
Digital Object Identifier (DOI) 10.1007/s00162-002-0068-7
Theoret. Comput. Fluid Dynamics (2002) 16: 1–6

Theoretical and Computational
Fluid Dynamics

Transient Growth in Exactly Counter-Rotating
Couette–Taylor Flow

Hristina Hristova and Sebastien Roch

Ecole Polytechnique de Montreal C.P. 6079, succ. Centre-ville Montreal (Qc) H3C 3A 7
and

Ecole Polytechnique, 91128 Palaiseau, France

Peter J. Schmid

Department of Applied Mathematics, University of Washington,
Box 352420, Seattle, WA 98195, U.S.A.

and
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Abstract. Transient growth due to non-normality is investigated for the Couette–Taylor problem with
counter-rotating cylinders as a function of aspect ratio η and Reynolds number Re. For all Re ≤ 500, tran-
sient growth is enhanced by curvature, i.e. is greater for η < 1 than for η = 1, the plane Couette limit. For
fixed Re > 130, it is found that the greatest transient growth is achieved for η on the linear stability bound-
ary. Transient growth is approximately 20% higher near the Couette–Taylor linear stability boundary at
Re = 310, η = 0.986 than at Re = 310, η = 1, near the threshold observed for transition in plane Couette
flow. For 106 < Re < 130, the greatest transient growth occurs for a value of η between the linear stability
boundary and one. For Re < 106, the flow is linearly stable and the greatest transient growth occurs for
a value of η less than one. The energy in the optimal inputs is primarily meridional; that in the optimal
outputs is primarily azimuthal. Pseudospectra are calculated for two contrasting cases.

1. Introduction

The transitions and patterns in Couette–Taylor flow are very well explained by linear stability theory. Indeed,
this flow was historically used as a test case for linear stability theory. In contrast, transition in plane Couette
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flow is unexplained to this day, remaining linearly stable at all Reynolds numbers despite the experimen-
tally and numerically observed transition to turbulence. Because of this discrepancy, various mechanisms
for transition have been proposed which bypass classical linear stability theory. All of these theories involve
streamwise vortices, analogous to the Taylor vortices which become linearly unstable in Couette–Taylor
flow.

One major line of research in plane Couette and other channel flows has focused on the effect of
non-normality in the linearized evolution operator, which can enable large transient growth prior to even-
tual exponential decay (Butler and Farrell, 1992; Trefethen et al. 1993; Reddy et al., 1993; Reddy and
Henningson, 1993; Schmid and Henningson, 2001). This point of view has been only rarely applied to
Couette–Taylor flow (Gebhardt and Grossmann, 1993; Meseguer, 2002), probably because classical linear
stability theory is so successful in this case. However, in addition to the single non-dimensional parameter –
the Reynolds number – of plane Couette flow, Couette–Taylor flow is characterized by two other parameters
measuring curvature and Coriolis effects, providing a means of tuning the non-normality of the system.

Approaching the instability of plane Couette flow via Couette–Taylor flow is an appealing idea and has
inspired a number of investigations (Nagata, 1998; Faisst and Eckhardt, 2000; Prigent and Dauchot, 2002).
Our investigation proceeds somewhat in the opposite direction, taking a concept which has been extensively
used in studying plane Couette flow and applying it to Couette–Taylor flow.

2. Methods

The Navier–Stokes equations are linearized about the Couette solution U = UC(r)eθ , which is given by

UC(r) = Ar + B

r
, (1a)

A = µ−η2

2η(1+η)
, B = 2η(1−µ)

(1−η)(1−η2)
. (1b)

Here η ≡ rin/rout and µ ≡ Ωout/Ωin, where rin, rout, Ωin, Ωout are the inner and outer cylindrical radii
and angular velocities. Distances have been non-dimensionalized by (rout −rin)/2 and velocities by rinΩin,
so that Re = rinΩin(rout − rin)/(2ν) where ν is the kinematic viscosity. This definition of Re, chosen for
compatibility with the plane Couette convention for the case µ = −1, differs by a factor of two from the con-
ventional definition employed in Couette–Taylor flow, as do the expressions for A and B. The average radius
is r̄ = (1+η)/(1−η), so that the narrow-gap limit η → 1 corresponds to r̄ → ∞.

The Couette–Taylor geometry and the Couette solution are homogeneous in the azimuthal (θ) and axial
(z) direction, which are analogous to the streamwise (x ∼ rθ) and spanwise (z) directions in plane Cou-
ette flow. Solutions to the linearized Navier–Stokes equations which are spatially bounded are therefore
trigonometric in each of these directions, with wave numbers m and β.

