreasing k+Bs and 
k- in proportion, thus slowing the binding kinetics while preserving the equilibrium rate 
constant ratio y = k-/k+Bs. This is in contrast to Figure 4, where increasing 0 should be 
interpreted as representing increasing cell speed. 

The reason for the properties of receptor redistribution illustrated in Figures 3-5 
can be understood qualitatively by means of a simple physical argument. The lifetime of 
a receptor-surface complex is l/k-, and since the complex moves to the tail with velocity v, 
the distance it moves during its lifetime is rv/k-. Since the cell is of length L, the number 
of times a typical receptor binds to the surface before reaching the tail is ~1 + LkJv = 
1 + y/@. T h s  quantity is important, since between the times that a receptor is attached to 
the surface and moving toward the rear, it diffuses with zero average displacement, essen- 
tially waiting for its next opportunity to bind. The number of such waiting periods is 
@ t y)/p and their average duration is (k+B,)-', so that the time spent waiting is 

+ y)/(k.+BsP). The time required to move to the tail, neglecting the waiting period, 
is simply L/v = (k+Bsp)-'. Thus, the total time required to move to the tail for a typical re- 
ceptor is T~ (1 + y + P)/@k+B,). Opposing the tendency for redistribution toward the 
tail is the tendency of the receptors to spread over the cell by diffusion. This occurs with 
characteristic time r2 2 L2/D = [/3~k+Bs]-'. Clearly, in order for redistribution to dominate, 

If B, can be varied, for example, by coating the surface with various mixtures of albu- 

Since rtot = 2 everywhere on a nonmoving cell independent of the choice of param- 

must be much less than T ~ ,  or in nondimensional terms 

€[  1 t p t y] < 1. 

This equation represents the basic criterion for the occurrence of receptor redistribu- 
tion on a sliding cell. It demonstrates that, for fixed E ,  redistribution will approach a max- 
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imum as 0 and/or y go to zero and will decrease as and/or y get large. Ths  accounts for 
the gradual decline of the curves in Figure 5 as well as for the absence of significant redis- 
tribution when y 10'. 

to Equation (1 1) at steady state can be derived by means of boundary layer theory (see 
Appendix B). The resulting expressions for ru,  rQ, and c correct to O[(ey)'] are: 

Under the condition of inequality (Equation 25) an approximate analytic solution 

(l/A)ru = [cosh(px) - coth(p)sinh(px)](l t '/zyep'x) t 

(1 /A)rQ = [ l  - yep coth(p)] exp(xh/ye) + yep [coth(p) cosh(px) - 

sinh(px)l+ [6ep/X,sinh(p)l exp [(x - l)L/ye] 

and 

(1/A)c = (-e/A)ax(ru t rQ) = [-(l/y) t ep coth(p)]h exptX-x/ye)l- 

[~p/sinh(p)] exp [(x - l)A+/ye] t ep[coth(p) cosh(px) - sinh(px)] 

where 

Note that from Equations (26a) and (26b), "A" has the physical significance of being the 
common value of rQ and ru at x = 0. A-' is given to order (€7)' by 

Figures 6-8 show the agreement between the analytic solution and numerical solu- 
tion for the parameter values in Table 11. There are several notable details of the distribu- 
tions of ru,  rp, and c over the cell. First, as remarked previously, all three densities fall as 
one moves from the tail to the front of the cell; however, ru falls slowly compared to r p  
and c. Equation (26) shows that this behavior is due to the existence of a boundary layer 
of thickness ~ y L / h -  at the rear of the cell in which rQ and c fall rapidly to the limiting 
values of yepcothp and epcothp, respectively, whereas in comparison ru remains approxi- 
mately constant (see inserts in Figs. 7 and 8). Outside of this boundary layer under the 
main body of the cell, c(x) and rQ(x) are in quasi-chemical equilibrium; ie, rQ(x) yc(x). 
This condition persists until very close to the front of the cell, where there is another 
boundary layer of thickness eyL/)L. The behavior in this leading boundary layer is illus- 
trated by the inserts in Figures 6-8; as shown, c(x) falls to zero whereas rQ(x) undergoes a 
slight rise. 

