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Bifurcation theory for three-dimensional flow in the wake of a circular cylinder
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A bifurcation scenario is presented for three-dimensional vortex shedding in the wake of a circular cylinder
for Reynolds numbers up to 300. Amplitude equations are proposed to describe the nonlinear interaction
between two three-dimensional modes of shedding with different spanwise wave numbers and different spa-
tiotemporal symmetries. The amplitude equations explain many features of the transition scenario observed
experimentally.

PACS number~s!: 47.27.Vf, 47.15.Fe, 47.54.1r
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I. INTRODUCTION

In this paper we consider the three-dimensional flow p
terns produced in the wake of a circular cylinder. This cl
sical flow problem is characterized by a single parameter,
Reynolds number Re[U`d/n, whereU` is the fluid veloc-
ity far from the cylinder,d is the cylinder diameter, andn is
the kinematic viscosity for the fluid; see Fig. 1. The cylind
is assumed to be sufficiently long that it can be taken to
effectively infinite. At low Reynolds numbers the flow
steady and at Re.47 the flow becomes unsteady in a Ho
bifurcation@1–3#. The resulting oscillatory flow leads to th
shedding of alternating sign vortices from the cylinder: t
Bénard–von Ka´rmán vortex street@4,5#. This flow is nomi-
nally two-dimensional@6–8#, i.e., the shed vortices are pa
allel to the axis of the cylinder. What is of interest here is t
subsequent three-dimensional transitions that take plac
to Reynolds numbers of about 300.

Experiments by Williamson@9# first established importan
features of three-dimensional vortex shedding patterns.
merical stability computations have provided further quan
tative data by establishing precise stability limits for the tw
dimensional flow @10#. Williamson @11,12# reviews the
experimental and computational studies of three-dimensio
vortex shedding from circular cylinders. The following tra
sition scenario is now established for Reynolds numbers
to 300. At Re5189 the two-dimensional wake becomes li
early unstable to a three-dimensional flow with a spanw
wavelength of 4 cylinder diameters. This shedding mode
called modeA. Experimentally@9# and computationally@13#
modeA instability has been shown to be subcritical with
small range of hysteresis~about 10 Reynolds numbers!. Ex-
perimentally, modeA is found to exhibit dislocations an
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complex temporal behavior@11,14#; however, this aspect o
the dynamics will not be considered here.

Above Re.260, the flow is found experimentally to be i
a different state: modeB. This state is characterized by
sharp frequency spectrum and a spanwise wavelength
about one cylinder diameter~approximately one fourth the
wavelength of modeA). The state also is of a different sym
metry type~described below!. Linear stability results show
that the two-dimensional wake becomes linearly unstable
modeB shedding at Re5259. Furthermore, this bifurcation
is supercritical@15#, i.e., the branch of modeB solutions
bifurcates in the direction of increasing Reynolds numb
and pure modeB states do not exist below this Reynold
number.

In experiments@9,11,14#, and to some degree in direc
numerical simulations@15#, it is found that the transition
from modeA to modeB is gradual with energy in the flow
shifting continuously from modeA to modeB over a range
of Reynolds numbers starting at Re between 210 and
and ending at about Re5270. The transition is not hysteretic
rather it is a reversible interpolation between the two thr
dimensional shedding modes.

In this paper we shall explain, from a bifurcation-theore
viewpoint, how the entire transition scenario from tw

FIG. 1. Sketch of flow geometry.
5247 ©2000 The American Physical Society
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5248 PRE 61BARKLEY, TUCKERMAN, AND GOLUBITSKY
dimensional shedding through various three-dimensio
states is a natural consequence of interaction between
mode A and modeB instabilities of the two-dimensiona
wake. In particular we shall explain why it is possible
observe modeB well below linear instability threshold Re
5259 and why there may be a gradual, non-hysteretic s
in energy between the two shedding modes over a rang
Reynolds number.

II. PREVIOUS RESULTS

We begin by summarizing the numerical linear@10# and
nonlinear@13,15# computations that will be used in the am
plitude equations. While we shall make reference solely
these numerical results, because of their precision, they
respond quantitatively to experimental observations.

A. Linear results

The two-dimensional~2D! wake is a time-periodic flow of
the form: U(x,y,t1T)5U(x,y,t) where T is the vortex
shedding period. The stability ofU is characterized by the
spectrum of Floquet multipliersm for the linearized Navier-
Stokes equations. The Floquet multipliers have been c
puted as a function of Reynolds number and spanwise w
lengthl. Figure 2 summarizes these results by showing
regions of the Re-l parameter plane in which the 2D wake
linearly unstable, i.e., the regions for which there are Floq
multipliers outside the unit circle in the complex plane.
the unstable regions shown the multipliers are in fact r
and positive with instability corresponding tom.1. The pre-
cise threshold values have been found for the two linear
stabilities corresponding to modeA and modeB, respectively
@10#: Rec

A5189, lc
A53.96, and Rec

B5259, lc
B50.82.