(ur , uθ, uz) = (ûr , ûθ, ûz)(r, t) exp(imθ + iβz). (2)

The perturbations (ûr , ûθ, ûz) are represented as 20-term series of Chebyshev polynomials in y ≡ r − r̄,
which are evaluated at the Gauss–Lobatto points.

The parameter space is too vast to permit full exploration. In this study we limit ourselves to m = 0,
β = π/2, and µ = −1 and we vary η between 0.5 and 1. The choice m = 0 of axisymmetric perturbations
is made for simplicity but can be partially justified by previous studies. In plane Couette flow (η = 1), the
transient growth achieved by streamwise-independent perturbations is, while not maximal, very close to the
optimal value (Butler and Farrell, 1992; Trefethen et al., 1993; Reddy and Henningson, 1993; Schmid and
Henningson, 2001). The linear instability undergone by Couette–Taylor flow with counter-rotating cylinders
is usually non-axisymmetric and leads to spirals, but its threshold and growth rate are close to those asso-
ciated with the most unstable axisymmetric perturbation (Krueger et al., 1966; Langford et al., 1988). For
a narrow gap, the choice β = π/2 is at most 20% smaller than the axial wave number corresponding to linear
instability (Krueger et al., 1966). We choose µ = −1 so that the average angular velocity, i.e. the net Coriolis
effect, vanishes. In contrast, Meseguer (2002) has investigated a range of values of µ for a fixed radius ratio
η = 0.88 and has calculated m and β values which maximize the transient growth.
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The full evolution equation is written symbolically as

∂

∂t
u = −iLu. (3)

As a measure of growth, we use the energy norm defined by

E(u) = ‖u‖2
E =

r̄+1∫
r=r̄−1

(
|ûr |2 + 1

β2r2

∣∣∣∣ d

dr
(rûr)

∣∣∣∣2 + m2

β2r2 |ûθ |2
)

r dr

︸ ︷︷ ︸
Er,z

+
r̄+1∫

r=r̄−1

|ûθ |2 r dr

︸ ︷︷ ︸
Eθ

. (4)

The maximal energy growth at time t for u evolving according to (3) is defined by

G(t) ≡ sup
‖u(0)‖2

E 
=0

‖u(t)‖2
E

‖u(0)‖2
E

= ‖ exp(−iLt)‖2
E (5)

and is given by the square of the largest singular value σmax under the energy norm of the operator
exp(−iLt). The optimal transient growth is

Gmax = sup
t

G(t). (6)

For operators which are linearly unstable, Gmax = ∞. The time for optimal growth tmax is that which
achieves the maximum (sup) in (6). The optimal input, denoted by u(0), is the normalized initial condition
which achieves the maximum (sup) in (5) and (6). The optimal output, denoted by u(tmax), is the velocity
field resulting from the linearized Couette–Taylor evolution (3) starting from u(0).

A non-normal operator L is also characterized by its ε-pseudospectra Λε(L), the sets of complex values
z such that σmin(zI −L) ≤ ε (Trefethen et al., 1993). For a normal operator, the ε-pseudospectrum is the
union of the balls of radius ε surrounding each eigenvalue. For a non-normal operator, the ε-pseudospectrum
may be much larger, especially surrounding certain eigenvalues deemed more responsible for non-normality.

Our codes for discretizing the Couette–Taylor operator were constructed by modifying the Matlab code
for plane Couette flow written by Reddy (Reddy et al., 1993; Reddy and Henningson, 1993) and published in

Figure 1. Contours of optimal growth for Couette–Taylor flow in the (η, Re) plane. Shaded area indicates the region of linear
instability. Triangles indicate ηopt(Re), the value of η at which maximum growth is attained for a given value of Re.
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Figure 2. Left: contours of optimal growth Gmax for 120 < Re < 130, showing existence of optimal values ηopt(Re) between ηL(Re)
and 1. Right: contours of optimal growth Gmax for 300 < Re < 310, showing rapid increase of Gmax as η is decreased to the linear
stability boundary.

Figure 3. Left: time evolution of optimal input and of least stable eigenvector for η = 0.50, Re = 125. Solid and long-dashed curves
represent Eθ (t) and Er,z(t), respectively, for optimal input. Higher and lower short-dashed curves represent Eθ (t) and Er,z(t), respec-
tively, for least stable eigenvector. Triangle corresponds to tmax. Right: time evolution of optimal input and of least stable eigenvector
for η = 0.99, Re = 350.

