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Transient growth due to non-normality is investigated for the Taylor—Couette problem with
counter-rotating cylinders as a function of aspect rajiand Reynolds number Re. For all Re
<500, transient growth is enhanced by curvature, i.e., is greatey<ak than for»=1, the plane
Couette limit. For fixed R€130 it is found that the greatest transient growth is achievedyfor
between the Taylor—Couette linear stability boundary, if it exists, and one, while fod&&the
greatest transient growth is achieved fgpron the linear stability boundary. Transient growth is
shown to be approximately 20% higher near the linear stability boundary-=a8 R 7= 0.986 than

at Re=310, =1, near the threshold observed for transition in plane Couette flow. The energy in the
optimal inputs is primarily meridional; that in the optimal outputs is primarily azimuthal.
Pseudospectra are calculated for two contrasting cases. For large curvatafeb, the
pseudospectra adhere more closely to the spectrum than in a narrow gag<#89. © 2002
American Institute of Physics[DOI: 10.1063/1.1502658

I. INTRODUCTION Squire’s theorerf firmly establishes that the linear instabil-
ity with the lowest critical Reynolds number is spanwise
Two shear-driven flows bear the name of Couette: Thenvariant. Armed with this theorem, researchers have long
flow between differentially rotating concentric cylinders is known, and more recently provétithat plane Couette flow
called cylindrical Couette flow, or more commonly, Taylor— s linearly stable at all Reynolds numbers. Yet, in laboratory
Couette flow, while the flow between infinite parallel platesexperiment¥ and in numerical simulation's,plane Couette
translating at different velocities while maintaining a con-flow undergoes sudden transition to three-dimensional turbu-
stant separation is called plane Couette flow. Exact solutiongence. Since at least the 1960’s researchers have explored
both called Couette solutions, to the Navier—Stokes equazarious mechanisms for transition in plane Couette flow
tions for each of these configurations are easily calculateg/hich bypass linear instability and Squire’s theorem. An el-
and serve as illustrations in most textbooks. Each of thesement shared by all of these approaches, independent of the
two flows has become a paradigm of hydrodynamic stabilititheoretical mechanism proposed for instability, is the pres-
theory. ence of streamwise vorticé®;?% i.e., perturbations which,
Taylor—Couette flow can be considered to be a paradigninjike those deemed critical by Squire’s theorem, are not
of understanding. In 1923, Tayfocarried out calculations of - spanwise invariant, but are instead invariant or almost invari-
the linear instability of Couette flow to the onset of axisym- ant in the streamwise direction. These are analogous to the
metric vortices and compared these with experiment, obtaintay|or vortices which, in Taylor—Couette flow, are the eigen-
ing agreement which remains remarkable even by today'gectors responsible for the linear instability and are realized
standards. In later research, increasingly ornate and beautifjy experiments and in nonlinear numerical simulations.
experimental patterns were discovered, e.g., Refs. 2—-4, and Qpe major line of research has focused on the effect of
correspondingly elaborate numerical, asymptotic, and theane non-normality of the operator governing the linear stabil-
retical calculations, e.g., Refs. 5-7, reproduced and Xty of plane Couette flod’'° Such operators may lead to
plained these patterns, again with remarkable accuracy; sgnsient growth dynamics, even in the absence of linear in-
Refs. 8-11. _ stability, allowing nonlinear effects to take over before the
Plane Couette flow, on the other hand, can be consideregha| exponential decay exhibited by the linear evolution.
to be a paradigm of mystery. For plane parallel flows,pjane Couette flow can exhibit transient growth of several
orders of magnitude; the initial conditions which maximize
dElectronic mail: laurette@limsi.fr the transient growth, called optimal perturbations, contain
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streamwise vortices. Transient growth is closely associatelfleseguer suggests that transient growth plays an important
with the sensitivity of the spectrum to small perturbations ofrole in the transition to turbulence observed experimerttally
the operator, quantified by the pseudospetira. for Q;,=0, —Q1, a theory contested by Gebhardt and
The concepts of pseudospectra, non-normality, transier@rossmart?
growth, and optimal perturbations, have been rarely applied Why calculate transient growth in Taylor—Couette flow,
to Taylor—Couette flovt'?? probably because conventional one of the major success stories of linear stability theory?
linear stability analysis is so successful in explaining theTransient growth is a new tool in linear stability theory,
transitions observed. However, the large parameter space wfose worth and longevity have yet to be proved. It has up
Taylor—Couette flow offers the possibility of tuning the sys-to now been applied to flows in which transition from the
tem from a normal operator, which does not support anyasic laminar state is not understood. It is, therefore, worth-
transient growth, to a highly non-normal operator. Becausavhile to calculate transient growth in Taylor—Couette flow,
of translational and Galilean invariance, plane Couette flown which transition is believed to be completely understood
depends only on the distancd Between the plates, the rela- by hydrodynamicists. This could provide information about
tive velocity 2AU of the plates, and the kinematic viscosity the value and significance of transient growth calculations.
v, which are combined into a single nondimensional paramThe other side of the coin is that the paradigmatic status of
eter, the Reynolds number defined conventionally as Rdaylor—Couette flow should be maintained. As new tools or
=AUd/v. In contrast, because of curvature effects in Taylor-measurements become available, they should be brought to
Couette flow, both the inner and outer radjj andr,, [or  bear on this basic flow in order for hydrodynamicists to ex-
gapwidth 2=r,,—r;, and average radius=(rj,+ro)/2] tract additional knowledge about Taylor—Couette flow.
play a role. Because transformation to a rotating reference
frame would introduce a Coriolis term into the equations, thq; GOVERNING EQUATIONS AND NUMERICAL
flow depends on the angular velocities of both the inner angyeTHODS
the outer cylinders();, and Q. The five dimensional pa-

