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Ecole Polytechnique de Montre´al, C.P. 6079, succ. Centre-ville, Montre´al, Quebec H3C 3A7, Canada
and Ecole Polytechnique, 91128 Palaiseau, France

Peter J. Schmid
Department of Applied Mathematics, University of Washington, Box 352420, Seattle, Washington 98195
and Laboratoire pour l’Hydrodynamique a` l’Ecole Polytechnique (LADHYX-CNRS), 91128 Palaiseau, France

Laurette S. Tuckermana)

Laboratoire d’Informatique pour la Me´canique et les Sciences de l’Inge´nieur (LIMSI-CNRS), B.P. 133,
91403 Orsay Cedex, France
and Ecole Polytechnique, 91128 Palaiseau, France

~Received 5 September 2001; accepted 2 July 2002; published 5 September 2002!

Transient growth due to non-normality is investigated for the Taylor–Couette problem with
counter-rotating cylinders as a function of aspect ratioh and Reynolds number Re. For all Re
<500, transient growth is enhanced by curvature, i.e., is greater forh,1 than forh51, the plane
Couette limit. For fixed Re,130 it is found that the greatest transient growth is achieved forh
between the Taylor–Couette linear stability boundary, if it exists, and one, while for Re.130 the
greatest transient growth is achieved forh on the linear stability boundary. Transient growth is
shown to be approximately 20% higher near the linear stability boundary at Re5310,h50.986 than
at Re5310,h51, near the threshold observed for transition in plane Couette flow. The energy in the
optimal inputs is primarily meridional; that in the optimal outputs is primarily azimuthal.
Pseudospectra are calculated for two contrasting cases. For large curvature,h50.5, the
pseudospectra adhere more closely to the spectrum than in a narrow gap case,h50.99. © 2002
American Institute of Physics.@DOI: 10.1063/1.1502658#
h
is
–
es
n-
on
u
te
e
ilit

ig
f

-
ai
ay
t
a
e
e
s

er
s

l-
se
ng

ry

bu-
ored
ow
el-
f the
es-
,
not
ari-
the
n-
ed

t of
bil-
o
in-

he
n.
ral

ze
ain
I. INTRODUCTION

Two shear-driven flows bear the name of Couette: T
flow between differentially rotating concentric cylinders
called cylindrical Couette flow, or more commonly, Taylor
Couette flow, while the flow between infinite parallel plat
translating at different velocities while maintaining a co
stant separation is called plane Couette flow. Exact soluti
both called Couette solutions, to the Navier–Stokes eq
tions for each of these configurations are easily calcula
and serve as illustrations in most textbooks. Each of th
two flows has become a paradigm of hydrodynamic stab
theory.

Taylor–Couette flow can be considered to be a parad
of understanding. In 1923, Taylor1 carried out calculations o
the linear instability of Couette flow to the onset of axisym
metric vortices and compared these with experiment, obt
ing agreement which remains remarkable even by tod
standards. In later research, increasingly ornate and beau
experimental patterns were discovered, e.g., Refs. 2–4,
correspondingly elaborate numerical, asymptotic, and th
retical calculations, e.g., Refs. 5–7, reproduced and
plained these patterns, again with remarkable accuracy;
Refs. 8–11.

Plane Couette flow, on the other hand, can be consid
to be a paradigm of mystery. For plane parallel flow

a!Electronic mail: laurette@limsi.fr
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Squire’s theorem12 firmly establishes that the linear instabi
ity with the lowest critical Reynolds number is spanwi
invariant. Armed with this theorem, researchers have lo
known, and more recently proved,13 that plane Couette flow
is linearly stable at all Reynolds numbers. Yet, in laborato
experiments14 and in numerical simulations,15 plane Couette
flow undergoes sudden transition to three-dimensional tur
lence. Since at least the 1960’s researchers have expl
various mechanisms for transition in plane Couette fl
which bypass linear instability and Squire’s theorem. An
ement shared by all of these approaches, independent o
theoretical mechanism proposed for instability, is the pr
ence of streamwise vortices,16–20 i.e., perturbations which
unlike those deemed critical by Squire’s theorem, are
spanwise invariant, but are instead invariant or almost inv
ant in the streamwise direction. These are analogous to
Taylor vortices which, in Taylor–Couette flow, are the eige
vectors responsible for the linear instability and are realiz
in experiments and in nonlinear numerical simulations.

One major line of research has focused on the effec
the non-normality of the operator governing the linear sta
ity of plane Couette flow.17–19 Such operators may lead t
transient growth dynamics, even in the absence of linear
stability, allowing nonlinear effects to take over before t
final exponential decay exhibited by the linear evolutio
Plane Couette flow can exhibit transient growth of seve
orders of magnitude; the initial conditions which maximi
the transient growth, called optimal perturbations, cont
5 © 2002 American Institute of Physics
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streamwise vortices. Transient growth is closely associa
with the sensitivity of the spectrum to small perturbations
the operator, quantified by the pseudospectra.18

The concepts of pseudospectra, non-normality, trans
growth, and optimal perturbations, have been rarely app
to Taylor–Couette flow,21,22 probably because convention
linear stability analysis is so successful in explaining
transitions observed. However, the large parameter spac
Taylor–Couette flow offers the possibility of tuning the sy
tem from a normal operator, which does not support a
transient growth, to a highly non-normal operator. Beca
of translational and Galilean invariance, plane Couette fl
depends only on the distance 2d between the plates, the rela
tive velocity 2DU of the plates, and the kinematic viscosi
n, which are combined into a single nondimensional para
eter, the Reynolds number defined conventionally as
[DUd/n. In contrast, because of curvature effects in Taylo
Couette flow, both the inner and outer radiir in and r out @or
gapwidth 2d5r out2r in and average radiusr̄ 5(r in1r out)/2#
play a role. Because transformation to a rotating refere
frame would introduce a Coriolis term into the equations,
flow depends on the angular velocities of both the inner
the outer cylinders,V in andVout. The five dimensional pa
rameters can be combined into three nondimensional pa
eters in various ways. Our choice ish[r in /r out, m
[Vout/V in , and Re[r inV ind/n.

The idea of trying to approach the stability of plane Co
ette flow via Taylor–Couette flow is an appealing one a
has inspired a number of investigations. The axisymme
Taylor-vortex solution undergoes a secondary bifurcation
a nonaxisymmetric wavy-vortex solution.2,6 In a search for
states intermediate in complexity between the Couette s
tion and turbulent plane Couette flow, Nagata23,24 took the
limits of a narrow gap and almost corotating cylinders a
discovered that, while the Taylor-vortex solution ceases
exist as the Coriolis term~i.e., the average angular velocity!
is decreased, the wavy-vortex solution could be continue
the plane Couette limit. Faisst and Eckhardt25 showed that
these wavy solutions also exist for counter-rotating cylind
and that the lowest Reynolds number at which they first
pear~via a saddle-node bifurcation! becomes independent o
the rotation ratio ash→1. Finally, Prigent and Dauchot26

have discovered that an analog of the spiral turbulence s
of Taylor–Couette flow also exists for plane Couette flow

Our investigation goes somewhat in the opposite dir
tion. While the investigations cited above considered ste
or traveling states known to exist in Taylor–Couette flow a
continued them to the plane Couette limit, we take the id
of pseudospectra, non-normality, transient growth, and o
mal perturbations, apply them to Taylor–Couette flow a
investigate the limit as Taylor–Couette flow approach
plane Couette flow. We focus on a given representative
muthal and axial wavenumber and explore the stability ch
acteristics of counter-rotating Taylor–Couette flow for
range of Reynolds numbers and radius ratios. In a rela
study, Meseguer22 studied transient effects—optimized ov
azimuthal and axial wave numbers—for a specified rad
ratio and varying Reynolds number and angular velocity
tio. Since Taylor–Couette flow is linearly stable forV in50,
Downloaded 27 Apr 2005 to 129.175.97.14. Redistribution subject to AIP
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Meseguer suggests that transient growth plays an impor
role in the transition to turbulence observed experimenta2

for V in50, 2Vout@1, a theory contested by Gebhardt a
Grossman.21

Why calculate transient growth in Taylor–Couette flo
one of the major success stories of linear stability theo
Transient growth is a new tool in linear stability theor
whose worth and longevity have yet to be proved. It has
to now been applied to flows in which transition from th
basic laminar state is not understood. It is, therefore, wo
while to calculate transient growth in Taylor–Couette flo
in which transition is believed to be completely understo
by hydrodynamicists. This could provide information abo
the value and significance of transient growth calculatio
The other side of the coin is that the paradigmatic status
Taylor–Couette flow should be maintained. As new tools
measurements become available, they should be broug
bear on this basic flow in order for hydrodynamicists to e
tract additional knowledge about Taylor–Couette flow.

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

A. Taylor–Couette flow

The Couette solution is the unique solution of the fo
UI 5UC(r )eI u to the incompressible Navier–Stokes equatio

]UI

]t
1~UI •¹!UI 52¹P1

1

Re
DUI , ~1a!

¹•UI 50, ~1b!

UI ~r 5 r̄ 21!51, UI ~r 5 r̄ 11!5
m

h
. ~1c!

Distances have been nondimensionalized by (r out2r in)/2 and
velocities byr inV in . We recall that

h[r in /r out, m[Vout/V in ,

Re5r inV in~r out2r in!/~2n!, ~2!

wherer in , r out, V in , Vout are the inner and outer cylindrica
radii and angular velocities, respectively, andn is the kine-
matic viscosity. Definition~2! of Re, chosen for compatibil-
ity with the plane Couette convention for the casem521,
differs by a factor of two from the conventional definitio
employed in Taylor–Couette flow. The average radius ir̄
5(11h)/(12h). Thus, the limith→1 corresponds tor̄
→`; we refer to either of these limits as convenient.

The Couette solution is

UC~r !5Ar1
B

r
, ~3a!

A5
m2h2

2h~11h!
, B5

2h~12m!

~12h!~12h2!
. ~3b!

The expressions forA andB again differ from the standard
ones by factors of two due to our use of (r out2r in)/2 as unit
of length. Expression~3! can be viewed as a superposition
solid body rotation,Ar, and the flow due to a point vortex
B/r . As h→1, the leading terms of these two contributio
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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3477Phys. Fluids, Vol. 14, No. 10, October 2002 Transient growth in Taylor–Couette flow
become equal and opposite:Ar;2B/r;(m21)r̄ /4. For h
;1, we therefore rewrite~3! in the following equivalent
form not subject to this cancellation error:

UC~r !5
1

4r r̄ ~ r̄ 21!
@2r̄ 3~~m11!1~m21!y!

1 r̄ 2~3~m21!14~m11!y1~m21!y2!

12r̄ y~~m21!1~m11!y!2~m21!~12y2!#,

~4!

where

y[r 2 r̄ . ~5!

The equations we consider are the Navier–Stokes e
tions ~1! linearized about the Couette solution~3! or ~4!

]ur

]t
1

UC

r

]ur

]u
2

2UC

r
uu

52
]p

]r
1

1

ReS Dur2
ur

r 2 2
2

r 2

]uu

]u D , ~6a!

]uu

]t
1

UC

r

]uu

]u
1

UC

r
ur1UC8 ur

52
1

r

]p

]u
1

1

ReS Duu2
uu

r 2 1
2

r 2

]ur

]u D , ~6b!

]uz

]t
1

UC

r

]uz

]u
52

]p

]z
1

1

Re
~Duz!, ~6c!

]ur

]r
1

1

r
ur1

1

r

]uu

]u
1

]uz

]z
50, ~6d!

subject to the boundary conditions

ur5uu5uz50 at r 5 r̄ 61, ~6e!

with

D5
]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]u2 1
]2

]z2 .

The Taylor–Couette geometry and the Couette solu
are homogeneous in the azimuthal (u) and axial (z) direc-
tion, which are analogous to the streamwise (x) and span-
wise (z) directions in plane Couette flow. Table I summ
rizes the equivalence of the coordinate systems for pl
Couette and Taylor–Couette flow. Solutions to~6! which are
spatially bounded are, therefore, trigonometric in each
these directions, with wave numbersm andb

~ur ,uu ,uz ,p!5~ ûr ,ûu ,ûz ,p̂!~r ,t !exp~ imu1 ibz!. ~7!

TABLE I. Equivalence of coordinate systems for plane Couette and Tay
Couette flow.

Plane Couette Taylor–Couette

x streamwise a u azimuthal m/ r̄
z spanwise b z axial b
y normal r radial
Downloaded 27 Apr 2005 to 129.175.97.14. Redistribution subject to AIP
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The parameter space is too vast to permit full explo
tion. In this study, we limit ourselves tom521, m50, and
b5p/2. We choosem521 so that the average angular v
locity vanishes.

The choicem50 of axisymmetric perturbations is mad
for simplicity. In plane Couette flow, the transient grow
achieved by streamwise-independent perturbations is, w
not maximal, very close to the optimal value. Although t
study of transient growth in Taylor–Couette flow is relative
unexplored, its linear instability has been extensively st
ied, e.g., Refs. 1, 5, 7, 9, and 21. The linear instability u
dergone by Taylor–Couette flow with counter-rotating cyli
ders is usually nonaxisymmetric and leads to spirals ra
than vortices. However, the threshold associated with a
symmetric perturbations is very close to the actual nona
symmetric threshold. Indeed, the thresholds are so close
the instability was thought to be axisymmetric until 196
when calculations by Krueger, Gross and DiPrima5 con-
firmed experimentally by Coles2 showed the first instability
to be nonaxisymmetric form sufficiently negative, more pre
cisely m&0.78 in the narrow-gap limit. Note that the corr
spondence between the streamwise wave numbera of plane
Couette flow and the azimuthal wave numberm of Taylor–
Couette flow ism; r̄a, since x;ru. Setting m to corre-
spond to a fixed nonzero value ofa would thus require in-
creasingm through integer values ash→1 or r̄→`.