As noted by Williamson@12#, modeA and modeB shed-
ding have different symmetry types. This is apparent at
linear level as a difference in the spatio-temporal symmet
of the Floquet modesũ corresponding to the two bifurcation
@10#.

FIG. 2. Regions~shaded! of linearly instability for the two-
dimensional wake and the dominant spanwise wavelength obse
in experiments~open symbols! from several groups Refs.@21–23#.
The longer wavelength states correspond to modeA shedding and
the shorter wavelength states to modeB shedding. This figure is
reproduced with permission from Ref.@10#.
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First note that 2D flow~base flow! has translational and
reflectional symmetry inz:

U~x,y,z,t !5U~x,y,z1 l ,t !, ~1!

U~x,y,z,t !5U~x,y,2z,t !, ~2!

where l is an arbitrary real constant. These symmetries
trivial for the base flow because]U/]z50.

In addition, the 2D wake has the following spatio
temporal symmetry

U~x,y,z,t !5U~x,2y,z,t1T/2!,

V~x,y,z,t !52V~x,2y,z,t1T/2!, ~3!

W~x,y,z,t !5W~x,2y,z,t1T/2!.

That is, the flow is invariant under the combination
evolution by half a shedding period and reflection iny. We
include theW component in Eqs.~3!, even thoughW50 for
the base flow, because necessarily the three-dimensi
flows ~with wÞ0) that bifurcate will have symmetries tha
are a subset of symmetries~1!–~3!.

The modeA instability breaks the translational symmet
along the cylinder so that the analog to symmetry~1! is
satisfied forl 5nlA for all integersn. The instability does
not break reflection symmetry~2! in z nor does it break
spatio-temporal symmetry~3!. Thus, the spatio-tempora
symmetry of the Floquet modeA is @10#:

ũ~x,y,z,t !5ũ~x,2y,z,t1T/2!,

ṽ~x,y,z,t !52 ṽ~x,2y,z,t1T/2!, ~4!

w̃~x,y,z,t !5w̃~x,2y,z,t1T/2!.

The modeB instability also breaks the translational sym
metry so that the analog of Eq.~1! is satisfied forl 5nlB for
all integersn. As with modeA, modeB does not break re-
flection symmetry~2! in z. However, it does break spatio
temporal symmetry~3!. The spatio-temporal symmetry o
the modeB Floquet mode is@10#:

ũ~x,y,z,t !5ũ~x,2y,z1lB/2,t1T/2!,

ṽ~x,y,z,t !52 ṽ~x,2y,z1lB/2,t1T/2!, ~5!

w̃~x,y,z,t !5w̃~x,2y,z1lB/2,t1T/2!.

That is, modeB is invariant under the combination of evo
lution by half a shedding period, reflection iny, and transla-
tion in z by lB/2.

There are two further points concerning the linear ana
sis. The first is that all Floquet multipliers corresponding
3D modes are double. This is a direct consequence of tr
lational symmetry breaking. Specifically, the Floquet mod
have trigonometricz-dependence and hence come in o
thogonal pairs related byz translation~e.g., sine and cosine!.
The final point is that the linear terms in our amplitude equ
tions will explicitly contain the Floquet multipliers,mA and
mB, for the modeA and modeB instabilities. To obtain so-
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PRE 61 5249BIFURCATION THEORY FOR THREE-DIMENSIONAL . . .
lution branches with Reynolds number as the bifurcation
rameter, we approximate the dependence of the multipl
on Reynolds number by linear functions. We have obtain
from numerical computations

mA~Re!5110.0091~Re2189! ~6!

mB~Re!5110.021~Re2259!. ~7!

B. Nonlinear results

The leading nonlinear classification of the modeA and
modeB instabilities is as follows. Consider the dynamics
the stroboscopic or Poincare´ map generated by the period
flow. For modeA ~modeB follows analogously! defineAn to
be the complex amplitude whose magnitude correspond
the magnitude of modeA shedding at thenth shedding cycle
starting from some arbitrarily chosen reference time. Spe
cally, in numerical computations@13,15# the magnitude of
An has been defined to be:

uAnu[F 4

pd2U`
2 E

V
uûAu2dVG 1/2

, ~8!

whereV is the two-dimensional cross section of the comp
tational domain andûA(x,y,tn) is the coefficient of the Fou
rier transformation~in the spanwise direction! of the velocity
field at the modeA wave number. The phase ofAn corre-
sponds to the phase of modeA shedding along the cylinde
and can be set to the phase ofûA(x,y,tn); however, the phase
plays no significant role in the dynamics until quite hig
nonlinear order~see below!.