In light of Equation (26), information on the parameters of the model can be ob- 
tained by appropriate observations on the distribution of receptors on moving cells. For 
example, interference contrast microscopy of moving PMNs shows that the majority of 
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Fig. 5. Numerical computation of the dependence of the total receptor density at x = 0, [rtot(0) = 
r,(O) + rQ(0) + c(O)], on P = v/(k+BsL) as k+Bs and k- are decreased so that the ratio y = k/(k+Bs) is 
held constant. The various curves correspond to several choices for the value of y between 0 and 100. 
The other parameters of the model ( E ,  p ,  and 6 )  are as given in Table 11. The figure shows that receptor 
redistribution requires that both y and p be of order 10 or less. 

the lower surface of the cell is in moderately close contact with the surface although there 
are no zones of very tight adherence such as those found on fibroblasts. At the leading 
margin of the cell there is an area of weak or loose contact with the surface which is seen 
to fluctuate rapidly, indicating the absence of a significant density of bonds holding these 
areas to the surface [Armstrong and Lackie, 1975; King et al, 19801. If we equate the 
average size of the areas of weak attachments with the size of the leading boundary layer, 
then the value of LEy/X, can be determined. 

rise by an order of magmtude or more in the trailing boundary layer. Consequently, the 
tail of a moving cell will be stuck more firmly to the surface than will the anterior region. 
T h ~ s  is in accord with the observations of Armstrong and Lackie [1975] and King et a1 
[1980]. The size of the region of close attachment provides a measure of the size of the 
boundary layer at the tail of the cell (ie, yeL/A-). 

The predictions of the sliding cell model concerning the frictional force on a cell are 
most directly revealed in experiments in which cells are exposed to  a constant shear force, 
F,, and their terminal sliding velocity, v, is measured. Thus, we shall be mainly concerned 
with inverting Equation (22) in order to solve for the velocity in terms of the force. The 
main difficulty in this procedure arises because the frictional force is proportional to the 
value of c(O), and c(0) is affected by the velocity in a highly nonlinear way. 

An approximate relationship between the terminal velocity and the applied force 
when the applied force is very small can be obtained by substituting the expression for 

According to the model, the density of bonds holding the cell to the surface will 
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c(0) on a stationary cell (Equation 24) into Equation (22). Solving the resulting expression 
for 0 we obtain 

where f, = F,(Q’N)-’ is the nondimensional shear force. 

is valid, the c(0) can be approximated by means of Equation (26c). In this case, the rela- 
tionship between 0 and f, is 

If v is sufficiently large, then the condition for receptor redistribution (Equation 25) 

where A is given by Equation (26e), and we recall that the product €0 is independent of v. 
Equation (28) shows that as the shear force approaches the critical value of 

the velocity of the cell gets very large. 
Since an infinite cell velocity is not physically possible, the singularity in Equation 

(28) means that there must be an abrupt change in the way in which the cell interacts with 
the surface. This change could involve the cell’s being torn free of the surface, or the cell 
could change its mode of moving across the surface by beginning to roll. 

The Rolling Cell 

Figure 9 shows a numerical simulation of the dependence of nondimensional cell 
velocity (ie, P )  on f, for the rolling and sliding cells. The parameters y, p ,  and €0 are fixed 
at the values given in Table 11. As shown, the two curves are identical at very low shear 
forces. This is because c(0) is approximately constant in this region so that both curves are 
in agreement with Equation (27). Also, as intuition suggests, at moderate shear forces the 
velocity of a rolling cell is higher than the velocity of a sliding cell. This condition persists 
until the two curves cross at a point very close to the singularity in the curve for 6 = 0. The 
position of this singularity is in good agreement with Equation (29). At shear forces above 
the critical level, the rolling motion is the only kind of steady motion possible. 

The absence of a singularity in the cell velocity if 6 = 1 is due to the effect of cell 
rolling on the distribution of receptors. This is illustrated in Figure 10. As shown, rolling 
tends to counteract the accumulation of receptors at the tail, and receptors are more or 
less evenly distributed over the cell. This means that c(0) will have a much weaker depen- 
dence on v if 6 = 1 than if 6 = 0. Consequently, if 6 = 1 , s  will be given to a good approxi- 
mation by Equation (27); ie, it will be a simple linear function of f ,  with no singularities. 