The choiceb5p/2 corresponds to an axial waveleng
of 4. Since our choice of length scales dictates that the ra
gap is of width 2, this means that a single vortex has
same axial as radial extent, i.e., is approximately circu
The axial wavelength corresponding to linear instability
somewhat smaller than this for counter-rotating cylinders
as much as 20%, but is nonetheless close.

We eliminateûz andp̂ by using~6c! and the condition of
incompressibility ~6d!, obtaining evolution equations inuI
5(ûr ,ûu). The perturbations (ûr ,ûu) are represented as se
ries of Chebyshev polynomials iny[r 2 r̄ , which are evalu-
ated at the Gauss–Lobatto points.27 The evolution equation
is written symbolically for the state vectoruI 5(ûr ,ûu)T as

]

]t
uI 52 i L̂uI . ~8!

The axial velocity componentûz is calculated from (ûr ,ûu)
via incompressibility.

Our codes for discretizing the Taylor–Couette opera
were based on a pseudospectral representation of the r
and azimuthal velocity in the inhomogeneous normal dir
tion, similar to the Matlab code for plane Couette flow wr
ten by Reddy19,28 and published in Ref. 29. We tested o
Taylor–Couette code in a number of ways. First, we took
limit h→1 while maintaining a fixed Reynolds number an
verified that we obtained the same asymptotic growth ra
as in plane Couette flow. We then tookh→1 and verified
that the critical Reynolds numbers were those obtained
Kruegeret al.5 Finally, for arbitrary values ofh, we verified
that the critical Reynolds numbers were those given
Ref. 8.

–
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B. Optimal growth and pseudospectra

As a measure of growth, we use the energy norm defined by

~9!
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with Df [ (1/r )(d/dr) (r f ). The energy norm is particularly
significant in hydrodynamics, because the nonlinear term
the Navier–Stokes equations conserve energy. This le
significance to the study of the linearized equations~6!, since
any energy growth that takes place must occur via lin
mechanisms.29 The maximal energy growth at timet for uI
evolving according to~8! is defined by

G~ t ![ sup
uI (0)Þ0

iuI ~ t !iE
2

iuI ~0!iE
2 5iexp~2 i L̂t !iE

2 . ~10!

Thus the maximal energy growth is given by the ene
norm of the operator exp(2iL̂t).

The norm of a normal operator is its dominant eige
valuelmax; this is the largest factor by which matrix mult
plication can increase the norm of a vector. For a non-nor
operator, cross-terms between nonorthogonal eigenvec
typically contribute to the norm of a vector. Instead, it is t
singular vectors which are orthogonal; the norm of the
erator is given by the largest singular valuesmax. The sin-
gular valuesmax and its corresponding normalized right an
left singular vectorsuI max, vI max satisfy

exp~2 i L̂t !uI max5smaxvI max, ~11!

i.e., linear evolution from initial conditionuI max leads to the
statesmaxvImax.

The statements above are all inner-product depend
An operator is normal or not and vectors are orthogona
not with respect to a particular inner product. The singu
value decomposition is inner-product dependent as w
Since we investigate growth in the energy norm, we seek
largest singular value and its corresponding left and ri
singular vectors in the energy norm as well. Standard s
ware, however, provides singular value decompositions w
respect to the 2-norm. Additionally, each of the values on
Gauss–Lobatto grid points must be multiplied by a weig
appropriate for calculating the energy~9!. We compute the
elementsMi j of anN3N Hermitian matrixM by taking the
inner products, derived from~9!, between two eigenfunction
F i andF j of L̂. The Cholesky factorization ofM5FHF is
then used to convert the energy norm of the operator ex
nential to anL2-norm of the weighted matrix exponentia
according to

iexp~2 i L̂t !iE
2'iF exp~2 iDt !F21i2, ~12!

with D as anN3N diagonal matrix consisting of the eigen
values ofL̂ ~see Ref. 29 for more details!. We calculate the
largest singular value~under the 2-norm! of the operator on
Downloaded 27 Apr 2005 to 129.175.97.14. Redistribution subject to AIP
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the right-hand-side of~12!. Its square is the maximal energ
growth. The numberN of eigenfunctions has been chose
large enough to ensure converged results.

