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In a periodic domain, the pressure gradient (rather than the pressure) must be periodic in
each periodic direction. This allows for a term which is linear in each periodic direction. For
channel flows (whether Poiseuille or Couette), the assumption of a periodic pressure gradient
leads to:

−p(x, y, z) = ax+ bz + f(x, y, z)

=⇒ −px(x, y, z) = a+ fx(x, y, z)

=⇒ −py(x, y, z) = fy(x, y, z)

=⇒ −pz(x, y, z) = b+ fz(x, y, z)

The constant terms above can be exactly counter-balanced by viscous forces if parabolic
profiles are added as follows:

u = Re a(1− y2)/2 =⇒
1
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∇

2u = −a

w = Re b(1− y2)/2 =⇒
1

Re
∇

2w = −b

The parabolic profiles satisfy homogeneous boundary conditions at y = ±1 and are associated
with net fluxes in the x and z directions:
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Hence, a parabolic profile can be added to a velocity field in any periodic direction if the
pressure is changed by a compensating linear term, the net pressure gradient, in that periodic
direction. The resulting velocity field will still satisfy both the Navier-Stokes equations and
the boundary conditions.

This indeterminacy is lifted by imposing the value of either the net pressure gradient or
else the net flux (or, less commonly, some linear combination of the two). The necessity for
making this choice is clear and well known when the net pressure gradient or the net flux
must be set to a finite value, i.e. in the streamwise direction for Poiseuille flow. However,
imposing the net pressure gradient or the net flux is necessary in every periodic direction
– i.e. the spanwise direction for Poiseuille flow, and both the streamwise and spanwise
directions for Couette flow – in order to lift the indeterminacy mentioned above. Imposing a
net flux is somewhat more difficult computationally than imposing a net pressure gradient;
it can be done with Green’s functions, i.e. calculating the net pressure gradient which will
lead to the desired value of the net flux.
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If the flow is reflection symmetric in a periodic direction, then the two requirements coincide:
zero net pressure in that direction corresponds to zero flux in that direction. However, if
reflection symmetry is broken, then the two requirements lead to different flows.

A striking example of this was given in 1993 by Edwards et al.

• W.S. Edwards, R.P. Tagg, B.C. Dornblaser, L.S. Tuckerman, H.L. Swinney, Periodic trav-
eling waves with nonoperiodic pressure, Eur. J. Mech. B/Fluids 10 205–210 (1991); