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Bifurcation theory for three-dimensional flow in the wake of a circular cylinder
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A bifurcation scenario is presented for three-dimensional vortex shedding in the wake of a circular cylinder
for Reynolds numbers up to 300. Amplitude equations are proposed to describe the nonlinear interaction
between two three-dimensional modes of shedding with different spanwise wave numbers and different spa-
tiotemporal symmetries. The amplitude equations explain many features of the transition scenario observed
experimentally.

PACS numbgs): 47.27.Vf, 47.15.Fe, 47.54r

[. INTRODUCTION complex temporal behaviqd 1,14]; however, this aspect of
the dynamics will not be considered here.

In this paper we consider the three-dimensional flow pat- Above Re=260, the flow is found experimentally to be in
terns produced in the wake of a circular cylinder. This clasa different state: mod®. This state is characterized by a
sical flow problem is characterized by a single parameter, theharp frequency spectrum and a spanwise wavelength of
Reynolds number ReU..d/v, whereU., is the fluid veloc- @bout one cylinder diameteepproximately one fourth the
ity far from the cylinderd is the cylinder diameter, andis ~ Wavelength of modé\). The state also is of a different sym-
the kinematic viscosity for the fluid; see Fig. 1. The cylinder MEtrY type(described beloy Linear stability results show
is assumed to be sufficiently long that it can be taken to b&hat the two-dimensional wake becomes linearly unstable to
effectively infinite. At low Reynolds numbers the flow is mode B shedding at Re 259. Furthermore, this bifurcation

steady and at Re47 the flow becomes unsteady in a Hopf is’. supercriFicaI[lS],' i.e.! the branch qf modé solutions
bifurcation[1-3]. The resulting oscillatory flow leads to the bifurcates in the direction of Incréasing Reyn_olds number

. : . . . . ....and pure modeB states do not exist below this Reynolds
shedding of alternating sign vortices from the cylinder: the

Benard—von Kaman vortex streef4,5]. This flow is nomi- number.

I i . 68l i he shed ; In experimentg9,11,14, and to some degree in direct
nally two-dimensiona[6—8], i.e., the shed vortices are par-  \merical simulationg15], it is found that the transition

allel to the axis of the cylinder. What is of interest here is thef. o modeA to modeB is gradual with energy in the flow
subsequent three-dimensional transitions that take place Whifting continuously from mod@ to modeB over a range
to Reynolds numbers of about 300. of Reynolds numbers starting at Re between 210 and 220
Experiments by Williamsop9] first established important - and ending at about Re270. The transition is not hysteretic,
features of three-dimensional vortex shedding patterns. Nuather it is a reversible interpolation between the two three-
merical stability computations have provided further quanti-dimensional shedding modes.
tative data by establishing precise stability limits for the two-  |n this paper we shall explain, from a bifurcation-theoretic
dimensional flow[10]. Williamson [11,12] reviews the viewpoint, how the entire transition scenario from two-
experimental and computational studies of three-dimensional
vortex shedding from circular cylinders. The following tran-
sition scenario is now established for Reynolds numbers up
to 300. At Re=189 the two-dimensional wake becomes lin-
early unstable to a three-dimensional flow with a spanwise
wavelength of 4 cylinder diameters. This shedding mode is
called modeA. Experimentally{9] and computationally13]
modeA instability has been shown to be subcritical with a
small range of hysteresigbout 10 Reynolds number£x-
perimentally, modeA is found to exhibit dislocations and

*Electronic address: barkley@maths.warwick.ac.uk 'T'
"Electronic address: laurette@limsi.fr
*Electronic address: mg@math.uh.edu FIG. 1. Sketch of flow geometry.
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] First note that 2D flow(base flow has translational and
reflectional symmetry iz
6 -
u(x,y,z,t)=U(x,y,z+1,t), @
Q.
D .F- U(x,y,z) =U(x,y,~z,1), @
o
[ wherel is an arbitrary real constant. These symmetries are
~< trivial for the base flow becaus#J/9z=0.
2r In addition, the 2D wake has the following spatio-
temporal symmetry
[ . . . 1 L L . . 1 . L L L _ _
0 200 250 300 u(x,y,z,t)=U(x,—Yy,zt+T/2),
Re V(X,y,z,t)=—V(X,—y,z,t+T/2), ®)