The optimal growth is defined as

Gmax5sup
t>0

G~ t !. ~13!

If L̂ has an eigenvalue with positive imaginary part, theniuI i
grows exponentially in time~for any norm! and soGmax

5`. Thus calculations of optimal growth are meaningf
only for operators which are linearly stable.

We also wish to keep track of the quantities responsi
for achieving the maxima in~10! and ~13!. The time for
optimal growth tmax is that which achieves the maximum
~sup! in ~13!, i.e.,Gmax5G(tmax). The optimal input, denoted
by uI (0), is thenormalized initial condition which achieve
the maximum~sup! in ~10! for t5tmax. The optimal output,
denoted byuI (tmax), is the velocity field resulting from the
linearized Taylor–Couette evolution~8! starting from the
unit-energy optimal inputuI (0); its energy gain isGmax.

A non-normal operatorL is also characterized by it
pseudospectra.18 The e-pseudospectrumLe(L) is the set of
complex valuesz ~parametrized bye! which satisfies the
property

i~zI2L!21i>e21. ~14!

Equivalent definitions of thee-pseudospectrum are given i
Refs. 18, 19, 28–30. The definition of the pseudospectra,
that of transient growth, depends on the norm or inner pr
uct. For a normal operator, thee-pseudospectrum is the unio
of the balls of radiuse surrounding each eigenvalue. For
non-normal operator, on the other hand, t
e-pseudospectrum may be much larger.

Kreiss’ theoremrelates the optimal growth and the pse
dospectra by the following inequality:

Gmax>sup
e.0

~e21 sup
zPLe(L)

Im~z!!. ~15!

The right-hand-side of~15! maximizes~over all strictly posi-
tive values ofe! the ratio of the distance to the real axis
any point in thee-pseudospectrumLe to the value ofe. In
practice, it is found, both for Taylor–Couette flow and f
plane channel flows, that the optimal growth given by t
left-hand-side of ~15! is approximately twice the lowe
bound given by the right-hand-side of~15!.

For computing the optimal growth, we used theMATLAB

code written by Reddy19,28 and published in Ref. 29. Fo
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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3479Phys. Fluids, Vol. 14, No. 10, October 2002 Transient growth in Taylor–Couette flow
computing the pseudospectra, we used the codeEIGTOOL

written by Wright,31 which in turn makes use of the algo
rithm developed by Trefethen30 and is available at websit
http://www.comlab.ox.ac.uk/pseudospectra/eigtool.

III. RESULTS

We begin by presenting the optimal growth as a funct
of h and Re. We recall that throughout our study, we fix t
azimuthal wave numberm5a50, the axial wave numbe
b5p/2, and the angular velocity ratiom521. Figure 1
shows the contours of constant optimal growthGmax. Inside
the shaded region, Couette flow is linearly unstable to a
symmetric perturbations. The boundary of this region is
critical Reynolds number ReL(h). ReL→` as h→1, as ex-
pected since plane Couette flow is linearly stable for all R
nolds numbers. We may also consider the rightmost por
of the linear stability boundary as a functionhL(Re).

A striking feature is that the maximum growth for a fixe
Reynolds number, indicated by the triangles in Fig. 1,
always achieved for a radius ratioh5hopt(Re) which is less
than one. We propose a possible explanation for this tre
As we decrease the radius ratioh, the asymptotic growth
rate, i.e., the imaginary part of the least stable eigenva
increases. At the same time, the non-normality of the op
tor decreases, resulting in diminished transient growth.
combination of these effects results in a maximum grow
rate that is achieved for values ofh less than one. We se
that hopt'0.6 for Re520, increases to a maximum ofhopt

'0.96 for Re'110, and then abruptly decreases and ter
nates by meeting the linear instability boundaryhL'0.9 at
Re'130. For Re.130, the maximum growth is achieved fo
h5hL(Re). The enlargements in Fig. 2 show the typic
behavior of the contours ofGmax for Re near 130 and for Re
near 300. For Re<130, the optimal growth is fairly weak
varying from a factor of 1 to 21. Arbitrarily high values o
Gmax can be attained by increasing Re, since for plane C
ette flow, i.e.,h51, it is known19 that Gmax;Re2. In fact,

FIG. 1. Contours of optimal growth for Taylor–Couette flow in the (h,Re)
plane. Shaded area indicates the region of linear instability. Triangles
catehopt(Re), the value ofh at which maximum growth is attained for
given value of Re.
Downloaded 27 Apr 2005 to 129.175.97.14. Redistribution subject to AIP
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over the range 300,Re,310, Gmax is approximately 20%
higher for h5hL than for h51. In this range, theGmax

contours are nearly vertical as they approach the linear in
bility boundary, meaning thatGmax is far more sensitive to a
decrease inh than to an increase in Re. It is near Re5310
that plane Couette flow undergoes a sudden unexpla
transition to turbulence. Table II gives selected numeri
values ofGmax.