rameters can be combined into three nondimensional paranﬁb‘—' Taylor—Couette flow

eters in various ways. Our choice ig=r,/rou, M The Couette solution is the unique solution of the form

=Qou/ Qin, and Re=r,Q,d/ v. U=Uc(r)e, to the incompressible Navier—Stokes equations
The idea of trying to approach the stability of plane Cou- JU 1

ette flow via Taylor—Couette flow is an appealing one and = +(U.V)U=—-VP+ —AU, (1a)

has inspired a number of investigations. The axisymmetric at Re

Taylor-vortex solution undergoes a secondary bifurcationto .y =0, (1b)

a nonaxisymmetric wavy-vortex solutif.In a search for
states intermediate in complexity between the Couette solu- — — M
tion and turbulent plane Couette flow, Naddt4 took the Ulr=r-1=1, Ulr=r+1)= Py (10
limits of a narrow gap and almost corotating cylinders and_. . . .
discovered that, while the Taylor-vortex solution ceases t&)lstappes have been nondimensionalizedriy{ rin)/2 and
exist as the Coriolis terrfi.e., the average angular velooity velocities byrin(bi,. We recall that
is decreased, the wavy-vortex solution could be continued to  n=r;,/rou, #=Qou/Qin,
the plane Couette limit. Faisst and Eckh&tdthowed that
these wavy solutions also exist for counter-rotating cylinders €= Finin(Tou=Tin)/ (21), 2
and that the lowest Reynolds number at which they first apwherer;,, roy, Qin, Qou are the inner and outer cylindrical
pear(via a saddle-node bifurcatiptvecomes independent of radii and angular velocities, respectively, ands the kine-
the rotation ratio asy— 1. Finally, Prigent and Daucht matic viscosity. Definition(2) of Re, chosen for compatibil-
have discovered that an analog of the spiral turbulence staig/ with the plane Couette convention for the case —1,
of Taylor—Couette flow also exists for plane Couette flow. differs by a factor of two from the conventional definition

Our investigation goes somewhat in the opposite direcemployed in Taylor—Couette flow. The average radius is
tion. While the investigations cited above considered steady=(1+ %)/(1— 7). Thus, the limit»—1 corresponds ta"
or traveling states known to exist in Taylor—Couette flow and—c; we refer to either of these limits as convenient.
continued them to the plane Couette limit, we take the ideas The Couette solution is
of pseudospectra, non-normality, transient growth, and opti-