FIG. 2. Regions(shaded of linearly instability for the two-
dimensional wake and the dominant spanwise wavelength observed
in experimentgopen symbolsfrom several groups Ref§21-23.
The longer wavelength states correspond to madinedding and
the shorter wavelength states to mdBleshedding. This figure is
reproduced with permission from R¢f.0].

W(X,y,z,t)=W(X,—Yy,z,t+T/2).

That is, the flow is invariant under the combination of
evolution by half a shedding period and reflectionyinWe
include thewW component in Eq9.3), even thoughv=0 for
the base flow, because necessarily the three-dimensional
. . . . . .1l ith h if ill h ies th
dimensional shedding through various three-dlmensmnazlj‘?;vzg’::'ésevfgfos)y%?;e?rliggf(gWI ave symmetries that
states is a natural consequence of interaction between the The modeA instability breaks the translational symmetry

mo;(jeAl\ and t_moldeB mstr?b;llltleslo_f theh tvx_/:)-_dlmens_lé)lnal along the cylinder so that the analog to symme(ty is
wake. In particuiar we shall expiain why it IS poSSIbe 10 oo iqfiaq forl =n\A for all integersn. The instability does

observe modeB well below linear instability threshold Re ot break reflection symmetr{2) in z nor does it break
=259 and why there may be a gradual, non-hysteretic shi atio-temporal symmetry3). Thus, the spatio-temporal
in energy between the two shedding modes over a range Q mmetry of the Floquet mod& is [16].

Reynolds number. '

u(x,y,z,t) =u(x,—y,z,t+T/2),

Il. PREVIOUS RESULTS ~ ~
, . . . v(X,y,z,t)=—v(X,—Y,z,t+T/2), (4)
We begin by summarizing the numerical lindd0] and

nonlinear[13,15 computations that will be used in the am-
plitude equations. While we shall make reference solely to

these numerical results, because of their precision, they cor- The modeB instability also breaks the translational sym-
respond quantitatively to experimental observations. metry so that the analog of Ef{l) is satisfied fol =n\B for

all integersn. As with modeA, modeB does not break re-
flection symmetry(2) in z However, it does break spatio-

) ) ) _ o temporal symmetry(3). The spatio-temporal symmetry of
The two-dimensiona(2D) wake is a time-periodic flow of  the modeB Floquet mode i$10]:

the form: U(x,y,t+T)=U(x,y,t) where T is the vortex

W(X,Y,z,t) =W(X,—Y,z,t+T/2).

A. Linear results

shedding period. The stability df is characterized by the ux,y,z,t)=u(x,—y,z+\B2t+T/2),
spectrum of Floquet multipliera for the linearized Navier-
Stokes equations. The Floquet multipliers have been com- D(%,Y,2,0) = —0(X, — Y, 2+ N2t + T/2), (5)

puted as a function of Reynolds number and spanwise wave-
length\. Figure 2 summarizes these results by showing the
regions of the Rex parameter plane in which the 2D wake is

linearly unstable, i.e., the regions for which there are Floquetnat is, modeB is invariant under the combination of evo-
multipliers outside the unit circle in the complex plane. In|ytion by half a shedding period, reflectionynand transla-
the unstable regions shown the multipliers are in fact reajign in z by AB/2.