Recirculating Membrane Flow 

and diffusion of ru,  rp, and c for recirculating membrane flow are almost identical to the 
corresponding differential equations for the sliding or rolling cell (Equations 1 la-1 1 c). 
The only change is that the sign of the term 6P(arQ/ax) in Equation (1 lb )  is minus instead 
of plus. This is because for recirculating flow, both the upper and lower membranes move 
in the same direction. 

The nondimensional form of the differential equations governing reaction-convection 
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Figs. 6-8. Comparison of numerical and approximate analytic solutions for rU, rQ, and c. The solid 
lines were calculated using Equation (26), whereas the closed circles give the corresponding numerical 
results. Parameter values were fixed at the values given in Table 11. The inserts in the figures show the 
detailed behavior of ru,  IQ, and c in the boundary layers at x = 0 and at  x = 1. 

It is a more delicate matter to formulate correctly the boundary conditions for re- 
circulating flow due to the discontinuity at the leading and trailing edges. It will still be 
correct to assume that there is continuity of diffusing species over the boundaries and that 
the number of bonds at the leading edge is zero (ie, Equations 15a and 15c). However, 
there is uncertainty as to the remaining boundary conditions. 

It seems to us that it is most reasonable to assume that adhesive sites at the tail are 
resorbed at a rate which is proportional t o  the local density of these sites. If this is true, 
then the nondimensionalized condition of zero net flux at the tail (ie, Equation 15b with 
x = 0) becomes: 

Physically, the resorption at the tail can be thought of as similar to flow of a mixture of 
membrane components through a gel column or filter which retards the passage of re- 
ceptors somewhat more or less than that of the rest of the membrane. h measures the ease 
with which the receptors are resorbed relative to the “average” rate of membrane resorp- 
tion. If h = 1, then the receptors are resorbed at the same rate as other components of 
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Fig. 9. Comparative dependence of the nondimensional velocity [ p  = v/(k+BsL) J on the nondimensional 
shear force [f, = F,/(n’N)] for the rolling and sliding cells (Equation 10). Changes in receptor distribu- 
tion as a cell goes from sliding motion (6 = 0) to rolling motion (6 = 1). Parameters other than 6 are as 
shown in Table 11. 

the membrane, whereas if X = 0 the receptors will be completely excluded from the re- 
sorption process. X > 1 corresponds to the situation where sites are resorbed more easily 
than the rest of the membrane. This view of membrane disassembly at the uropod is a 
generalization that includes the models of Bretcher [1976] and of Harris [1976] as special 
cases. 

If sites are inserted at the leading edge at a rate that is substantially slower than the 
rate of resorption, then adhesive sites will disappear from the surface and accumulate in- 
side the cell. However, since such disappearance of sites has not been observed, and since 
monomer caps are stable for long periods of time, we conclude that, if recirculating flow 
occurs, then the cell must be capable of inserting sites at the leading edge very shortly 
after they are taken in at the tail, and that very few sites accumulate in the cytoplasm. 
Thus, the boundary condition for zero flux at the leading edge (Equation 15b with x = 1) 
becomes 

One can check that with boundary conditions (Equations 30 and 31) the conservation 
law of total receptor number holds, and that as a consequence the nondimensional formu- 
lation of the differential equations is still consistent. 

The parameter values of Tables I and I1 applicable for the sliding cell are also applic- 
able for recirculating flow with the exception that vm cm/sec [Harris, 19731 
so that 6 = -0.25. For this range of parameter values, we can obtain approximate analytic 
solutions for the distribution of receptors for recirculating flow by a derivation very similar 

-5 X 
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to that given in Appendix B for the case of the sliding cell. The resulting expressions for ru, 
re, and c good to order (€ / t i )  are* 

(l/A)ru = X t (1 - A) exp [ ~ x / E ]  (32a) 

(l/A)ra = h(1 -6y)-'exp[l(1 - Gy)/PG)(exp [-(I - b)x/PS] - (32b) 

exp [sx/e]) + 6yh(1 - Sy)-'(exp [6x/e] - 1) t exp [ax/€] 

(1/A)c = h6(1 - -ys)-'(exp [(l - y6)(1 - x)/pS] - l), 

where A is a constant of proportionality given by 

1/A = %h[@(l - yS)-'(l t S)(exp [(l - yS)/pS] - 1) t (32d) 

(1 - y6)-'(1 - 276 - S)] - %[€(S(l - yS))-"2(1 - yS(1 - A)) t 

@XP[(1 - 76)/P61 - 1>1. 