Schmid and Henningson (2001). They were tested by comparing critical Reynolds numbers with published
values (Krueger et al., 1966). For computing the pseudospectra, we used the code Eigtool (formerly
PSAGUI) written by (Wright and Trefethen, 2001), which implements the algorithm developed by Trefethen
(1999) and available on the Web (Wright, 2002).

3. Results

Figure 1 shows the contours of constant optimal growth Gmax. Inside the shaded region, Couette flow is
linearly unstable to axisymmetric perturbations. The boundary of this region is the critical Reynolds num-
ber ReL(η). ReL → ∞ as η → 1, as expected since plane Couette flow is linearly stable for all Reynolds
numbers. We may also consider the rightmost portion of the linear stability boundary as a function ηL(Re).

Our main result is that the maximum growth for a fixed Reynolds number, indicated by the triangles
in Figure 1, is always achieved for a radius ratio η = ηopt(Re) which is less than one. Thus, curvature in-
creases singular values (transient growth) just as it does eigenvalues (exponential growth). This optimal
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Figure 4. Left: pseudospectra for Couette–Taylor flow for η = 0.5 and Re = 125. Contours correspond to ε = 10−1.8, 10−1.5, . . . , 100.
Right: pseudospectra for Couette–Taylor flow for η = 0.99 and Re = 350. Contours correspond to ε = 10−2.4, 10−2.1, . . . , 100.

value increases with Reynoldsnumber to a maximum of ηopt ≈ 0.96 for Re ≈ 110, and then abruptly de-
creases and terminates by meeting the linear instability boundary ηL ≈ 0.9 at Re ≈ 130. For Re ≤ 130, the
optimal growth does not exceed a factor of 21; see Figure 2. For Re > 130, the maximum growth is achieved
for η at ηL(Re). Arbitrarily high values of Gmax can be attained by increasing Re, since for plane Couette
flow, i.e. η = 1, it is known that Gmax ∼ Re2 (Trefethen et al., 1993; Reddy and Henningson, 1993; Schmid
and Henningson, 2001). In fact Gmax is approximately 20% higher for η = ηL than for η = 1 over the range
300 < Re < 310, the approximate threshold for transition to turbulence in plane Couette flow; see Figure 2.

We have studied in detail two contrasting cases: η = 0.5, Re = 125 and η = 0.99, Re = 350. In the first
case, η = 0.5 or equivalently r̄ = 3, curvature plays an important role. The second case, η = 0.99 or equiva-
lently r̄ = 199, is very near the plane Couette limit. The Reynolds numbers have been chosen to be close to
the linear instability threshold ReL in each case.

The optimal inputs u(0) are concentrated primarily in the meridional components (ur, uz) with a very
small azimuthal component uθ ; for the optimal outputs u(tmax), the situation is reversed. This evolution cor-
responds to the generation of streaks – deformations of the azimuthal velocity profile – by the vortices. This
physical process is believed to be a key element in the transition to turbulence in plane Couette flow. Figure 3
shows the evolution in time of the energies in the azimuthal component Eθ and in the meridional components
Er,z starting from the optimal inputs u(0) and from the least stable eigenvectors.

Figure 4 shows the spectrum and pseudospectra of the operators L. Both pseudospectra plots contain
contours (for the smaller values of ε) surrounding individual eigenvalues and bulb-shaped contours (for the
larger values of ε) surrounding the entire spectrum. Since the spectrum for η = 0.99, Re = 350 is quite
localized on the imaginary axis, bulb-shaped pseudospectral contours in this case are an indication that
non-normal effects are most pronounced for eigenvalues near the origin.
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Prigent, A., Grégoire, G, Chaté, H., Dauchot, O., van Sarloos, W. (2002). Large-scale finite-wavelength modulation within turbulent

shear flows. Phys. Rev. Lett., 89, 014501.
Reddy, S.C., Henningson, D.S. (1993). Energy growth in viscous channel flow. J. Fluid Mech., 252, 209–238.
Reddy, S.C., Schmid, P.J., Henningson, D.S. (1993). Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Math., 53, 15–47.
Schmid, P.J., Henningson, D.S. (2001). Stability and Transition in Shear Flows. Springer-Verlag, New York.
Trefethen, L.N., Trefethen, A.E., Reddy, S.C., Driscoll, T.A. (1993). Hydrodynamic stability without eigenvalues. Science 261,

578–584.
Trefethen, L.N. (1999). Computation of pseudospectra. Acta Numeri., 8, 247–295.
Wright, T.G. Trefethen, L.N. (2001). Large-scale computation of pseudospectra using ARPACK and Eigs. SIAM J. Sci. Comp. 23,

591–605.
Wright, T.G. (2002). www.comlab.ox.ac.uk/pseudospectra/ergtool.