and positive with instability corresponding fo>1. The pre-  There are two further points concerning the linear analy-
cise threshold values have been found for the two linear insjs. The first is that all Floquet multipliers corresponding to
stabilities corresponding to modeand modeB, respectively  3p modes are double. This is a direct consequence of trans-
[10]: Re'=189, \¢=3.96, and Rg=259, \¢=0.82. lational symmetry breaking. Specifically, the Floquet modes
As noted by Williamsor{12], modeA and modeB shed-  have trigonometricz-dependence and hence come in or-
ding have different symmetry types. This is apparent at théhogonal pairs related bytranslation(e.g., sine and cosiie
linear level as a difference in the spatio-temporal symmetrieghe final point is that the linear terms in our amplitude equa-
of the Floquet modes corresponding to the two bifurcations tions will explicitly contain the Flogquet multipliersy® and
[10]. w8, for the modeA and modeB instabilities. To obtain so-

W(X,Y,z,t)=W(X,—Y,z+\B2t+T/2).
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lution branches with Reynolds number as the bifurcation pathe dynamics up to third order in the absence of interaction.
rameter, we approximate the dependence of the multiplier¥he task is to extend these to include the possibility of cou-
on Reynolds number by linear functions. We have obtainegling between theé and B modes.

from numerical computations

#"(Re)=1+0.0091 Re— 189 ®) A. General

To obtain coupling terms we assume that somewhere in
uB(Re)=1+0.024 Re—259). 7) an extended parameter space there exists a point where the
mode A and modeB instabilities occur simultaneously and
that what is observed as a function of the single parameter,
Reynolds number, is a path in the unfolding of this

The leading nonlinear classification of the mo#leand  codimension-two point. This assumption, together with the
modeB instabilities is as follows. Consider the dynamics of wavelength ratio of thé andB modes and their symmetries,
the stroboscopic or Poincareap generated by the periodic is sufficient to obtain the general form of the bifurcation
flow. For modeA (modeB follows analogouslydefineA,to  equations.
be the complex amplitude whose magnitude corresponds to While the derivation is in principle a straightforward ap-
the magnitude of modA shedding at thath shedding cycle plication of methods of bifurcations with symmefr], tak-
starting from some arbitrarily chosen reference time. Specifiing into account all the details is quite involved, particularly
cally, in numerical computationfl3,15 the magnitude of because the bifurcations involve periodic orlpit3,18. Here
A, has been defined to be: we justify the amplitude equations by outlining the proce-

dure by which they could in principle be obtained with full

B. Nonlinear results

12
4 - rigor.
— A|2
|A”|={Wdzuzfﬂ|u | dQ] ' ®) To handle the bifurcations from a periodic orbit in the
* presence of symmetry, one uses multiple Poincaetions

whereQ is the two-dimensional cross section of the compu-2S in Refs[17] and[18]. The result is a map capturing both
tational domain and“(x,y,t,,) is the coefficient of the Fou- the spatial and spat!o—temporal symmetries (.)f the problem.
; S . e . In our case the spatial symmetry corresponding t@ansla-
rier transformatior(in the spanwise directigrof the velocity .. ; S
. tions and reflections, Eqg1)—(2), is given by the group
field at the modeA wave number. The phase &, corre- 0O(2). Spatio-temporal symmetr§8) becomes an additional
sponds to the phase of modeshedding along the cylinder - oP P y

N ) reflection symmetry, for the mag 18]. Because the spatio-
and can be set to the phaseud{x,y, ,); however, the phase temporal symmetry is a reflection, all bifurcations from the

plays no significant role in the dynamics until quite high >p pranch necessarily either break the spatio-temporal sym-

nonlinear ordersee below. o metry of the 2D flow, as in modB, or maintain the spatio-
Because the 3D Floquet multipliers are double, the mOd?emporaI symmetry, as in mode The full symmetry group

A instability is a circle pitchfork bifurcatior(pitchfork of ¢, o problem i = 0(2)X Z,.

revolution for the map. To lowest nonlinear order the nor-  £qr A andB modes undergoing simultaneous instabilities

mal form governing the moda bifurcation is there will be a four-dimensional center eigenspace with co-

ordinates AA,B) in C2. The symmetry-group elements can be

_ A A 2
An+ 1= Ant @il An A, ©)  taken to act on these coordinates as:

where u” is the Floquet multiplier, Eq(6), previously de- 0(A,B)=(e'’A,eMB),
termined from the linear stability computations, an@ is
the Landau coefficient: iiyf<0, the instability is superecriti-
cal, else it is subcritical.