Examination of Equations (32a-32d) reveals several distinctive features of receptor 
redistribution for recirculation flow. These are 1) redistribution will not occur unless X < 1. 
Thus, redistribution is essentially caused by the "bottleneck" in the flow of receptors pro- 
duced if resorption at the tail is difficult. This provides a natural explanation for the role 
of polymerization or fluorescent labeling of receptors in capping. It is easy to see why 
modified surface markers of any kind would have a harder time passing through the bottle- 
neck associated with resorption. 2) The density of bonds holding the cell to the surface, c, 
does not go through a sharp rise at the trailing edge of the cell. This is in contrast to the 
behavior of c on the sliding cell (Equation 32c). We feel that the absence of such a bound- 
ary layer at the tail is an undesirable consequence of recirculating flow hypothesis. Recent 
observations clearly indicate that the tail is much more firmly stuck to the surface than 
the mid-portion of the cell [King et al, 19801.3) The density of free sites on the upper sur- 
face of the cell, ru ,  undergoes a sharp drop at the tail of the cell if recirculating flow occurs. 
This boundary layer, of thickness -LE/6, is not predicted for the case of the sliding or 
rolling cells. In the case of the sliding cell (Equation 26), ru fell more slowly with decay 
constant -p owing to the effect of diffusion over the side edges. In the case of recirculating 
flow, the effect of diffusion over the side edges of the cell is negligible so the p does not 
appear in Equation (32a-32d). 

An additional aspect of recirculating flow is that receptor redistribution is possible 
even if binding to the surface does not occur (y + -) or if the cell is stationary (6 -+ -00, 

60 and e/6 fixed). This provides a good explanation for polymer capping on stationary cells 
or on cells in suspension. However, the hypothesis does not explain why monomer capping 
should not also occur on such cells, since it occurs on moving cells [Harris, 19761. 

Recently, Middleton [ 19791 has shown by pulse-labeling with fluorescenated anti- 
body that at least one freely diffusing cell surface marker (ie, the Thy-1 alloantigen) is 
not swept to the tail during cell motion. This marker was found to redistribute only if it 
was cross-linked by a second layer of antibody specific for the fluoresceinated antibody. 

*This expansion necessarily excludes the possibility of taking the limit vm -+ 0. Thus, although re- 
circulating membrane clearly approaches the sliding membrane as vm + 0, we should not expect Equa- 
tions (32) to approach Equations (26). 
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Fig. 10. Changes in receptor distribution as a cell goes from sliding motion (6 = 0) to rolling motion 
(6 = 1). Parameters other than 6 are as shown in Table 11. 

It is difficult to see how the Thy-I marker could be resorbed and inserted in a normal 
manner while retaining its labeling with fluoresceinated antibody. Thus, according to our 
analysis, Middleton's results are strong evidence against recirculating flow of the type pro- 
posed by Abercrombie et a1 [ 19721. 

A treatment completely analogous to the derivation of Equation (28) shows that the 
recirculating flow model leads to a singularity in cell velocity at a critical value of the shear 
force. Thus, as with the sliding cell, there is a force at which the cell must begin to roll or 
be torn free of the surface. 

CONC LUSl ON 

The most general conclusion resulting from our analysis of the reaction-convection 
hypothesis is that diffusion in cell membranes is too slow to counteract the effect of very 
mild convective currents with velocities on the order of one cell diameter per minute. This 
means that it is very reasonable to suppose that redistribution of receptors can be driven 
by convective flow. It also means that it is unreasonable to  assume [Bretcher, 19761 that 
the relatively minor differences in diffusion constant between monomeric and polymeric 
receptors will have a controlling influence on whether or not redistribution occurs. 