Because the 3D Floquet multipliers are double, the m
A instability is a circle pitchfork bifurcation~pitchfork of
revolution! for the map. To lowest nonlinear order the no
mal form governing the modeA bifurcation is

An115mAAn1a1
AuAnu2An , ~9!

wheremA is the Floquet multiplier, Eq.~6!, previously de-
termined from the linear stability computations, anda1

A is
the Landau coefficient: ifa1

A,0, the instability is supercriti-
cal, else it is subcritical.

Making an analogous definition ofBn , a similar equation
describes the modeB instability:

Bn115mBBn1a1
BuBnu2Bn . ~10!

BecausemA and mB are known from the linear stability
computations, it has been possible to determine the Lan
coefficientsa1

A and a1
B in Eqs. ~9!–~10! from direct three-

dimensional simulations starting near the linear instabi
thresholds@13,15#. The result is thata1

A50.116.0 anda1
B

523.92,0, so that the modeA instability is subcritical and
the modeB instability is supercritical.

III. AMPLITUDE EQUATIONS

We now consider a set of bifurcation equations describ
the interaction of the modeA and modeB instabilities: the
A-B mode interaction problem. Equations~9!–~10! describe
-
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the dynamics up to third order in the absence of interacti
The task is to extend these to include the possibility of c
pling between theA andB modes.

A. General

To obtain coupling terms we assume that somewhere
an extended parameter space there exists a point wher
modeA and modeB instabilities occur simultaneously an
that what is observed as a function of the single parame
Reynolds number, is a path in the unfolding of th
codimension-two point. This assumption, together with
wavelength ratio of theA andB modes and their symmetries
is sufficient to obtain the general form of the bifurcatio
equations.

While the derivation is in principle a straightforward a
plication of methods of bifurcations with symmetry@16#, tak-
ing into account all the details is quite involved, particular
because the bifurcations involve periodic orbits@17,18#. Here
we justify the amplitude equations by outlining the proc
dure by which they could in principle be obtained with fu
rigor.

To handle the bifurcations from a periodic orbit in th
presence of symmetry, one uses multiple Poincare´ sections
as in Refs.@17# and@18#. The result is a map capturing bot
the spatial and spatio-temporal symmetries of the probl
In our case the spatial symmetry corresponding toz transla-
tions and reflections, Eqs.~1!–~2!, is given by the group
O(2). Spatio-temporal symmetry~3! becomes an additiona
reflection symmetryZ2 for the map@18#. Because the spatio
temporal symmetry is a reflection, all bifurcations from t
2D branch necessarily either break the spatio-temporal s
metry of the 2D flow, as in modeB, or maintain the spatio-
temporal symmetry, as in modeA. The full symmetry group
for the problem isG5O(2)3Z2.

For A andB modes undergoing simultaneous instabiliti
there will be a four-dimensional center eigenspace with
ordinates (A,B) in C2. The symmetry-group elements can b
taken to act on these coordinates as:

u~A,B!5~eiuA,eimuB!,

kz~A,B!5~Ā,B̄!,

k~A,B!5~A,2B!,

whereu is translation inz by l 5ulA/2p, kz is z reflection
with bar denoting complex conjugation, andk represents the
spatio-temporal symmetry (B breaks symmetryk while A
does not!. We definem[lA/lB and assume for simplicity in
this derivation thatm is an integer. As we explain momen
tarily, this assumption is not essential.

The theory of bifurcations with symmetry@16# can now
be used to derive the most general equations consistent
these symmetries. One finds a minimal set of three invaria

a[uAu2, b[uBu2, c[~AmB̄1ĀmB!2, ~11!

and of four equivariants

~A, 0!, ~Ā2m21B2, 0!, ~0, B!, ~0, A2mB̄!. ~12!
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From this, the most general set of evolution equations

An115p~a,b,c!An1q~a,b,c!Ān
2m21Bn

2 , ~13!

Bn115r ~a,b,c!Bn1s~a,b,c!An
2mB̄n , ~14!

wherep, q, r, ands are arbitrary real polynomial functions
These equations have been previously derived and part
investigated@19# in the context of the Faraday instability of
vertically vibrated fluid layer.