Making an analogous definition &, , a similar equation
describes the modB instability:

K,(A,B)=(A,B),
«(A,B)=(A,—B),

. . . _ A . .

B.. .= uBB.+aBlB.I2B.. . 10 W_herea is traqslaﬂon inz byl—.a)\ lgw, K, is z reflection
ne1= 1Bt ] By|"By (19 with bar denoting complex conjugation, ardepresents the

Becauseu”® and 1B are known from the linear stability SPatio-temporal .symmetr/'\yB(Bbreaks symmetryc while A
computations, it has been possible to determine the Land#iP€S not We definem=\"/\" and assume for simplicity in
coefficientsay and of in Egs. (9)—(10) from direct three- Ehlnsl det;llivatlon t:qa? fia”n'r;teger'nﬁsl we explain momen-

dimensional simulations starting near the linear instabilityal y, this assumption 1S not essential.
thresholdg13,15. The result is that=0.116>0 anda® The theory of bifurcations with symmetiy16] can now

= —3.92<0, so that the modA instability is subcritical and be used to den_ve the most genera_l equations consistent with
, S - these symmetries. One finds a minimal set of three invariants
the modeB instability is supercritical.

a=|A|2, b=[B|2, c=(A"B+A"™B)?, (11

I1l. AMPLITUDE EQUATIONS
We now consider a set of bifurcation equations describingand of four equivariants

the interaction of the modé& and modeB instabilities: the - o

A-B mode interaction problem. Equatiof@—(10) describe (A, 0, (A’™1B2 0), (0,B), (0,A’B). (12
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From this, the most general set of evolution equations iscurring in practice ag? crosses the unit circle at 1. In the
presence of mod@ there is a shift in the stability threshold

An:1=p(a,b,c)A,+q(a,b,c)A2" B2, (13) by the amounty?|A,|2. If ¥2>0 then modeA has a desta-
o bilizing effect on modeB. This is the situation suggested by
Bh.1=r(a,b,c)B,+ s(a,b,c)AﬁmBn, (14 the experimental data in Fig. 2. A similar argument applies

to the effect of mod® on modeA except that in this case the

wherep, g, r, ands are arbitrary real polynomial functions. data suggesy;<0 since modeA shedding is suppressed as
These equations have been previously derived and partialhe Reynolds number is increased beyond the nbiesta-
investigated 19] in the context of the Faraday instability of a pjlity threshold.
vertically vibrated fluid layer. In principle one could numerically compute the coupling

In deriving Eqs.(13—(14) we have assumeth=\*/\®  coefficientsy, andy® using a method similar to that used to
to be an integer. Recall that the wavelength ratio of the tWajn the Landau coefficients’ anda® ; however, this would
modes at their respective onsets\\¢=3.96/0.82-4.83  first require a linear stability analysis of the fully three-
~5. When the wavelengths of the two fastest growingdimensional modeé\ and modeB flow and this is a consid-
modes are calculated at the same Reynolds number, the ragaple undertaking. It is therefore necessary to estimate these
between them varies between 4 and 5, depending on Reypefficients based on the Reynolds number range of experi-
nolds number. Whethem=4 or m=5 is irrelevant to our mentally observed moda and modeB states. In fact, these
considerations because the most important features of th:ﬁlo coefficients can be determined unique|y given the Rey-
A-B mode interaction are contained in low-order truncationsholds number at which modB is first observed and the
of Egs. (13)—(14). In particular,m does not appear in any Reynolds number at which modeis last observed. These
fifth-order truncation as long as>2, and form=4 orm  ¢riteria lead toys=—22 andy$=0.13.
=5 the terms involvingm are already of order nine or
greater. If the wavelength ratio is taken to be a rational num-
ber between four and five, the terms depending on the wave-
length ratio in the resulting equations will be of higher order ~ As was noted in Secs. | and Il B, the moéénstability is
still. In short, the ratio of modé and modeB wavelengths subcritical with a small range of hysteresis in the transition
does not enter the equations at low order and so is not reffom 2D shedding to moda shedding. The amplitude equa-
evant. tions at third order are not sufficient for describing this hys-