We have shown that redistribution can be caused by the relative motion of the cell 
and the surface or by a bottleneck in the recirculation of membrane. We have also shown 
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that cell rolling or excessive recirculation counteracts receptor redistribution. Quantitative 
observations of receptor redistribution can distinguish between various models of mem- 
brane flow (eg, rolling, sliding, recirculating). Such observations can also give information 
on the speed of the membrane flow, the diffusion constant of the receptors, and the rate 
constants for reaction between the receptors and the surface (ie, kBs and k-). 

Observations of the velocity of cells in the presence of fluid flow can give informa- 
tion on the strength of the adhesive attachments between the cell and the surface (ie, a’) 
and give independent data on the other aspects of our model. Another conclusion of our 
analysis is that the recirculating flow hypothesis cannot account for the leading and trailing 
boundary layer structures observed by King et a1 [ 19801. This is quite a general result, 
which argues strongly against models of the type advanced by Abercrombie et a1 [I9721 
and by Harris and Dunn [1972] and also those of the type advanced by Stossel [1977]. 
The presence of these boundary layer structures is also inconsistent with cell rolling. Of 
the models we have examined, the only one that gives a satisfactory explanation of the 
existing data is the simple sliding cell with negligible membrane flow and with negligible 
insertion and resorption of receptors. This tends to  support the idea that receptors that 
are in close proximity while bound to the surface are analogous to cross-linked receptors 
and that such receptors are coupled to the force-generating apparatus of the cell by a 
mechanism similar to the mechanisms proposed by Bourguignon and Singer [ 19771 and 
Klausner et a1 [ 19801. 

an interesting question concerning the mechanism of cell motion. Since the leading edge 
of a cell must apply traction to the surface in order for a cell to move, it is clear that a 
minimum density of certain types of receptors at the leading edge will be required for cell 
motion. However, we have shown that the sliding mode of motion will deplete the leading 
edge of adhesive receptors. How then does the sliding cell continue to  move? 

continuously, and diffusion could replenish the receptors at the leading edge if the cell 
paused or slowed down from time to time. Second, the number of receptors of the appro- 
priate type may be present in great excess so that even if their numbers are reduced by 
100- or 1,000-fold there will still be a sufficient supply to  maintain cell motion. We know 
of no currently available data that can eliminate either of these possibilities. 

In light of this conclusion, our analysis of the reaction-convection hypothesis raises 

There can be several possible answers to this paradox. First, the cell may not move 

APPENDIX A. DERIVATION OF AN APPROXIMATE EXPRESSION FOR THE FLUX 
OF RECEPTORS PARALLEL TO THE y AXIS 

In order to obtain an approximate expression for @(x) in Equation (1 1) we note 
that unless the initial distributions of i, and i p  are pathological, i, and i p  will be sym- 
metric about the x axis; and, consequently, aYi, = a y i p  = 0 at y = 0. Furthermore, for 
physically realistic initial conditions, we expect y = 0 to  be the only point at which the y 
components of the gradients of i, and i p  vanish for all x between 0 and 1. In addition, it 
is clear that, since cell motion tends to remove receptors from the lower surface and add 
receptors to the upper surface, the extremum of iu at y = 0 will be a maximum, whereas 
the extremum of fQ will be a relative minimum. 

that is a solution to the equations and that has the desired properties can be constructed 
from a superposition of functions of the form 

Since Equations (9a), (9b), and (9c) are linear and separable, an expression for i, 
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f, = G,(x, 7) cos (k,y). 

Similarly, i p  can be expressed as a sum of terms of the form 

where k, and kp are constants. 
We now make the ansatz that i, and i p  can be approximated by a single term of the 

appropriate form, but where k, and kp are allowed to be slowly varying functions of x 
and 7. Under this presumption, we integrate Equations (Al)  and (A2) with respect to y in 
order to express G, and GQ in terms of r, and rp, where 

r, &' f,dy = G, [sin(k,)/k,] (A31 

and 

rp  &' ?Q dy = GQ [sinh(kp)/kp]. (A41 

Inverting Equations (A3) and (A4), we obtain the following approximate expressions for 
i, and f ~ :  

i, % kUrU cos(k,y)/sin(k,) (A51 

and 

We now require that k, and kQ be chosen so as to satisfy the boundary conditions (6a) 
and (6d). This implies that 

tan(k,) = fi tanh[.\/;;k,] ('47) 

and 

where u r,/rp. 

