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Stability analysis of perturbed plane Couette flow
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Plane Couette flow perturbed by a spanwise oriented ribbon, similar to a configuration investigated
experimentally at the Centre d’Etudes de Saclay, is investigated numerically using a
spectral-element code. Two-dimension@D) steady states are computed for the perturbed
configuration; these differ from the unperturbed flows mainly by a region of counter-circulation
surrounding the ribbon. The 2-D steady flow loses stability to three-dimengigiizl eigenmodes

at Re=230, B8.=1.3 for p=0.086 and Rg=550, 8.~ 1.5 for p=0.043, where8 is the spanwise

wave number andgis the height of the ribbon. Fgr=0.086, the bifurcation is determined to be
subcritical by calculating the cubic term in the normal form equation from the time series of a single
nonlinear simulation; steady 3-D flows are found for Re as low as 200. The critical eigenmode and
nonlinear 3-D states contain streamwise vortices localized near the ribbon, whose streamwise extent
increases with Re. All of these results agree well with experimental observationd.99@
American Institute of Physic§S1070-663(99)00305-(

I. INTRODUCTION Nagatd'® and Conley and Kellel! and the wavy rolls of
Rayleigh—Beard convection by Bussé. Most recently,

It is well known that, of the three shear flows most com-Cherhabili and Ehrenstéifi** succeeded in continuing
monly used to model transition to turbulence, plane Poiplane-Poiseuille-flow solutions to plane Couette flow, via an
seuille flow is linearly unstable for Re5772, whereas pipe intermediate Poiseuille—Couette family of flows. They
Poiseuille flow and plane Couette flow are linearly stable forshowed that in proceeding from Poiseuille to Couette flow,
all Reynolds numbers; see, e.g., Ref. 1. Yet, as is also wethe wave speed of the traveling waves decreases and their
established, in laboratory experiments, plane and pipe Postreamwise wavelength increases, as does the number of har-
seuille flows actually undergo transition to three-dimensionamonics needed to capture them. When the Couette limit is
(3-D) turbulence for Reynolds numbers on the order of 1000reached, the finite amplitude solutions are highly
For plane Couette flow, the lowest Reynolds numbers astreamwise-localized steady states. The minimum Reynolds
which turbulence can be produced and sustained has beaomber achieved in these continuations is=R800. None
shown to be between 300 and 400 both in numericabf these steady solutions of plane Couette flow obtained so
simulationé® and in experiment$? far are stable.

The gap between steady, linearly stable flows which de- A second, highly successful, approach has been to study
pend on only one spatial coordinate and three-dimensionahe transient evolution of linearized plane Couette flow. Al-
turbulence can be bridged by studying perturbed versions ahough all initial conditions must eventually decay and the
Couette and Poiseuille flow. Plane Couette flow perturbed bynost slowly decaying mode must be spanwise invariant by
a wire midway between the bounding plates and oriented irSquire’s theorem, the non-normality of the evolution opera-
the spanwise direction has been the subject of laboratorior allows large transient growth. Butler and Farrell
experiments by Dauchot and co-workefsat CEA-Saclay.  showed that a 1000-fold growth in energy could be achieved
Our goal in this paper is to study numerically the flows andfrom an initial condition resembling streamwise vortices
transitions in a configuration similar to that of the Saclaywhich are approximately circular and streamwise invariant.
experiments. Reddy and Henningséhcomputed the maximum achievable

Previous studies of plane channel flows have used a vagrowth for a large range of Reynolds numbers. An interpre-
riety of approaches. We briefly review these, emphasizingation is given by these authors and by Trefetle¢ml’ in
computational investigations and the plane Couette case. terms of pseudospectra: the spectra of non-normal operators

One approach is to seek finite amplitude solutions atlisplay an extreme sensitivity to perturbations of the opera-
transition Reynolds numbers and to understand the dynamiasr. Thus, slightly perturbed plane Couette or Poiseuille
of transition in terms of these solutions. Finite amplitudeflows may be linearly unstable for much lower Reynolds
solutions for plane Couette flow have been found for Reynumbers than the unperturbed versions.
nolds numbers as low as R&25 by numerically continuing A third broad category of computational investigation is
steady states or traveling waves from other flows: the wavyhe study of nonlinear temporal evolution in relatively tame
Taylor vortices of cylindrical Taylor—Couette flow by turbulent plane channel flows. Orszag and Ké&llsnd
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Orszag and Patetashowed that finite amplitude spanwise- Yo

invariant states of plane Poiseuille flow are unstable to 3-D i ! = % = ! | IZh
perturbations; this is also true of quasiequilibria for plane ' : — '
Poiseuille and Couette flow. Lundbladh and Joharfsson " 2Llh