The phases ofA and B only enter the dynamics non- teresis. Thus, we must consider E¢s3)—(14) at next non-
trivially through the terms involvingn and hence the trun- Zero order:
cations we consider leave the phaseg\@ndB fixed. Note A A A
finally that the frequencies of th& and B modes do not Ans+1= p A+ | An| *Agt ¥41Bol *An + 5] An] “A,
appear in Eqs(13)—(14) because these describe the dynam- + ¥21B 2| An2An+ Y2 Bl A,
ics of the Poincarenap. In an extended parameter space in
which the instabilities occur simultaneously, the frequencies _ B Blp |2 Bia |2 Bip (4
of the A and B modes would be equal at onset, each being B 1= "Bt aq|Bol "Bo t 1| Anl"Bnt az[ B[ "By
equal to the frequency of the 2D wake at that point. The +95|AL2BAI2B o+ V5| AL 4B,
frequencies of these two three-dimensional modes will vary
along solution branches as one moves away from the co- Of the six fifth-order terms, only the ter217/2*|An|4An has
dimension two point. Hence, as observed in experiment, thany effect on the puré solution branch. Witha§<0 this
modeA and modeB frequencies will not be equal in general, term will produce hysteresis in the moferansition andx
but can be expected to be comparable. This has no implicgan be estimated from the range of hysteresis in simulations

C. Fifth order

tions for our analysis. or experiment. The values,=—0.04 gives a hysteresis of
about 10 Reynolds numbers, consistent with observations.
B. Third order While it is possible to conclude certain facts about the
Truncating Eqs(13)—(14) at third order gives: coefficients of the remaining fifth-order tern®,g., a5<0
else the purd branch would have a saddle-ngdthe coef-
Ani1=u AL+ af|ALPAL+ V) Bl A, (15  ficients cannot be determined from current numerical and
experimental data. Here we seek the minimal model neces-
Bns1=uEBn+af|B,|?B,+ v |AL?B,. (16)  sary to account for the wake dynamics and therefore simply

set these coefficients to zero. This gives the following system
Thus at third order, two coupling terms appear. Consider firsbf equations describing th&B-mode dynamics of the cylin-
the effect of modeA on the modeB instability. Linearizing  der wake:

Eq. (16) aboutB,=0 gives the linear stability equation for A An 1o Ao 1o A 4
modeB: Ani1=u (Re)An+a1|An| Ant 71|Bn| An+0‘2|An| An,

Bni1=(u®+7ilAq)By. (17 Bns+1=uP(REB,+ a|Br|*Byt 1| Anl By
In the absence of modk (i.e., A,=0, corresponding to the Figure 3 shows a bifurcation diagram for these equations.

basic 2D flow, the linear stability td8 modes is determined The Floquet multipliers depend on Reynolds number as
simply from the Floquet multipliepe, with instability oc-  given in Egs.(6) and (7). The Landau coefficients have the
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I e e e e e modeB and modeB has a stabilizing effect on modewith
- a resulting mixed-mode state over a range of Reynolds num-
ber.

The essential ingredients of the equations are the symme-
tries of the modeA and modeB states and how these dictate
couplings between the two modes. There are relatively few
terms in the equations at low orders and these have intuitive
meanings, either as standard terms describing subcritical and
supercritical bifurcations, or as couplings between modes

0 2-D with different symmetries. Many of the parameters are
N B B known from prior numerical computations and we have been
150 200 250 300 able to estimate the coupling coefficients based on experi-

Re mental data. In this work we have considered only the dy-
namics dictated by low-order truncations of the amplitude

FIG. 3. Bifurcation di f litud tions. Sh . ) . X
rrcation diagram for amplilice equations. SAown are quations because these describe the most important bifurca-

the steady states for these equations with solid lines indicatin

stable states. The 2D branch has B=0. The A branch has® ions arising from the mode interaction. There will be effects,
—0, theB branch has\=0, and theA+ B branch is a mixed-mode possibly mcIudlng complicated spatp—temporal dynam|cs
branch with bothA,B#0. The norm is\[A[%+ |B. [19], due to the higher-order terms which we have ignored.

However, near bifurcation, these effects are limited to nar-

valuesay=0.116 anda?=—3.92 determined from nonlin- "OW regions in parameter space. _ _
ear stability analysis as given in Sec. Il B. We have ﬂ%t We have not addressed here the important issue of dislo-
— 22 7?20_137 anda§= ~0.04, as explained above, but cations and complicated temporal dynaniicsoad-band fre-

the precise values of these three parameters are not importait. >, spectiaobserved experimentally, particularly for
P P . P de A [11,14. Leweke and Provansal have considered
and the values should be taken to be representative.

The following scenario is found as a function of Re noldsthese dynamics within the framework of the complex
number. The grlimar instability is to a pure moélestatg at Ginzburg-LandauCGL) equation[20]. From this work it
Re— 189' Thep insta){:)ility is gystereticp with the mode- seems likely that the dislocations and complicated temporal
branch extending down to Rel80. This upper branch is dynamics observed in the cylinder wake are closely related

table f in R Id ber but b ¢ bo the spatio-temporal chaos found in this equation. How-
stable for 4 range In Reynolds number but becomes UnStabig,q ‘e pifurcation structure of the CGL equation does not
at Re=230 to a branch of mixed-mode states in which both

A B.+0. Thi ds to the ob i f both mod match what is known for the cylinder wake: in the CGL
Ana’n(; moa dSI\?vg\?(rarlgflg?r?s iSn zxpir?mf;rtv?_;%n;ureom d':j]g eequation the instability of the periodic stateorresponding
branch bifurcates supercritically at R&59. This branch is to instability of the 2D wakpis via the Benjamin-Feir insta-

nitiall ble. The mixed-mode b h : hi bility with zero (spanwis@wavenumber, whereas for the cyl-
Initially unstable. The mixed-mode branch terminates on thig, e \yake there are two distinct linear instabilities of the 2D
pure modeB branch at Re265 and above this Reynolds

: ) wake, each at finite wavenumber, giving rise Aoand B
number only the pure mode branch is stable. This corre- ) .nches It would be of considerable interest to derive a
sponds to the experimental observation of only mdile ., qe| equation similar in spirit to the CGL equation consid-
wavelengths beyond this Reynolds number. ered by Leweke and Provansal, but which additionally con-

tains naturally the symmetric bifurcation structure we have
IV. CONCLUSIONS considered here.

A minimal system of amplitude equations has been pro-
posed to account quantitatively for transitions between three-
dimensional shedding modes in the wake of a circular cylin-  We thank the Institute for Mathematics and Its Applica-
der. The equations explain both the experimental detection dafons, University of Minnesota, where this work originated.
modeB wavelengths below the modg bifurcation point at  D.B. and L.S.T. thank the Royal Society and CNRS for their
Re=259, and the nonhysteretic transition from moléo  support. The research of M.G. was supported in part by NSF
mode B. These are all natural consequenceshAeB mode  Grant No. DMS-9704980 and the Texas Advanced Research
interaction in which modeA has a destabilizing effect on Program(Contract No. 003652037
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