lent approximate solution is 
Exact solutions to Equations (A7) and (A8) cannot be obtained; however, an excel- 

k, E (n/2)[(u - l)/(u + 1)]'12 (A91 

and 

kp Z (n/2)[U(U - I)/(U + 1)]'12. (A1 0) 

Table A1 shows a comparison of this approximate solution with exact numerical solutions 
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TABLE AI. Comparison of Numerical and Approximate Analytic Solutions 
of Equation (A7)* 

U = Iu/IQ k, (numerical) k, (approximate)* 

1 0 0 
1.05 0.27 0.25 
1.1 0.37 0.34 
1.25 0.55 0.52 
1.5 0.71 0.70 
2.0 0.87 0.91 
4.0 1.1 1.2 

10.0 1.3 1.4 
m 7712 TI2 

*From Equation (A9). 

of Equation (A7). As can be seen, the approximate solution is good to within 10% over 
the entire physical range of 1 < u < 00. 

Finally, we see by differentiating Equation (A5) with respect t o  y that 

@(x) = (L2/W')a,r,(x, 1) = -L2ki ru /W.  

If we now substitute Equation (A9) for k, we obtain 

-(n2/4)~'r, [r, - ra] 
W 2  [r, + ral 

@(x) = ~ 

Since ru > rQ because redistribution removes receptors from the lower surface, we have 
that 0.5 < r,/(ru + ra) < 1 .  Thus, from Equation (A1 1) we obtain 

@(XI 2 -[o'~'/W'][r, - ra], (A121 

where o2 = 1.86 2 0.62. 

APPENDIX B: APPROXIMATE SOLUTION TO A SPECIAL CASE OF THE MODEL 
BY MEANS OF BOUNDARY LAYER THEORY 

The special case of Equations (1 1 a-1 lc), applicable in the absence of cell rolling 
(ie, 6 = 0), and when the distributions of ru, rp, and c are time invariant (ie, a7ru = 
a d  = aTc = 0) is 
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O = eflairp t p2efl(r, - rp) - rp t yc 

and 
o = paxc t rQ - ?c. 

These equations are subject to the boundary conditions 

rp = r, at x = 0 , l  

d x ( r Q  t r,) t c = 0 at x = 0 , l  

c = O a t x = l ,  

and to the integral condition 

,d (r, t rp t c)dx = 2 .  037) 

Let us assume that f,, i.p, and C are solutions of Equations (Bl-B6) but that these 
functions do not necessarily satisfy the integral condition (Equation B7). If we multiply 
Equations (Bl-B6) by an arbitrary multiplicative constant, A, we see that the functions 
Aiu, K Q ,  and AE also satisfy Equations (Bl-B6). Furthermore, if we choose 

then Ai,, A i p ,  and AC will satisfy Equation (B7). 
As a consequence of this property of the equations, we can proceed to solve Equa- 

tions (B1 -B6) subject to an arbitrary additional constraint and subsequently convert this 
solution into a solution of the full system by means of Equation (B8). We find that it is 
convenient t o  choose the condition 

i,(O) = 1 039) 

as the additional constraint that leads to  the greatest simplification in the calculations. 

boundary condition (B5), we obtain 
If we add Equations (Bl), (B2), and (B3), integrate between 0 and x, and apply the 

Substituting this expression for E into Equations (Bl) and (B2), we obtain 

and 

as coupled equations for i, and i p .  From Equations (B4), (B6), and (B9), we see that the 
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appropriate boundary conditions for (B1 1) and (B12) are: 

i p  = i, at c = 0,l 0313) 

and 

&( i~  t i,) = 0 at x = 1. (B15) 

On the basis of Equation (25) and numerical simulations, it appears that redistribution of 
receptors requires that €0, EY, and e are all 4. However, since €0 multiplies a second de- 
rivative term in Equation (B12), whereas ey multiplies a first derivative term, it is con- 
venient to define a new parameter 01 such that €0 = 01(ey)', ie, 

In terms of a Equations (Bll) and (B12) become 

and 

Since €7 is small, we now expand i, and i p  as power series in this parameter 

In order to obtain the approximate solutions for I, and IQ valid in the interior, ie, 
away from the boundaries at x = 0 and 1, we substitute (B19) and (B20) into (B17) and 
(B18) and collect terms of 0(1) and of O ( E ~ ) .  The resulting equations for Uo, Vo, U1 and 
Vl are 

aiu, - pzuo = o 

v, = o  

and 
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These equations are readily solved with the result that 
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Uo = K1 cosh(px) + K2 sinh(px) 

vo = 0 

U1 = (p2x/2)U0 + K3 cosh(px) + K4 sinh(px) 

and 

V1 = -axUo = -p [K, sinh(px) + K2 cosh(px)] W 4 )  

where K,, K2, K3, and K4 are arbitrary constants yet to be specified. 

stretched variable 
In order to determine the behavior of the solution close to x = 0, we introduce the 

In terms of {, Equations (B17) and (B18) become 

and 

Near x = 0, we once again assume that i, and FQ can be expanded as power series in (ey), 
i, = Uh + (e-y)U; f ( ~ 7 ) ~  U; and fa = V6 + (q)V; + ( E ~ ) ~ U ; ,  where primes are used to in- 
dicate that the various Us and Vs are regarded as functions of { rather than as functions of 
x. Substituting these expansions into Equations (B26) and (B27), collecting terms of 0(1) 
and O(e-y), and solving the resulting equations for Ud, Ul, Vd, and V;, we obtain 

Ul, = J1 + J2{, Vd = J3 exp[X+{] + J4exp[X-(] - J2, Ui = J5 + J6{, and (B28) 

V; = 5 ,  exp [LS] + J8 exp [AX] - J6, 

where J1-J8 are arbitrary constants yet to be determined and 

A+ = (1/2&)(1 +_ d m ) .  

In order to determine the Js, we first note that the limiting behavior of Equations 
(B28-B32) as { + 00 must “match” with the limiting behavior of (B21-B24) as x + 0. 
For example, if x + 0, then 
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Equating the coefficient of corresponding terms in these two representations of i,, 
we conclude that 

A similar matching procedure applied to the expressions for ?Q in the interior and near 
x = 0 yields the result that 

since these coefficients multiply terms which grow exponentially in the boundary layer. 

we apply the boundary conditions at x = 0 (B13 and B14) subject to the constraints of 
(B30) and (B31). This procedure leads to the result that 

In order to obtain more information on the unknown coefficients of Equation (B28) 

J l  = 1 ,  J3 = 1, J5 = 0, and J6 = pK2. (B32) 

In light of (B30), (B31), and (B32), the solutions near x = 1 become 

and 

whereas the solutions in the interior are 

i, r Uo t eyUl = cosh(px) t Kz sinh(px) t eyK4 sinh(px) (I3351 

and 

i p  = V, t q V l  = qp[sinh(px) t Kz cosh(px)] . (B36) 

To obtain the solution near x = 1 ,  we introduce the stretched variable 

and proceed in a manner completely similar to that used to obtain the solution near x = 0. 
The initial expressions for the various terms in the series expansions of i~ and r', near x = 
1 are exactly the same as the corresponding terms near x = 0 (Equation B28), except that 
77 replaces 5. Nevertheless, the requirements of matching with the interior and of the 
boundary conditions are quite different for the two boundaries. We find that the solutions 
for i p  and f u  near x = 1 are* 

*Note that double primes on the Us and Vs are used to indicate that the various terms in the series ex- 
pansions of l;p and I, near x = 1 are to be regarded as functions of q, 
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and 

The matching conditions at x = 1 also imply that 

K2 = -coth(p) and K4 = [X, t l]p/[h+ sinh2(p)] 0340) 

so that the remaining unknown coefficients of the expressions for TU and PQ in the interior 
(ie, Equations B35 and B36) are determined. 

Expressions for fQ and iu which are uniformly valid in the interior, near x = 0 and 
near x = 1 are obtained by adding together the solutions appropriate for these three re- 
gions and subtracting from this sum those terms that are common to the interior and 
either of the boundaries. Thus, the uniform approximation to i~ given in Equation (26b)is 

Equation (26a) is the corresponding expression for f u ,  whereas the expressions for A and 
C in Equations (26e) and (26c) result from application of Equations (B8) and (BlO), re- 
spectively. 
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