. B

mal perturbations, apply them to Taylor—Couette flow and  y (r)=Ar+ —, (39)
investigate the limit as Taylor—Couette flow approaches r
plane Couette flow. We focus on a given representative azi-
muthal and axial wavenumber and explore the stability char- =5, At T ——
acteristics of counter-rotating Taylor—Couette flow for a (14 7) (=n(1=7)
range of Reynolds numbers and radius ratios. In a relate@he expressions foA andB again differ from the standard
study, Meseguéf studied transient effects—optimized over ones by factors of two due to our use of,(—r,)/2 as unit
azimuthal and axial wave numbers—for a specified radiusf length. Expressiof3) can be viewed as a superposition of
ratio and varying Reynolds number and angular velocity rasolid body rotationAr, and the flow due to a point vortex,
tio. Since Taylor—Couette flow is linearly stable far,=0, B/r. As p—1, the leading terms of these two contributions

w—n 29(1-p)

(3b)
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TABLE I. Equivalence of coordinate systems for plane Couette and Taylor— The parameter space is too vast to permit full explora-
Couette flow. tion. In this study, we limit ourselves ta=—1, m=0, and

Plane Couette Taylor—Couette B=m/2. We choosq.=—1 so that the average angular ve-
locity vanishes.

X streamwise o 0 azimuthal - m/r" The choicem=0 of axisymmetric perturbations is made
z spanwise B z axial B . .. .
normal ; radial for simplicity. In plane Couette flow, the transient growth

achieved by streamwise-independent perturbations is, while
not maximal, very close to the optimal value. Although the
study of transient growth in Taylor—Couette flow is relatively
unexplored, its linear instability has been extensively stud-
ied, e.g., Refs. 1, 5, 7, 9, and 21. The linear instability un-
dergone by Taylor—Couette flow with counter-rotating cylin-
ders is usually nonaxisymmetric and leads to spirals rather

become equal and oppositer~ —B/r~(w—1)r/4. For g
~1, we therefore rewritg3) in the following equivalent
form not subject to this cancellation error:

1 than vortices. However, the threshold associated with axi-
Uc(r)= m[fs((lﬁr 1+(u—1)y) symmetric perturbations is very close to the actual nonaxi-
symmetric threshold. Indeed, the thresholds are so close that
+2(3(n—1)+4(u+1)y+(u—1)y?) the instability was thought to be axisymmetric until 1966,

— B o 2 when calculations by Krueger, Gross and DiPrRntn-
F2ry((p=DH (ut Dy) = (p=D(L=yI)], firmed experimentally by Coléshowed the first instability
(4)  to be nonaxisymmetric for sufficiently negative, more pre-

where cisely ©=<0.78 in the narrow-gap limit. Note that the corre-
. spondence between the streamwise wave numhrplane
y=sr-—r. (5 Couette flow and the azimuthal wave numbbeiof Taylor—
The equations we consider are the Navier—Stokes equ&=Ou€tte flow ism~re, sincex~ré. Settingm to corre-
tions (1) linearized about the Couette soluti) or (4) spond to a fixed nonzero value afwould thus require in-
creasingm through integer values ag—1 orr— o,
ﬂ+ % aur %u The choiceB= /2 corresponds to an axial wavelength
at r a6 ro ¢ of 4. Since our choice of length scales dictates that the radial
gap is of width 2, this means that a single vortex has the
p 1 U 2 duy, . . . . . .
=——+—|Au— > — _2_), (6g)  same axial as radial extent, i.e., is approximately circular.
ar  Re r< r°a0 The axial wavelength corresponding to linear instability is
du, Ucau, Ug somewhat smaller than this for counter-rotating cylinders by
—+ ——+—u,+Ugu, as much as 20%, but is nonetheless close.
at a9 r We eliminateli, andp by using(6c) and the condition of
1op 1 U, 2 du, incompressibility (6d), obtaining evolution equations ia
BT + R_e( Up— 2 + 2 ﬁ) , (6b) =(0,,0y). The perturbations(( ,0,) are represented as se-
ries of Chebyshev polynomials y=r —r, which are evalu-
du, Uc du, oap 1 ated at the Gauss—Lobatto poiAfsThe evolution equation
ot + T o0 oz + R_e(Auz)’ (69 s written symbolically for the state vector= (0, ,0,)" as