In deriving Eqs.~13!–~14! we have assumedm5lA/lB

to be an integer. Recall that the wavelength ratio of the t
modes at their respective onsets islc

A/lc
B53.96/0.8254.83

'5. When the wavelengths of the two fastest growi
modes are calculated at the same Reynolds number, the
between them varies between 4 and 5, depending on R
nolds number. Whetherm54 or m55 is irrelevant to our
considerations because the most important features of
A-B mode interaction are contained in low-order truncatio
of Eqs. ~13!–~14!. In particular,m does not appear in an
fifth-order truncation as long asm.2, and form54 or m
55 the terms involvingm are already of order nine o
greater. If the wavelength ratio is taken to be a rational nu
ber between four and five, the terms depending on the wa
length ratio in the resulting equations will be of higher ord
still. In short, the ratio of modeA and modeB wavelengths
does not enter the equations at low order and so is not
evant.

The phases ofA and B only enter the dynamics non
trivially through the terms involvingm and hence the trun
cations we consider leave the phases ofA andB fixed. Note
finally that the frequencies of theA and B modes do not
appear in Eqs.~13!–~14! because these describe the dyna
ics of the Poincare´ map. In an extended parameter space
which the instabilities occur simultaneously, the frequenc
of the A and B modes would be equal at onset, each be
equal to the frequency of the 2D wake at that point. T
frequencies of these two three-dimensional modes will v
along solution branches as one moves away from the
dimension two point. Hence, as observed in experiment,
modeA and modeB frequencies will not be equal in genera
but can be expected to be comparable. This has no imp
tions for our analysis.

B. Third order

Truncating Eqs.~13!–~14! at third order gives:

An115mAAn1a1
AuAnu2An1g1

AuBnu2An , ~15!

Bn115mBBn1a1
BuBnu2Bn1g1

BuAnu2Bn . ~16!

Thus at third order, two coupling terms appear. Consider
the effect of modeA on the modeB instability. Linearizing
Eq. ~16! aboutBn50 gives the linear stability equation fo
modeB:

Bn115~mB1g1
BuAnu2!Bn . ~17!

In the absence of modeA ~i.e., An50, corresponding to the
basic 2D flow!, the linear stability toB modes is determined
simply from the Floquet multipliermB, with instability oc-
s:
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curring in practice asmB crosses the unit circle at11. In the
presence of modeA there is a shift in the stability threshol
by the amountg1

BuAnu2. If g1
B.0 then modeA has a desta-

bilizing effect on modeB. This is the situation suggested b
the experimental data in Fig. 2. A similar argument appl
to the effect of modeB on modeA except that in this case th
data suggestg1

A,0 since modeA shedding is suppressed a
the Reynolds number is increased beyond the modeB insta-
bility threshold.

In principle one could numerically compute the couplin
coefficientsg1

A andg1
B using a method similar to that used

find the Landau coefficientsa1
A anda1

B ; however, this would
first require a linear stability analysis of the fully thre
dimensional modeA and modeB flow and this is a consid-
erable undertaking. It is therefore necessary to estimate t
coefficients based on the Reynolds number range of exp
mentally observed modeA and modeB states. In fact, these
two coefficients can be determined uniquely given the R
nolds number at which modeB is first observed and the
Reynolds number at which modeA is last observed. Thes
criteria lead tog1

A.222 andg1
B.0.13.

C. Fifth order

As was noted in Secs. I and II B, the modeA instability is
subcritical with a small range of hysteresis in the transit
from 2D shedding to modeA shedding. The amplitude equa
tions at third order are not sufficient for describing this hy
teresis. Thus, we must consider Eqs.~13!–~14! at next non-
zero order:

An115mAAn1a1
AuAnu2An1g1

AuBnu2An1a2
AuAnu4An

1g2
AuBnu2uAnu2An1g3

AuBnu4An ,

Bn115mBBn1a1
BuBnu2Bn1g1

BuAnu2Bn1a2
BuBnu4Bn

1g2
BuAnu2uBnu2Bn1g3

BuAnu4Bn .

Of the six fifth-order terms, only the terma2
AuAnu4An has

any effect on the pureA solution branch. Witha2
A,0 this

term will produce hysteresis in the modeA transition anda2
A

can be estimated from the range of hysteresis in simulat
or experiment. The valuea2

A520.04 gives a hysteresis o
about 10 Reynolds numbers, consistent with observation

While it is possible to conclude certain facts about t
coefficients of the remaining fifth-order terms,~e.g.,a2

B<0
else the pureB branch would have a saddle-node!, the coef-
ficients cannot be determined from current numerical a
experimental data. Here we seek the minimal model nec
sary to account for the wake dynamics and therefore sim
set these coefficients to zero. This gives the following syst
of equations describing theAB-mode dynamics of the cylin-
der wake:

An115mA~Re!An1a1
AuAnu2An1g1

AuBnu2An1a2
AuAnu4An ,

Bn115mB~Re!Bn1a1
BuBnu2Bn1g1

BuAnu2Bn .