showed that turbulent spots evolved from initial disturbances
resembling streamwise vortices if the Reynolds number ex-
ceeded a critical Reynolds number between 350 and 375.
Numerical simulations by Hamilton, Kim, and Waletfef
turbulent plane Couette flow at R&O00 indicated that
streamwise vortices and streaks played an important role in a —

quasicyclic regeneration process. Cougifliised weak forc- x

ing to stabilize steady states containing streamwise vorticeBIG. 1. Flow geometry considered in the paper. The upper and lower chan-
and streaks. These became unstable and underwent a similﬁlr‘J Wallsiars Stie\f’eal“a‘eA‘:] ?ﬁfﬂ;ﬁ”ﬁiﬁngb?gxh:’ig‘oI‘(’je'lci’rfgi?:’fg(c;r:é
reger_leratlon cycle Wh.e.n the forcing or Reynold_s ”“mb%idgz}) riistiilicchari/ﬁel and has zeighﬂﬁ(p=0.086 for the case shown
was increased. The critical Reynolds numbers displayed ifhe computational meslimacro elemenisused in our calculations is

all of these numerical simulations are in good agreemenghown, as is théfine) collocation mesh for polynomial ordéM=8 (five
with experiments by Tillmark and Alfredssband by Davi- elements in the enlargementThe ribbon is formed by setting no-slip

aud et aI.,5 who reported turbulence at B860 and Re boundary cond_npns on ‘the edges of two ad_Jomlng elgments. _Per|od|c
. boundary conditions are imposed over lengtth2in the horizontal direc-
=370, respectively.

) tion. The full geometry shown has aspect rdtie 10. The system is homo-
The last approach we discuss, and the most relevant tgeneous in the spanwigg) direction normal to the figure.

this study, is perturbation of the basic shear profile, to elicit

instabilities that are in some sense nearby. If a geometric

perturbation breaks either the streamwise or spanwise invarwise vortices, at Reynolds numbers and wave numbers
ance of the basic profile, then the flow is freed from thewhich agree well with the Saclay experiments.

constraint of Squire’s theorem, which would otherwise imply

that the linear instability at lowest Reynolds number is to a

spanwise invariant two-dimension&R-D) eigenmode. A Il. NUMERICAL COMPUTATIONS

perturbed flow with broken symmetry may directly undergo  the computations consist of three part) obtaining

a 3-D linear instability. One can hope to understand the beSteady 2-D solutions of the Navier—Stokes equati¢@sge-
havior of the unperturbed system by considering the limit iniemining the linear stability of these solutions to 3-D per-
which the perturbation goes to zero. For some timeg, hations, and3) classifying the bifurcation via a nonlinear

expe”mehta“sg have used perturbations to produce giapility analysis. Here we outline the numerical techniques
spanwise-invariant Tollmien—Schlichting waves arising sub+q, carrying out these computations.

critically. More recently, for example, Schagr al ?? inserted
a periodic array of cylinders in a plane Poiseuille experiment)- 2-D steady flows
to render this bifurcation supercritical. In plane Couette flow,  our computational domain has been shown in Fig. 1. We
Dauchot and co-workers at Sacta§found that streamwise nondimensionalize lengths by the channel half-hetghte-
vortices could be induced for Reynolds numbers around 20@ycities by the speetl, of the upper channel wall, time by
when a wire was placed in the flotthe exact range in Rey- the convective timen/U,. There are two nondimensional
nolds number for which the vortices occur depends on th%arameters for the flow, which we take to be the usual Rey_
radius of the wirg. They suspected that these vortices arisenolds number for plane Couette flow, RBU, /v, wherev is
from a subcritical bifurcation from the perturbed profile, but the kinematic viscosity of the fluid, and the nondimensional
did not determine this. half-height of the ribborp, hereafter called its radius for
In this paper, we numerica”y Study the destabilization Ofconsistency with the Sac'ay experiments_ We View(ﬂm’]_
plane Couette flow when a ribbon is placed midway in thedimensionalizefistreamwise periodicity lengthl2as a nu-
channel gap(Fig. 1). The ribbon is infinitely thin in the merical parameter which we take sufficiently large that the
streamwisex) direction, occupies a fractiop of the cross-  system behaves as though it were infinite in the streamwise
channel(y) direction, and is infinite in the spanwi¢g) di-  direction.
rection. This geometry is similar, though not identical, tothat  The fluid flow is governed by the incompressible
used in the Saclay experiments. In the experiments, the pefavier—Stokes equations:
turbation is a thin wire with cylindrical cross section. Here

l_— ribbon

LA

i T i : du 1
we use a ribbon beca_use it is much easler to simulate numeri- %~ _ —(u-V)u—-Vp+ ~ v in Q, (13
cally. For the experimental or numerical results to be of  dt Re
wider importance, the particular shape of the perturbation V.u=0 in Q, (1b)

should not be important, as long as it is small.
We shall address the extent to which a small geometrisubject to the boundary conditions:

perturbation of the plane Couette geometry affects the stabil- U(X—L V)= U(x+L 2
ity of the flow. We will show that a small geometric pertur- ( Y)=ul Y, 23
bation does indeed lead to a subcritical bifurcation to stream- u(x,y==*1)==*X, (2b)
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u(x=0y)=0 for —p<y<p, (20

whereu=(u,v,w) is the velocity field,p is the nondimen- 0.004

sionalized static pressure, afdl is the computational do- g
main. The pressurg, like u, satisfies periodic boundary con- 0.002
ditions inx.

Time-dependent simulations of these equations in two
dimensions w=0, 9/9z=0) are carried out using the spec-
tral elemer® program PrRisM?4?° In the spectral element L
method, the dom_am _IS represented by a mesh of rnacroel|e—_IG. 2. Leading eigenvalue as a function of streamwise periodicity half-
ments as shown in Fig. 1. The channel height is spanned byngth for Re=250, =1.3. ForL = 32 the eigenvalue is independent.of
5 elements while the number of elements spanning the
streamwise direction depends on its length: 24 elements are
used forL =32 and 36 elements fdr=56. The no-slip con-
dition (2¢) is enforced by setting zero velocity boundary con- a0 . - A
ditions along the edges of two adjoining mesh elements: This gt ~(0-V)U=(U-V)a—(V—p52)p
interface defines the ribbon. If continuity were imposed

o

[«
M
o
™
o
2]
o

algng this interface, as is done on all other element bound- + i(VZ—,BZ)O in Q, (49)
aries, then the flow would reduce to unperturbed plane Cou- Re
ette flow. Thus the ribbon is modeled by a sniblit signifi- (V+B2)-0=0 in Q, (4b)

cand change in the boundary conditions on just two edges of

elements in the computational domain. Within each elemerivhere V, etc., are two-dimensional differential operators.
both the geometry and the solution variablgslocity and ~ Equation (4) is solved subject to homogeneous boundary
pressurg are represented usiniyth order tensor-product conditions:

polynomial expansions. The collocation mesh in Figet- G(x—L,y)=0(x+L,y) (58)
largement corresponds to an expansion with=8. ’ o
A time-splitting scheme is used to integrate the underly-  0(x,y==*1)=0, (5b)

ing discretized equatiorf§.Based on simulations with poly-
nomial orderN in the range 6N=<12 and time stepat in
the range 103<At<10"? we have determined thai=8 Equation(4) with boundary condition$5) can be integrated
and At=0.005 give valid results over the range of Re con-numerically by the method described in Sec. Il A. For fixed
sidered. These numerical parameter val(tgsical for stud- 3, this is essentially a two-dimensional calculatfdr® After
ies of this type have been used for most of the results re-integrating(4)—(5) a sufficiently long time, only eigenmodes
ported. Each velocity component is thus represented bgorresponding to leading eigenvalues remain. We use this to
about 7500 scalars fdr=32. find the leading eigenvaluéthose with largest real parand
Steady flows used for our stability calculations havecorresponding eigenmodes for fixed values of Re Arak
been obtained from simulations with Reynolds numbers irfollows. A Krylov space is constructed based on integrating
the range 108 Re<600. In all cases, the simulations were (4)—(5) over K=8 successivédimensionlesstime intervals
run sufficiently long to obtain asymptotic, steady velocity of T=5. More precisely, we calculate the field$t), O(t
fields. We shall denote these steady 2-D flowsUgx,y). +T),...,0(t+(K—1)T) and orthonormalize these to form a
basisvy,vy,...,vx . We then define th&K XK matrix Hj
=(v;,Lv;) whereL is the operator on the right-hand side of
the linearized Navier—Stokes equations dndis an inner
product. Approximate eigenvaluesr and eigenmodes
Let U(x,y) be the 2-D base flow whose stability is Ti(x,y,z) are calculated by diagonaliziftg and using(3) to
sought. An infinitesimal three-dimensional perturbationreconstruct 3-D fields. Their accuracy is tested by computing
u’(x,y,z,t) evolves according to the Navier—Stokes equathe residualr=|oTl—L{l|. If the eigenvalue—eigenmode
tions linearized about). Because the resulting linear system pairs do not attain a desired accuracy<(L0 ° for the case
is homogeneous in the spanwise directipmeneric pertur- herg, then another iteration is performed. The new vector is
bations can be decomposed into Fourier modes with sparadded to the Krylov space and the oldest vector is discarded.

0(x=0y)=0 for —p=<y=p. (50

B. Linear stability analysis

wise wave numberg: This is effectively subspace iteration initiated with a Krylov
subspace. More details can be found in Refs. 22, 27, and 29.
u’(x,y,z,t)=(0cosBz,v cosBz,WsinBz), We conclude this section by considering the effect of the
(3) streamwise periodicity lengthL2on the computations. Re-
p’(x,y,z,t)=p cospz call that we viewL as a quasinumerical parameter in that we

seek solutions valid for largke. Figure 2 shows the depen-
or an equivalent form obtained by translatiorzifThe vector dence of the leading eigenvalweon streamwise length at
a(x,y,t)=(0,0,W) of Fourier coefficients evolves according Re=250, 3=1.3 (values near the primary 3-D linear insta-
to: bility). It can be seen that fdr= 32 the eigenvalue is inde-
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—Uc whereUc=yX is the unperturbed plane Couette profile.
— —— (a) The primary e_ff_ect (_)f the_ribbon is_ to establish a region
(Ix|=3) of positive circulationlopposing that of plane Cou-
ette flow surrounding the ribbon. Figure(@ shows U
—Uc over a larger streamwise extent. Further from the rib-
bon are wider regions (8|x|=24) in which the deviation is

(b) weak, but has the same negative circulation as plane Couette
flow.
1 ) 0 5 4 The size of the counter-rotating region is remarkably

uniform over the ribbon radii and Reynolds numbers that we
have studied. We define the streamwise extent of the
@(C) counter-rotating region as delimited y(x,y=0)=0, i.e.,
.12 -6 0 6 12 the x values at which the streamfunction at midheight0

FIG. 3. The steady two-dimensional base flalfx,y) at Re=250 for a has the same value as at the channel wg; 1. Forp

ribbon with p=0.086. Only the central portion of the full=32 domain is =0.086, the counter-rotating region Var_'es frdlfd$2.18
shown.(a) Streamfunction contours &f. The flow is nearly identical to the  for Re=150 to [x|<3.00 for Re=300, while for p=0.043
paral_lel shear of plane Couett_e f_Iow except very near the ril;n(Ithtream- the counter-rotating region varies fr0|h;(| <2.10 for Re
function contours of the deviatiob— U highlighting the dn‘fgrence be- =150 tO|X|$2.87 for Re=600. This insensitivity to the size
ween the perurbed and unperlurbed Couetie flows. A 1edkI=6) of  of pis significant in light of the 2-D finite-amplitude stead
positive circulation is established around the ribbon. The flow is centrosym®' P g 9 ™ p y
metric. (c) The deviation over a larger streamwise extent showing regionsStates calculated by Cherhabili and Ehrenstéi The states
(3<|x|=24) further from the ribbon whose circula_tion is negativz_e, like that found by these authors in unperturbed plane Couette flow
of Uc. The flow is very weak; contours of the dqmmant part of th_ls flow are strongly resemble that in Fig. 3. These too have a central
not shown. The slight lack of centrosymmetry is a graphical artifact. . . .
counter-rotating region surrounded by larger regions of nega-

tive circulation. At Re=2200, the counter-rotating region in
pendent oL. This is consistent with the structure of the basetheir flow occupiegx|=<2.31(see Figs. 10 and 11 of Ref. 13,
flow and eigenmodes shown in Sec. IIl. Most of the compu-Figs. 2 and 3 of Ref. 14The similarity between the 2-D
tations reported have uséd=32. flows for p=0.086,p=0.043, and, effectivelyp=0 leads us
to hypothesize that our 2-D perturbed plane Couette flows
are connectedvia the limit p—0) to those computed by

For the nonlinear stability analysis and for obtaining Cherhabili and Ehrenstein.

steady 3-D flows, we carry out 3-D simulations @)—(2) We may also quantify the intensity of the counter-
using the same spectral element representatiofx,i) de-  circulation. One measure is the maximum absolute value of
scribed above together with a Fourier representation in the, which is attained very near the ribbon, ax,y)
spanwise directioz. We impose periodicity in the spanwise =(=0.081,0). This value is approximately independent of
direction by including wave numbersg, for integers|m| Reynolds number, but decreases strongly with ribbon radius:
<M/2, whereg, is the critical wave number found in the vpma=0.031 forp=0.086 and ,~0.013 forp=0.043.

C. 3-D simulations

linear stability analysis. The simulations we report e An important qualitative feature of the flow can be seen

=16. in Figs. 3b) and 3c): The flow is centrosymmetric, i.e., it is
invariant under combined reflection andy, or equiva-

Ill. RESULTS lently rotation by angler about the origin. It can be verified

A. 2-D steady flows that the governing equatioti$) and bqundary conditi.or(.Q)
are preserved by the centrosymmetric transformation:

A typical steady 2-D flow for the perturbed Couette ge-
ometry is shown in Fig. 3. It is representative of base flows  u(x,y)— —u(—x,—Y). (6)
for Reynolds numbers on the order of a few hundred with a
ribbon of sizep=0.086. This was chosen to correspond toThe unperturbed plane Couette problem is also centrosym-
the radius of one of the cylinders used in the Saclaymetric. It is in fact symmetric under the Euclidean grdtp
experiment$=® The Reynolds number Re250 of the flow of translations and the “reflection” consisting of the cen-
shown is close to the threshold for the 3-D instability thattrosymmetric transformatio(6). The ribbon in the perturbed
will be discussed in Sec. Il B. Unless otherwise stated, reflow breaks the translation symmetry, but leaves the cen-
sults are foro=0.086, Re=250, andL = 32. trosymmetry intact. Note that reflections xror y alone are

In Fig. 3(a) it can been seen that, except near the ribbonnot symmetries of either the unperturbed or the perturbed
the steady flow is essentially the parallel shear of unperplane Couette problem because either reflection alone re-
turbed plane Couette flow. The streamlines are as reportecerses the direction of the channel walls, violating the
experimentally in Ref. 6. As noted there, the Reynolds numboundary condition$2b).
ber based on the radius of the ribbon and the local velocity In Fig. 4 we present streamwise velocity profiles near the
near the ribbon is very small compared to Reynolds numbersbbon. For|x|>0.5, the Couette profile is very nearly recov-
where separation or vortex shedding could be expected. lared. Figure %) shows streamwise velocity profiles of the
Fig. 3(b) we plot the streamfunction of the deviatidd  deviation from the linear Couette profile across the full chan-
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FIG. 4. Streamwise velocity profiles in the perturbed geomégyU (X,y) FIG. 6. Growth rater of most unstable three-dimensional eigenmode as a

as a function ofy for x=0.081 (dotted, x=0.25 (dashed, and x=0.5 function of spanwise wave numbgrfor Re=150,200,250,300 with ribbon
(solid). Only the central portion of the channel is shown. Only very close toradiusp=0.086. Critical values for instability are Re230 andgB.=1.3.
the ribbon does the velocity differ significantly from the linear profil®.
DeviationU(x,y) —y over the full range of.
tations is surpassed beyohd=40. Figure 5 shows that for
|x|>32 the deviation of the base flow from Couette is indeed
nel. Close examination reveals that these profiles are not odgery weak and this supports our choicelof 32 as an ad-
in y, consistent with the fact that the system is neither symequate domain size for most computations.
metric nor antisymmetric under reflectionynThe symmet-
ric partners t_o th_e pr_ofiles shOV\_/n are at negatd\)u&zill_Jes.8 B. 3-D linear stability results
The profiles in Fig. 4 are similar to those Bottin al. _ _ ) _
obtained in the Saclay experiments under similar conditions, ~ The two-dimensional steady flows just discussed become
It is not possible to compare directly with experiment pe-linearly unstable to three-dimensional perturbations when the
cause of the difficulty in obtaining experimental velocity Reynolds number exceeds a critical valug Reo determine
profiles and because the geometric perturbations differ in thEis value and the associated wave number, we have per-
computations and experiments. The only noticeable differformed a linear stability analysis of the steady flows via the
ence between experiments and computations is that the prgfocedure described in Sec. Il B.
files Fig. 4b) are very nearly odd ity, whereas in experi- Figure 6 shows the growth rate of the most unstable
ment this lack of symmetry is more pronounced. three-dimensional eigenmodeas a function of Re and span-
Finally in Fig. 5 we quantify the deviation between per- Wisé wave numbeg for a ribbon withp=0.086. For each
turbed and unperturbed plane Couette flow by plottingVa|Ue Re, we have fit a piecewise-cubic curve, shown in Fig.
the energy per unit lengtlE(U—U )=t dy3u(x,y) 6, through the eigenvalue data to determine the wave number
c)—J - ] . — "
—Ug(y)|? as a function ok for — 56<x=56. Tlhe (zjata show Bma{Re) which maximizes. The critical Reynolds number

. . Re, is then determined by linear interpolation of
a narrow central region, corresponding to the regjgh . o
<2.76 of positive circulation seen in Fig(l8, where the o Bma(Re),RY through these maxima and finding its zero

deviation falls sharply and approximately exponentiallyin crossing. Frqm this we find critical vilues for the pnset of
For |x|>2.76, the deviation, while very small, decays very“r?ear instability to be Re=230 andﬂcfl.B for_ the rlbb_on
slowly (and not exponentiallywith |x. The boundaries with p.:0'086' These values are consistent .W'th what is seen
— +23.78 terminating the outer region of negative Circula_experlmentally, but we delay discussion until the conclusion.

. o i Figure 7 shows similar eigenvalue spectra for a ribbon
I Fig. 5. Th f th - 2 .
tion can also be seen in Fig. 5. The precision of the Compuhalf as largep=0.043. The critical wave numbg.~1.5 is

only slightly larger than the previous value. However, the
critical Reynolds number is much larger: R&50. The

0
10 I||||||||II|III|I|IIIII
= i i ———
L0 = -
DI o T O Lty
104 |
2 r \ .
= L i i 600
g L i o - 500 -
10-5-,,,,,|,,,,,,,,,,,|,,,,,_ —0.05 - 350
-60 -30 0 30 60 : :
X A P B
0 1 2 3 4

FIG. 5. Energy of deviation between perturbed and unperturbed Couette
flows as a function ok. Parameters are the same as in Fig. 3 except that ﬁ

hereL =56. Abrupt changes in slope jp =2.76,|x|=23.78 correspond to

changes in the sign of the circulation 0f- Uc. For |x|=40, the deviation ~ FIG. 7. Growth rate of the most unstable eigenmode as a functighaofd
is below the precision of the computations. Re for p=0.043. Critical values are Re550 andB.~1.5.
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X

FIG. 10. Energy of near-marginal eigenvector as a function Barameters
are the same as in Figs. 8 and 9 except that her®6. Vertical scale is
arbitrary.

A

FIG. 8. Velocity field of near-marginal eigenvector in the plames0, x planez=0 where they are maximétf. Eq. (3)]. Below is a
=1,x=2, andx= 3. Parameters are R&50,p=0.086,L=32,\ =4.83. At p|0t of (TJ,VV) in the p|aney:o at midchannel he|ght

x=0, the velocity is reflection-symmetric ynand primarily spanwise. The ; AL
ribbon is seen as the argg <p=0.086 with no flow. Streamwise vortices Figure 10 shows th.e( dependence of the spanwise
averaged energy per unit length

are visible forx=1. The scale for distances inis stretched by a factor of
3.333 relative to distances inz 1 f

E(l)=—

N 11
. dleldy§|u| . (7)

0
critical Reynolds number must increase @ss decreased Here, the eigenvector was computed in a larger domain (
since, when no ribbon is present, the problem reduces te 56) in order to determine its long-range behavior. The ei-
classical plane Couette flow which is linearly stable for allgenvector is localized: the energy decays exponentially with
finite Re, i.e., lim_ o Re(p)=1°. Ix| and does not reflect the counter- and corotating regions of
We note that Cherhabili and Ehrenstéialso calculate the 2-D base flow seen in Fig. 5. The flow deficit due to the
3-D instability for their 2-D finite amplitude plane Couette ribbon produces the local minimum at0.
flows. Despite the resemblance of their 2-D flows to ours, the =~ We have also computed the vorticity of the eigenvector.
spanwise wave number corresponding to maximal growth i®espite the streamwise vortices visible in Fig.a8, is the
much larger in their casg8~23. smallest vorticity component and, by far the largest over
A computed eigenvectar=(U,7,W) is shown in Figs. 8 most of the domain.
and 9. This eigenvector is near marginal:=R50, close to
Re.=230. The spanwise wavelength s=\.=2n/8,  C.3-D nonlinear stability results

=4.83. The other parameters gre-0.086 and. = 32. Our method of nonlinear stability analysis has previ-

Figure 8 showsd,W) velocity plots at four streamwise 51y heen used to determine the nature of the bifurcation to

locations. In thex=0 plane containing the ribbon, the flow is yhree dimensionality in the cylinder waR®The method is
reflection symmetric iy, and the flow is primarily spanwise. 5qed on tracking the nonlinear evolution of the 3-D flow

The trigonometric dependence arwith the choice of phase  g¢arting from an initial condition near the bifurcation at.Re
(3) can be seen. In the planes=1, x=2, andx=3, WO  «Near refers both to phase spadee., a small 3-D pertur-
counter-rotating streamwise vortices are present. The floWasion from the two-dimensional profil@nd to parameter
for negativex is obtained by reflection iy. _space(i.e., at a Reynolds number slightly above the linear
Figure 9 presents two complementary views of the eijngiapility thresholil In essence we follow the dynamics
genvectofli for —1<x<13. Above is a plot of{,v) inthe  4,5ng the unstable manifold of the 2-D steady flow far
enough to determine how the nonlinear behavior deviates
from linear evolution. From this we can determine very sim-
ply whether the instability is subcritical or supercritical.
Three-dimensional simulations are carried out for
=0.086 at Re=250, slightly above Re=230, starting with

A= ( an initial condition of the form:
\ ; T
EASEETE :: u(x,y,2)=U(x,y) + €li(x,y,2), ®
z =
)v\\ e I R R whereU is the 2-D base flow at Re250,T is its eigenmode
.ﬁf X tit at wave numbepB.= 1.3, ande is a small number controlling
I

the size of the initial perturbation.

X The restriction to wave numbers which are multiples of
FIG. 9. Velocity field of near-marginal eigenvector in the plage and ~ Bc ac_curately captl_Jres the eVOlU“OU from initial conc_iltlon
y=0. (8), since the Navier—Stokes equations preserve this sub-
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FIG. 11. Nonlinear growth of the amplitudie of the 3-D flow from simu- FIG. 12. 3-D velocity field in the planes=0, x=1, x=2, andx=3. Pa-
lation (solid) at Re=250 plotted on linear and logarithmic scales. First-order rameters are Re200, p=0.086, L=32, A\=4.83. At x=0, four small
(dotted and third-order(dashedl dynamics are shown witlr=0.004 669 streamwise vortices can be seen in the corners of the domain. The lower
and @=0.9. The faster than exponential nonlinear grote., positivea) (y<0) vortex pair evolves into the large vortices seer=atl. The scale for
shows that the instability at Rés subcritical. distances irx is stretched by a factor of 3.333 relative to distanceg,in

1/2

space of 3-D solutions. That is, we seek only to follow the
evolution in the invariant subspace containing the criticalthe approach in Ref. 28 of using the time sedds) and the
eigenmode. We do not address the issue of whether thkenOWn value ofor to estimater from a~(A— oA)/A°. This
\c-periodic flow is itself unstable to long-wavelength pertur—giveSa:0 9+0.05. a constant value faF<500 whi.ch de-
bations. . BT ) AR DL .
. . ' termines how long the third-order truncation is valid in this
To analyze the nonlinear evolution, we define theal . :
amplitudeA of the 3-D flow as case. The val_ue af is essentially unchanged when the mesh
is refined by increasing the polynomial ordérto 10 or the
1L (e +1 o1, numberM of Fourier modes to 32. The magnitude ®@fde-
A= e fo dzf_l dyJ_L x5 lual*| 9 pends on the definition oA, but its sign does not. The fact
that « is positive indicates that the instability is subcritical.
whereu, (x,y,z,t) is the component of the 3-D velocity field Figyre 11 indicates that the 3-D flow has become steady by
at wave numbep,, i.e.,Ais the square root of the energy of {~1000. The nonlinear saturation seen in the time series is
the flow at wave numbep.. (A complex amplitude, not ot captured by including a fifth-order term in the normal
required here, would include the phase of the solution in thgqy .
spanwise direction. . _ _ We have verified that the instability is subcritical by
Figure 11 shows the time evolution Affrom our simu-  computing nonlinear states below Rén Fig. 12, we show
lations. The value of is such that the initial energy of the tne steady 3-D flow at Re200. Figure 12 is analogous to
3-D perturbationll, is E=A?=1.66<10"°; the energy of Fig. g depicting the eigenvector, so we will emphasize here
the base flowJ is E=21.3. the ways in which the two flows differ. Small streamwise
To interpret the nonlinear evolution, consider the normal,ortices can be seen in each of the four corners ofxthe
form for a pitchfork bifurcation including terms up to third —q plane containing the ribbon. The lowey<0) pair
order in the amplitude: evolve with x into the strong pair of vortices at=1. The
A= oA+ aAd (10) yortices .atx=3 are tilted yvith respect to 'their counterparts
in the eigenvector, attesting to the nonlinear generation of
The leading nonlinear term is cubic because the 3-D bifurthe second spanwise harmoni@.2The 3-D flow in they
cation is of pitchfork type[an O(2) symmetric pitchfork =0 andz=0 planes(after subtraction of the dominant 2-D
bifurcation]. The Landau coefficient determines the non- pase flowy is sufficiently similar to the eigenvectdFig. 9)
linear character of the bifurcation. #>0, then the nonlin-  that we do not present it here.
earity is destabilizing at lowest order and the bifurcation is  Streamwise velocityu contours of the 3-D flow ak
subcritical; if <0, then the cubic term saturates the insta-=2 are shown in Fig. 13. They(w) projections of our 3-D
bility and the bifurcation is supercritical. flow in Fig. 12, showing the tilted streamwise vortices, re-
Figure 11 includes curves for first-order evolutire.,  semble the depictions of optimally growing modes by Butler
A= gA) and the third-order evolution given by EG.0). For  and Farrell® of instantaneous turbulent flows by Hamilton
the first-order evolution, the eigenvaluefor the bifurcation et al® and of weakly forced states by CoughffhHHowever,
has been computed via the linear stability analysis in Seaur streamwise velocity pictured in Fig. 13 differs signifi-
[l B. For the third-order evolution we have simply fit the one cantly from Refs. 3 and 20 in that theircontours are much
remaining parameterg, in the normal form. We followed more strongly displaced at the vortex boundaries. This is
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1 By decreasing Re, we have succeeded in computing a stable
3-D steady state at Re350. Since the simulation showed
chaotic oscillation for a long tim&3000 time unitg before
showing signs of approaching a steady state, there remains
the possibility that stable 3-D steady states are also attainable
e S for higher Re. Simulations at Re300 result in decay to the
0 N basic 2-D staté€although we do not exclude the possibility of
z maintaining 3-D states by a more gradual decrease n Re
FIG. 13. Streamwise velocity contours in the plane2 for the 3-D field. This is consistent with S'mUIat'OnS of the unperturbed plane
Solid contours correspond to>0, dashed contours 10<0. Couette geometryg(=0) by Hamiltonet al,® who observed
chaotic oscillation for Re400 and plane Couette floW
=y& for Re=300. Other numericaland experiment&f in-
vestigations in the unperturbed plane Couette geometry also
indicate a critical Reynolds number of 360-375 for transi-
probably due to the fact that our Reynolds number of 200 i‘ction to turbulence. W)é plan to investigate thelependence

substantially lower than their Re400. of the steady 3-D states and their stability in a future publi-
Far from the ribbon, the 3-D flow returns to plane Cou'cation

ette flow. Figure 14 compares the energy distributie{tJ

—Ug) defined by(7) of the deviation of the 3-D flow from
plane Couette flow at Re200 with that at Re250. Note
that the 3-D flow is less localized than the correspondindV- CONCLUSION
eigenvector(Fig. 10. It can be seen that at the higher Rey-

nolds number the deviation has higher energy, and impor-

: . SN atability analysis of perturbed plane Couette flow in order to
tantly, occupies a larger streamwise extent. This is in accor nderstand experiments recently performed at SdcBamd
with the experimental observation that the streamwise exten P yp

. i : o .~ more generally, three-dimensional flows in the plane Couette
of vortices in the perturbed flow increases with increasin 9 y b

Revnolds number gsystem. We have accurately determined the extent to which
y : . . the basic steady 2-D profile is modified by the presence of a
We have attempted to determine the location of the

saddle-node bifurcation marking the lower Reynolds numbersma” spanwise-oriented ribbon in the flow. We have deter-

limit of this branch of steady 3-D states; we believe that itmlned that such a ribbon, comparable in size to the cylinders

occurs just below Re200. There remains nevertheless a'“.'sed n the _Saclay expen_ments_, is large enough to induce
. . . linear instability of the basic profile at Reynolds numbers of
slight uncertainty regarding the lower bound for these states
rder a few hundred.

because we have found evidence of two different types o We elaborate further on how our analysis complements

branches of steady 3-D states over the range<Re Saclay results. An experimental diagram was obtéified

=250.The stqdy of thesg states is further com'pllcatgd by th?or the Reynolds number range of existence of various types
fact that the time evolution to many of them is oscillatory, of flows: 2-D 3-D with streamwise vortices. intermittent

indicating that their least stable eigenvalues are a complex . . .
) . X L9 ) -and turbulent. In these experiments it was not determined
conjugate pair. Further investigation is required to ascertain ; ; . . )
: . . ; whether the 3-D streamwise vortices arise from a linear in-

the full nonlinear bifurcation diagram.

We have also sought to determine how the scenarigtab”'ty of the 2-D flow. Our results show that a small geo-

changes as the ribbon radipss decreased. Recall from Sec. metric perturbation does destabilize the 2-D flow in a sub-

Il B that for p=0.043, we found Re-550. At these param- ;:lrmcal_ |rr]15tab|llty gnd that_ the b|furc_zfi_t|nﬁ S(f)lutlon is dg 3-D
eter values, 3-D simulations display chaotic time evolution Ow with streamwise vortices. Specifically, for a nondimen-
' 'sional radiusp=0.086, we find Rg=230 and forp=0.043,

we find Rg=550. The computed spanwise wavelength of the
T — most unstable mode is in good agreement with the value seen
L _ experimentally. The streamwise extent occupied by these
_ vortices decreases with decreasing Reynolds number, as ob-
. served in experiment, and is finite at the lower Reynolds
. limit of the 3-D flows.
. The Reynolds number ranges for the steady 3-D flows
. we have computed differ somewhat from those seen experi-
1 mentally. Forp=0.086, streamwise vortices were observed

- . 7 experimentally over the range 15Re<290. For p
00 "_;6' = '<')' = '3';)' 0 =0.086, we have thus far found steady 3-D flows only if
X Re=200. In experiments witlp=0.043, streamwise vortices

FIG. 14. Energy of deviation from plane Couette flow of 3-D velocity fields have been observed over the range28@<310; we have
at R'e=2'00 (dags);]eai and Re=250 (sc[))lid) as a function ok. The range%n( thus far found steady 3-D flows only for Re near 350. How-

is taken larger than the computational domdir=(32) to match the range of  €Ver, a full StUd_y of the 3_'D flows is still pending and may
Figs. 5 and 10. resolve these discrepancies.

We have performed a computational linear and nonlinear

0.06 -

VE(U-U,)
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