ou, 1 1du, du,

— Ut —F—= d .
o rdrTy 90 9z 0, (6d) a_ty: —iLlu. 8
subject to the boundary conditions
U=u,=u,=0 at r=r=1, (66)  The axial velocity componeril, is calculated from @, , 1)
with via incompressibility.
) ) ) Our codes for discretizing the Taylor—Couette operator
_9 N 1 i+ 19 N d were based on a pseudospectral representation of the radial
a2 oo 12962 9z and azimuthal velocity in the inhomogeneous normal direc-

tion, similar to the Matlab code for plane Couette flow writ-

"len by Redd}®?8 and published in Ref. 29. We tested our

tion, which are analogous to the streamwis® &nd span- Taylor—Couette code in a number of ways. First, we took the
' limit »— 1 while maintaining a fixed Reynolds number and

wise @ dlrecfuons in plane Couette_ flow. Table | summa- verified that we obtained the same asymptotic growth rates
rizes the equivalence of the coordinate systems for plane

Couette and Taylor—Couette flow. Solutiong® which are as In plan(_a.Couette flow. We then took-1 and verlfled
. X oo hat the critical Reynolds numbers were those obtained by
spatially bounded are, therefore, trigonometric in each o

. . ruegeret al® Finally, for arbitrary values ofy, we verified
these directions, with wave numbersand 4 that the critical Reynolds numbers were those given in

(U ,Ug,Uy,p)=(0,,04,0,,p)(r,t)expimé+iBz). (7) Ref. 8.

The Taylor—Couette geometry and the Couette solutio
are homogeneous in the azimuthal) (and axial ¢) direc-
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B. Optimal growth and pseudospectra

As a measure of growth, we use the energy norm defined by

E(w)=ul2 = j

1 2
r=r—1

1 m r+1
|12,.|2+F|Dﬁ,.|2+ W|ﬁ9|2> r dr +ﬁ~=7—1|ﬁ6|2 r dr,

©)

Er,z Ea

with Df= (1/r)(d/dr) (rf). The energy norm is particularly the right-hand-side of12). Its square is the maximal energy
significant in hydrodynamics, because the nonlinear terms ajrowth. The numbeN of eigenfunctions has been chosen
the Navier—Stokes equations conserve energy. This lendarge enough to ensure converged results.

significance to the study of the linearized equati@)ssince The optimal growth is defined as
any energy growth that takes place must occur via linear
mechanismé® The maximal energy growth at timtefor u Gmax=SsupG(t). (13
evolving according tq8) is defined by =0
lu(t)||2 ~ If £ has an eigenvalue with positive imaginary part, theh

G(t)Eu%’fO”u(o)”E_”exq_'a)”é (10 grows exponentially in timgfor any norm) and so G
) =o. Thus calculations of optimal growth are meaningful

Thus the maximal energy growth is given by the energyonly for operators which are linearly stable.
norm of the operator exp(iLt). We also wish to keep track of the quantities responsible

The norm of a normal operator is its dominant eigen-for achieving the maxima in10) and (13). The time for
value \ ay; this is the largest factor by which matrix multi- optimal growtht,, is that which achieves the maximum
plication can increase the norm of a vector. For a non-normalsup in (13), i.e., Gy a=G(tmay. The optimal input, denoted
operator, cross-terms between nonorthogonal eigenvectoly u(0), is thenormalized initial condition which achieves
typically contribute to the norm of a vector. Instead, it is thethe maximum(sup in (10) for t=t.. The optimal output,
singular vectors which are orthogonal; the norm of the op-denoted byu(ty,4, is the velocity field resulting from the

erator is given by the largest singular valag,,. The sin- linearized Taylor—Couette evolutio(8) starting from the
gular valueo ., and its corresponding normalized right and unit-energy optimal inputi(0); its energy gain isG .
left singular vectorsimay, v max Satisfy A non-normal operatoll is also characterized by its
R pseudospectrf. The e-pseudospectrum (£) is the set of
exp( —i L) Umax= Tmax maxs (1)  complex valuesz (parametrized bye) which satisfies the

. . . _— . ropert
i.e., linear evolution from initial condition,,,, leads to the property

state o mamax- H(Z|—£)71”2671. (14)

The statements above are all inner-product dependent:
An operator is normal or not and vectors are orthogonal oEquivalent definitions of the-pseudospectrum are given in
not with respect to a particular inner product. The singulaiRefs, 18, 19, 28—30. The definition of the pseudospectra, like
value decomposition is inner-product dependent as welkhat of transient growth, depends on the norm or inner prod-
Since we investigate growth in the energy norm, we seek thgct. For a normal operator, tepseudospectrum is the union

largest singular value and its corresponding left and righif the palls of radius surrounding each eigenvalue. For a
singular vectors in the energy norm as well. Standard softpon-normal operator, on the other hand, the

ware, however, provides singular value decompositions with- pseudospectrum may be much larger.

respect to the 2-norm. Additionally, each of the values onthe  rejss’ theorenrelates the optimal growth and the pseu-
Gauss—Lobatto grid points must be multiplied by a weightgospectra by the following inequality:

appropriate for calculating the enerd). We compute the

elementsMl;; of anNX N Hermitian matrixM by taking the Gma=Sup (71 sup Im(2)). (15)
inner products, derived frorf®), between two eigenfunctions >0 zeA (L)

®; and®; of L. The Cholesky factorization dfl =F"F is ) ) o ) )
then used to convert the energy norm of the operator expolLhe right-hand-side of15) maximizes(over all strictly posi-
nential to anL,-norm of the weighted matrix exponential tive values ofe) the ratio of the distance to the real axis of

according to any point in thee-pseudospectrum . to the value ofe. In
practice, it is found, both for Taylor—Couette flow and for
lexp(—i Lt)||2~|F exp( —iDt)F~ Y2, (12)  plane channel flows, that the optimal growth given by the

left-hand-side of(15) is approximately twice the lower
with D as anN XN diagonal matrix consisting of the eigen- bound given by the right-hand-side €5).

values ofZ (see Ref. 29 for more detajlsWe calculate the For computing the optimal growth, we used thaTLAB
largest singular valuéunder the 2-normof the operator on code written by Reddy?® and published in Ref. 29. For
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FIG. 1. Contours of optimal growth for Taylor—Couette flow in thg Re) i
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computing the pseudospectra, we used the cadgooL
written by Wright>* which in turn makes use of the algo-
rithm developed by Trefethdhand is available at website
http://www.comlab.ox.ac.uk/pseudospectra/eigtool.
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Ill. RESULTS 803

We begin by presenting the optimal growth as a function 3%
of » and Re. We recall that throughout our study, we fix the g,
azimuthal wave numbem= «=0, the axial wave number
B=m/2, and the angular velocity ratip=—1. Figure 1 Oos2 0984 0986 0988 099
shows the contours of constant optimal grov@h,. Inside
the shaded region, Couette flow is linearly unstable to axiFiG. 2. Close-up views of contours of optimal growth. Above: for 120
symmetric perturbations. The boundary of this region is thesRe<130, each contour changes slope at a vajyg(Re)~0.96. Below:
critical Reynolds number Ré7). Rg —x as p—1, as ex- For Re>130, G, increases ag decreases to the linear stability boundary
pected since plane Couette flow is linearly stable for all Rey-"-"
nolds numbers. We may also consider the rightmost portion
of the linear stability boundary as a function (Re).

A striking feature is that the maximum growth for a fixed
Reynolds number, indicated by the triangles in Fig. 1, isover the range 300Re<310, G, IS approximately 20%
always achieved for a radius ratip= 7,,{Re) which is less higher for »=»_ than for 7=1. In this range, theG .
than one. We propose a possible explanation for this trendtontours are nearly vertical as they approach the linear insta-
As we decrease the radius ratip the asymptotic growth bility boundary, meaning thas ., is far more sensitive to a
rate, i.e., the imaginary part of the least stable eigenvaluajecrease iny than to an increase in Re. It is near=R#10
increases. At the same time, the non-normality of the operathat plane Couette flow undergoes a sudden unexplained
tor decreases, resulting in diminished transient growth. Théransition to turbulence. Table Il gives selected numerical
combination of these effects results in a maximum growthvalues ofG 4.
rate that is achieved for values @fless than one. We see We now study in detail two contrasting cases+0.5,
that 77,,~0.6 for Re=20, increases to a maximum af,;, ~Re=125 and»=0.99, Re=350. In the first casey=0.5 or
~0.96 for Re=110, and then abruptly decreases and termi-equivalentlyr =3, curvature obviously plays an important
nates by meeting the linear instability boundajy~0.9 at role. The second case;=0.99 or equivalentlyr =199, is
Re~130. For Re>130, the maximum growth is achieved for very near the plane Couette limit. The Reynolds numbers
n=n_(Re). The enlargements in Fig. 2 show the typicalhave been chosen to be close to the linear instability thresh-
behavior of the contours @, for Re near 130 and for Re old Rg in each case in order to maximize transient growth
near 300. For R€130, the optimal growth is fairly weak, while remaining within the linearly stable region.
varying from a factor of 1 to 21. Arbitrarily high values of Figures 3 and 4 show the optimal input0) and output
Gmax Can be attained by increasing Re, since for plane Coud(t,,. for each case. The least stable eigenvector, i.e., that
ette flow, i.e.,7=1, it is knowrt® that G,,~R€. In fact,  with the smallest decay rate, is not shown, but resembles the

0.992 0.994 0.996 0.998
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TABLE Il. Optimal growth G, in the narrow-gap limit. Dotted entries indicate linear instability, i@y
=, Note that, for fixed Re, the maximum optimal growth is achievedsferl.

7 Plane

Re 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999 0.9999 Couette

50 1.95 2.39 2.85 3.23 3.38 3.34 3.26 3.23 3.23 3.23
75 2.62 3.51 4.66 5.95 6.90 7.02 6.90 6.85 6.84 6.84

100 3.29 4.69 6.74 9.40 11.70 12.14 12.01 11.93 11.92 11.92

125 417 1845  18.87 18.59 18.46 18.44 18.44

150 553 - 2772 26.65 26.44 26.42 26.42

300 - 111.60  104.87 10474  104.73
optimal output. The upper portion of each figure shows the ,r ey =
meridional velocity fields (, ,u,) of the optimal input and -;W.—-—:: N S 'l/r:::: poTT
output, while the lower portion shows contours of azimuthal 5411/‘;:\ NY oo 354"/;,\ RN
velocity u,. The meridional velocity fields consist of vorti- ;J//f:'\ ; el ;j//«'}‘ ; T
ces whose axes are oriented in the azimuthal direction, simi- W%/~ ’X‘ .l ::: UNEAAR! b
lar to the eigenvectors which lead to Taylor vortices at 341 ) i«f R RIL 31 ) ; : ]
slightly higher Reynolds numbers and to the streamwise vor- [} YRR : A Wl ity 08!
tices which are the optimal inputs in plane Couette flow. The25} {1:.//" IR 2-5{v \‘/f b
azimuthal components of the optimal inputs and outputs, '\E}.\\::.:’ b T 'fﬁ\:"_f: oo

shown in the lower portions of Figs. 3 and 4, are in phase 2\
opposition with the vortices, with nodal lineszat 1,3 going X
through the vortex centers. 15H
Figure 5 shows the evolution in time of the energies in ; N
the meridional components; , and in the azimuthal compo- { 1\}
Sy
i/

nentE, starting from the optimal inputi(0). While the op-

timal inputsu(0) are concentrated primarily in the meridi-
onal components, it is the azimuthal component which®®fit\\ae 2
dominates the optimal outputs(t,,,). For this reason, in "
order to show the qualitative geometric features of the two 1 o5
fields, the inputs and outputs of Figs. 3 and 4 use different
scales for the arrow lengths and for the contour levels. This
evolution corresponds to the generation of streaks—

deformations of the azimuthal velocity profile—by the vorti- — *jiti [Tl U TTIT e S U 1
[

I 7 1 ogsktv T o0 .
i

[

~ 1

. (Y VNN

. Y YIRS
vttt t f\
B B R 1:1 v‘
R EET 1 \l
RN 1 \\l
RN R 05_14 \\/

. A\

A

S T .
\

~
—

ces. This physical process, referred to as the lift-up mecha "‘ Sz
nism, has been described, e.g., in Ref. 32 and is believed t35
be a key element in the transition to turbulence in plane [|'>27 /s Vo~ PR

Couette flow. 3 P 3
The graph on the left of Fig. 5 shows the evolutiorEgf RN F
andE, , starting from the optimal inpu(0) and from the 25 117 vy | 28 AN
least stable eigenvector faj=0.50, Re=125. The initial YRR
energies aré ,(0)=0.2 andE, ,(0)=0.8. Initially, over 0 o i
<t<t,,5, E, rises whileE, , decreases, attaining values iy !y
of Eytmad~4 and E (tm)=~0.1, with a ratio o ,//, I N
Ey/E; ,(tmad=~40. Over the interval 5£t<8§, E, , increases, '|\ ~-" 0 L
while E, continues to decrease. With further evolution, both NI -
energies decrease aét) converges towards the least stable = =N [ NN
eigenvector. From their values dat=20, we estimate 7 \\\\‘| I’ £eTIN \‘
E,/E, ,()~0.73/0.023-32. S TN TS SN 1
The energy evolution for the casg=0.99, Re=350, l:'lll \1:::1 [\ gl v :
shown on the right of Fig. 5, resembles that for plane Couette _+ 55 o o5 1 -1 -8 o 05 1
flow. The optimal input is almost exclusively meridional,
with negligible azimuthal componenIEryz~O.996 while  FIG. 3. Optimal perturbations fo=0.50, Re=125. Left: Optimal input.

~ ~ : Right: optimal output. Above: Meridional velocity fieldu(,u,). Below:
E(0)~0.004. Byt;5~66, E, has increased to 164 af , Contours ofu,. The energy of the inpubutpu) is primarily in the meridi-

qecreased to 0-_141 a ra_'EJH/Er,z(Fmax) of 117_0 fqr the op-  onal (azimuthal components. For this reason, arrow lengths and contour
timal output. This ratio is approximately maintained as bothievels are scaled differently for the input and the output.
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FIG. 4. Optimal perturbations fo=0.99, Re=350. Left: optimal input. 0 20 40 60 80 100 120 14¢
Right: optimal output. Above: Meridional velocity fieldu(,u,). Below: t

Contours ofu,. The energy of the inpuputpu) is primarily in the meridi-

onal (azimuthal components; arrow lengths and contour levels are scaledFIG. 5. Time evolution of optimal growth. Solid curves denote azimuthal

differently for the input and the output. energyE,(t), long-dashed curves meridional energy,(t) during evolu-
tion from optimal inputu(0). Higher and lower short-dashed curves repre-
sentE,(t) andE, ,(t), respectively, for least stable eigenvector. Triangle
corresponds tot,.,. Above: »=0.50, Re=125. Below: =0.99, Re

energies slowly decrease during the evolutionugf) to- =3%0.

wards the least stable eigenvector.

In the casep=0.5, Re=125, two arrays of vortices are
present in the optimal input, a larger and stronger array neazases by Rayleigh’s criterion for instability in Taylor—
the inner cylinder and a smaller and weaker array near th€ouette flow.
outer cylinder. Three arrays are present in the optimal output, Rayleigh’s argument, valid for inviscid and axisymmet-
whose radial extent and strength decreases in going from thé flow, is that perturbations interchanging rings of fluid at
inner to the outer cylinder. In the cage=0.99, Re=350, the  different radii (e.g., Taylor vorticeswill be favored or op-
optimal input contains one array of vortices and the optimalposed by the ambient pressure gradient, according to whether
output contains a second weaker, narrower array near the square of the angular momentumUg)? decreases or
outer cylinder. Some light can be shed on the form of theséncreases radially outwards. For counter-rotating cylinders
perturbation fields and on the difference between the tw@u<0), the sign ofd(rUc)?/dr changes within the gap.
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FIG. 6. Square of angular momentum of basic Couette solutith.)?.

Solid curve: »=0.5, axis on left. Dashed curve;=0.99, axis on right.
Rayleigh’s criterion for inviscid instability states thdi. is unstable where 15
(rU¢)? is a decreasing function af

Rayleigh’s criterion is then applied to argue that only the
inner portion of the gap is unstable. This modification is o5}
justified by three related tendencfesirst, the unstable ei-
genvector is concentrated near the inner cylinder, where
d(rUc)?/dr is negative. Second, the axial wavelength cor- of
responding to the most unstable or least stable eigenvectc
decreases, favoring vortices which remain closer to circular.
Third, the critical Reynolds number for linear instability in- -osf-
creases, meaning that the critical Reynolds number based o
the unstable portion of the gap remains nearly constant.

Figure 6 shows that the square of the angular momenturr .}
decreases radially outwards over the intemvalr — 0.5 for
7=0.50 and over the interval<r for =0.99. Although
exact application of Rayleigh’s criterion would lead to opti- _;s|
mal perturbations far more concentrated near the inner cyl-
inder than they actually are, the criterion provides a heuristic
explanation for the asymmetry. Rayleigh’s criterion is usu- _, .
ally invoked to explain linear instability, i.e., exponential ~"® -t 03
growth. However, a modified version of the criterion should F|132-57-CZzzierSngrtzp?;dnglolf&Cl%Ufg 5f|0W-1§b0;§03v-§ anfci) g?ge
apply to transient growth as well. e Bl e

Finally, we show the spectrum and pseudospectra of th%nOI Re=350. Contours correspond 0-107410°%%....16.
operatorsC for the two cases in Fig. 7. Both pseudospectra

plots contain contourtfor the smaller values of) surround- We use more detailed calculations of the pseudospectra
ing individual eigenvalues and bulb-shaped contdtosthe g compute approximations to the lower boui®) on opti-
larger values ok) surrounding the entire spectrum. For both .4 growth of Kreiss’ theorem. Fop=0.5, we obtain an
values of 5, the contours for a fixed small value efsur- upper bound In¥)<0.1 for the e-pseudospectrum witke
rounding the eigenvalues near the real axis are wider than the 15-115  \yhich vyields the lower boundG ,,=(1041°
contours surrounding the eigenvalues farther from the real g 12— 1.99, about half of the exact val@,,=4.17 that

axis. The bulb-shaped contours, however, differentiate beye have calculated. Fay=0.99, we obtain an upper bound
tween the two values af. The spectrum fory= 0.5 contains Im(2)<0.03 for the e-pseudospectrum withe= 10245

eigenvalues near the real axis with real parts extending tQhich yields the lower boundG,,.=(10%45x0.03)

approximately+0.7; a bulb-shaped pseudospectral contour=71 49, again about half of the exact value of 155.
thus remains a fairly constant distance from the spectrum.

The_speqtrum for_r;.=_0.99_ is, in contrast, quite localized on V. CONCLUSIONS

the imaginary axis; in this case, a bulb-shaped pseudospec-

tral contour protruding into the unstable half-plane is a first ~ We have calculated the pseudospectra and optimal tran-
indication of non-normal effects. sient growth for Taylor—Couette flow.

D@ COEEOCETE

0.5 1 15
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Our major result is that, for a fixed Reynolds number, thechanges as its single nondimensional parameter, the Rey-
optimal transient growth is achieved for a radius raio nolds number, is increased. Taylor—Couette flow provides an
= nopr<1, rather than for the plane Couette limit=1. This  ensemble of other parameter paths along which to approach
is due to the combined effect of increasing modal growth anar to step back from plane Couette flow. Our hope is that this
decreasing non-normality. As shown in Fig. 1, for<RE80,  preliminary study and that of Ref. 22 of transient growth and
the optimal transient growth for fixed Re occurs at an inter{pseudospectra in Taylor—Couette flow, will help to increase
mediate value ofy ranging from 7,,=0.6 at Re=20 to  understanding of both Taylor—Couette flow and of the effects
Nopr=0.96 at Re=110. For Re-130, the optimal transient of non-normality.
growth for fixed Re increases agis decreased from the
plane Couette limity=1 to the linear stability boundary =~ ACKNOWLEDGMENTS
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