Figure 3 shows a bifurcation diagram for these equatio
The Floquet multipliers depend on Reynolds number
given in Eqs.~6! and ~7!. The Landau coefficients have th



-

t
rt

ds

ab
th
d

h
s
-

ro
re
lin
n

n

um-

me-
te
few
itive
and

des
re
en
eri-
dy-
de
rca-

ts,
ics
ed.
ar-

islo-

r
ed
ex

oral
ted
w-
not
L

-
l-
D

e a
id-
n-
ve

a-
d.
eir
SF
rch

ar
tin

PRE 61 5251BIFURCATION THEORY FOR THREE-DIMENSIONAL . . .
valuesa1
A50.116 anda1

B523.92 determined from nonlin
ear stability analysis as given in Sec. II B. We have setg1

A

5222, g1
B50.13, anda2

A520.04, as explained above, bu
the precise values of these three parameters are not impo
and the values should be taken to be representative.

The following scenario is found as a function of Reynol
number. The primary instability is to a pure modeA state at
Re5189. The instability is hysteretic with the mode-A
branch extending down to Re.180. This upper branch is
stable for a range in Reynolds number but becomes unst
at Re.230 to a branch of mixed-mode states in which bo
An ,BnÞ0. This corresponds to the observation of both mo
A and modeB wavelengths in experiment. The pure modeB
branch bifurcates supercritically at Re5259. This branch is
initially unstable. The mixed-mode branch terminates on t
pure modeB branch at Re.265 and above this Reynold
number only the pure modeB branch is stable. This corre
sponds to the experimental observation of only modeB
wavelengths beyond this Reynolds number.

IV. CONCLUSIONS

A minimal system of amplitude equations has been p
posed to account quantitatively for transitions between th
dimensional shedding modes in the wake of a circular cy
der. The equations explain both the experimental detectio
modeB wavelengths below the modeB bifurcation point at
Re5259, and the nonhysteretic transition from modeA to
mode B. These are all natural consequences ofA-B mode
interaction in which modeA has a destabilizing effect o

FIG. 3. Bifurcation diagram for amplitude equations. Shown
the steady states for these equations with solid lines indica
stable states. The 2D branch hasA5B50. The A branch hasB
50, theB branch hasA50, and theA1B branch is a mixed-mode
branch with bothA,BÞ0. The norm isAuAu21uBu2.
ant

le

e

is

-
e-
-
of

modeB and modeB has a stabilizing effect on modeA with
a resulting mixed-mode state over a range of Reynolds n
ber.

The essential ingredients of the equations are the sym
tries of the modeA and modeB states and how these dicta
couplings between the two modes. There are relatively
terms in the equations at low orders and these have intu
meanings, either as standard terms describing subcritical
supercritical bifurcations, or as couplings between mo
with different symmetries. Many of the parameters a
known from prior numerical computations and we have be
able to estimate the coupling coefficients based on exp
mental data. In this work we have considered only the
namics dictated by low-order truncations of the amplitu
equations because these describe the most important bifu
tions arising from the mode interaction. There will be effec
possibly including complicated spatio-temporal dynam
@19#, due to the higher-order terms which we have ignor
However, near bifurcation, these effects are limited to n
row regions in parameter space.

We have not addressed here the important issue of d
cations and complicated temporal dynamics~broad-band fre-
quency spectra! observed experimentally, particularly fo
mode A @11,14#. Leweke and Provansal have consider
these dynamics within the framework of the compl
Ginzburg-Landau~CGL! equation@20#. From this work it
seems likely that the dislocations and complicated temp
dynamics observed in the cylinder wake are closely rela
to the spatio-temporal chaos found in this equation. Ho
ever, the bifurcation structure of the CGL equation does
match what is known for the cylinder wake: in the CG
equation the instability of the periodic state~corresponding
to instability of the 2D wake! is via the Benjamin-Feir insta
bility with zero ~spanwise! wavenumber, whereas for the cy
inder wake there are two distinct linear instabilities of the 2
wake, each at finite wavenumber, giving rise toA and B
branches. It would be of considerable interest to deriv
model equation similar in spirit to the CGL equation cons
ered by Leweke and Provansal, but which additionally co
tains naturally the symmetric bifurcation structure we ha
considered here.
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