We now study in detail two contrasting cases:h50.5,
Re5125 andh50.99, Re5350. In the first case,h50.5 or
equivalently r̄ 53, curvature obviously plays an importan
role. The second case,h50.99 or equivalentlyr̄ 5199, is
very near the plane Couette limit. The Reynolds numb
have been chosen to be close to the linear instability thre
old ReL in each case in order to maximize transient grow
while remaining within the linearly stable region.

Figures 3 and 4 show the optimal inputuI (0) and output
uI (tmax) for each case. The least stable eigenvector, i.e.,
with the smallest decay rate, is not shown, but resembles

i-

FIG. 2. Close-up views of contours of optimal growth. Above: for 1
<Re<130, each contour changes slope at a valuehopt(Re)'0.96. Below:
For Re.130, Gmax increases ash decreases to the linear stability bounda
hL .
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Downloaded 27 Ap
TABLE II. Optimal growth Gmax in the narrow-gap limit. Dotted entries indicate linear instability, i.e.,Gmax

5`. Note that, for fixed Re, the maximum optimal growth is achieved forh,1.

h
Re 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999 0.9999

Plane
Couette

50 1.95 2.39 2.85 3.23 3.38 3.34 3.26 3.23 3.23 3.2
75 2.62 3.51 4.66 5.95 6.90 7.02 6.90 6.85 6.84 6.8

100 3.29 4.69 6.74 9.40 11.70 12.14 12.01 11.93 11.92 11.9
125 4.17 ¯ ¯ ¯ 18.45 18.87 18.59 18.46 18.44 18.44
150 5.53 ¯ ¯ ¯ ¯ 27.72 26.65 26.44 26.42 26.42
300 ¯ ¯ ¯ ¯ ¯ ¯ 111.60 104.87 104.74 104.73
500 ¯ ¯ ¯ ¯ ¯ ¯ ¯ 291.92 290.39 290.35
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optimal output. The upper portion of each figure shows
meridional velocity fields (ur ,uz) of the optimal input and
output, while the lower portion shows contours of azimuth
velocity uu . The meridional velocity fields consist of vort
ces whose axes are oriented in the azimuthal direction, s
lar to the eigenvectors which lead to Taylor vortices
slightly higher Reynolds numbers and to the streamwise v
tices which are the optimal inputs in plane Couette flow. T
azimuthal components of the optimal inputs and outpu
shown in the lower portions of Figs. 3 and 4, are in pha
opposition with the vortices, with nodal lines atz51,3 going
through the vortex centers.

Figure 5 shows the evolution in time of the energies
the meridional componentsEr ,z and in the azimuthal compo
nentEu starting from the optimal inputuI (0). While the op-
timal inputsuI (0) are concentrated primarily in the merid
onal components, it is the azimuthal component wh
dominates the optimal outputsuI (tmax). For this reason, in
order to show the qualitative geometric features of the t
fields, the inputs and outputs of Figs. 3 and 4 use differ
scales for the arrow lengths and for the contour levels. T
evolution corresponds to the generation of streak
deformations of the azimuthal velocity profile—by the vor
ces. This physical process, referred to as the lift-up mec
nism, has been described, e.g., in Ref. 32 and is believe
be a key element in the transition to turbulence in pla
Couette flow.

The graph on the left of Fig. 5 shows the evolution ofEu

and Er ,z starting from the optimal inputuI (0) and from the
least stable eigenvector forh50.50, Re5125. The initial
energies areEu(0)50.2 andEr ,z(0)50.8. Initially, over 0
<t<tmax'5, Eu rises whileEr ,z decreases, attaining value
of Eu(tmax)'4 and Er ,z(tmax)'0.1, with a ratio
Eu /Er ,z(tmax)'40. Over the interval 5<t<8, Er ,z increases,
while Eu continues to decrease. With further evolution, bo
energies decrease asuI (t) converges towards the least stab
eigenvector. From their values att520, we estimate
Eu /Er ,z(`)'0.73/0.023'32.

The energy evolution for the caseh50.99, Re5350,
shown on the right of Fig. 5, resembles that for plane Cou
flow. The optimal input is almost exclusively meridiona
with negligible azimuthal component:Er ,z'0.996 while
Eu(0)'0.004. Bytmax'66, Eu has increased to 164 andEr ,z

decreased to 0.14, a ratioEu /Er ,z(tmax) of 1170 for the op-
timal output. This ratio is approximately maintained as bo
r 2005 to 129.175.97.14. Redistribution subject to AIP
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FIG. 3. Optimal perturbations forh50.50, Re5125. Left: Optimal input.
Right: optimal output. Above: Meridional velocity field (ur ,uz). Below:
Contours ofuu . The energy of the input~output! is primarily in the meridi-
onal ~azimuthal! components. For this reason, arrow lengths and cont
levels are scaled differently for the input and the output.
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3481Phys. Fluids, Vol. 14, No. 10, October 2002 Transient growth in Taylor–Couette flow
energies slowly decrease during the evolution ofuI (t) to-
wards the least stable eigenvector.

In the caseh50.5, Re5125, two arrays of vortices ar
present in the optimal input, a larger and stronger array n
the inner cylinder and a smaller and weaker array near
outer cylinder. Three arrays are present in the optimal out
whose radial extent and strength decreases in going from
inner to the outer cylinder. In the caseh50.99, Re5350, the
optimal input contains one array of vortices and the optim
output contains a second weaker, narrower array near
outer cylinder. Some light can be shed on the form of th
perturbation fields and on the difference between the

FIG. 4. Optimal perturbations forh50.99, Re5350. Left: optimal input.
Right: optimal output. Above: Meridional velocity field (ur ,uz). Below:
Contours ofuu . The energy of the input~output! is primarily in the meridi-
onal ~azimuthal! components; arrow lengths and contour levels are sca
differently for the input and the output.
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cases by Rayleigh’s criterion for instability in Taylor
Couette flow.

Rayleigh’s argument, valid for inviscid and axisymme
ric flow, is that perturbations interchanging rings of fluid
different radii ~e.g., Taylor vortices! will be favored or op-
posed by the ambient pressure gradient, according to whe
the square of the angular momentum (rU C)2 decreases or
increases radially outwards. For counter-rotating cylind
(m,0), the sign ofd(rU C)2/dr changes within the gap

dFIG. 5. Time evolution of optimal growth. Solid curves denote azimut
energyEu(t), long-dashed curves meridional energyEr ,z(t) during evolu-
tion from optimal inputuI (0). Higher and lower short-dashed curves repr
sent Eu(t) and Er ,z(t), respectively, for least stable eigenvector. Triang
corresponds totmax. Above: h50.50, Re5125. Below: h50.99, Re
5350.
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Rayleigh’s criterion is then applied to argue that only t
inner portion of the gap is unstable. This modification
justified by three related tendencies.9 First, the unstable ei-
genvector is concentrated near the inner cylinder, wh
d(rU C)2/dr is negative. Second, the axial wavelength c
responding to the most unstable or least stable eigenve
decreases, favoring vortices which remain closer to circu
Third, the critical Reynolds number for linear instability in
creases, meaning that the critical Reynolds number base
the unstable portion of the gap remains nearly constant.

Figure 6 shows that the square of the angular momen
decreases radially outwards over the intervalr & r̄ 20.5 for
h50.50 and over the intervalr & r̄ for h50.99. Although
exact application of Rayleigh’s criterion would lead to op
mal perturbations far more concentrated near the inner
inder than they actually are, the criterion provides a heuri
explanation for the asymmetry. Rayleigh’s criterion is us
ally invoked to explain linear instability, i.e., exponenti
growth. However, a modified version of the criterion shou
apply to transient growth as well.

Finally, we show the spectrum and pseudospectra of
operatorsL for the two cases in Fig. 7. Both pseudospec
plots contain contours~for the smaller values ofe! surround-
ing individual eigenvalues and bulb-shaped contours~for the
larger values ofe! surrounding the entire spectrum. For bo
values ofh, the contours for a fixed small value ofe sur-
rounding the eigenvalues near the real axis are wider than
contours surrounding the eigenvalues farther from the
axis. The bulb-shaped contours, however, differentiate
tween the two values ofh. The spectrum forh50.5 contains
eigenvalues near the real axis with real parts extending
approximately60.7; a bulb-shaped pseudospectral cont
thus remains a fairly constant distance from the spectr
The spectrum forh50.99 is, in contrast, quite localized o
the imaginary axis; in this case, a bulb-shaped pseudos
tral contour protruding into the unstable half-plane is a fi
indication of non-normal effects.

FIG. 6. Square of angular momentum of basic Couette solution (rU C)2.
Solid curve:h50.5, axis on left. Dashed curve:h50.99, axis on right.
Rayleigh’s criterion for inviscid instability states thatUC is unstable where
(rU C)2 is a decreasing function ofr .
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We use more detailed calculations of the pseudospe
to compute approximations to the lower bound~15! on opti-
mal growth of Kreiss’ theorem. Forh50.5, we obtain an
upper bound Im(z)<0.1 for the e-pseudospectrum withe
51021.15, which yields the lower boundGmax>(101.15

30.1)251.99, about half of the exact valueGmax54.17 that
we have calculated. Forh50.99, we obtain an upper boun
Im(z)<0.03 for the e-pseudospectrum withe51022.45,
which yields the lower boundGmax>(102.4530.03)2

571.49, again about half of the exact value of 155.

IV. CONCLUSIONS

We have calculated the pseudospectra and optimal t
sient growth for Taylor–Couette flow.

FIG. 7. Pseudospectra for Taylor–Couette flow. Above:h50.5 and Re
5125. Contours correspond toe51021.8,1021.5,...,100. Below: h50.99
and Re5350. Contours correspond toe51022.4,1022.1,...,100.
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Our major result is that, for a fixed Reynolds number,
optimal transient growth is achieved for a radius ratioh
5hopt,1, rather than for the plane Couette limith51. This
is due to the combined effect of increasing modal growth a
decreasing non-normality. As shown in Fig. 1, for Re,130,
the optimal transient growth for fixed Re occurs at an int
mediate value ofh ranging from hopt50.6 at Re520 to
hopt50.96 at Re5110. For Re.130, the optimal transien
growth for fixed Re increases ash is decreased from the
plane Couette limith51 to the linear stability boundaryh
5hL , as shown in Fig. 2.

If transient growth on the order ofGmax'100 is sus-
pected to initiate transition in plane Couette flow near
5300, then transition should also occur near Re5300 out-
side the linear instability domain in Taylor–Couette flo
albeit in very narrow gaps (h*0.986). If these predictions
fail to hold, then theories concerning transition initiated
transient growth must be modified or even abandoned.
other possible direction for future studies concerns region
(h,Re) in which transient growth competes with linear ins
bility; such situations should be included in a comprehens
theory of transition initiated by non-normal effects.

Two cases have been considered in detail:h50.99, Re
5350, andh50.5, Re5125. Both show transient growth
As could be expected, the caseh50.99, Re5350, shows
much higher transient growth, both because of its gre
resemblance to plane Couette flow and also because o
higher Reynolds number. As shown in Fig. 5, forh50.99,
Re5350, energy grows from the optimal input by a factor
Gmax5164, while forh50.5, Re5125, we haveGmax54.

As is the case for plane Couette flow, the physi
mechanism accompanying transient growth consists of
conversion of vortices~here, termed azimuthal rather tha
streamwise! into streaks, i.e., perturbations of the basic Co
ette profile. This is seen in the ratio of azimuthal to meri
onal energy in Fig. 5 of the optimal inputsuI (0) and outputs
uI (tmax). The optimal outputs, depicted in Figs. 3 and 4, are
higher amplitude near the inner cylinder, especially in
caseh50.5, Re5125, as indicated by Rayleigh’s criterio
for centrifugal instability illustrated in Fig. 6.

Although both sets of pseudospectra in Fig. 7 show si
of non-normality, those forh50.99, Re5350 show more
deviation from the spectrum than those forh50.5, Re
5125.

Our study is restricted to the azimuthal wave numb
m5a50, axial wave numberb5p/2 and angular velocity
ratio m521. Previous results on Couette flows lead us
believe that these values of~a,b! may be representative of
fairly large portion of parameter space, since both the ma
mal optimal growth rate in plane Couette flow and the ma
mal linear growth rate in Taylor–Couette flow are close
those achieved fora50, b5p/2. Varyingm, however, leads
to major qualitative changes, as it does in other aspect
Taylor–Couette flow. Studies encompassing a wide rang
parameter values22 are clearly desirable.

In the words of Faisst and Eckhardt,25 Taylor–Couette
flow provides an ‘‘embedding’’ of plane Couette flow. Nu
merical simulations and laboratory experiments have ex
sively documented the way in which plane Couette fl
Downloaded 27 Apr 2005 to 129.175.97.14. Redistribution subject to AIP
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changes as its single nondimensional parameter, the R
nolds number, is increased. Taylor–Couette flow provides
ensemble of other parameter paths along which to appro
or to step back from plane Couette flow. Our hope is that t
preliminary study and that of Ref. 22 of transient growth a
pseudospectra in Taylor–Couette flow, will help to increa
understanding of both Taylor–Couette flow and of the effe
of non-normality.
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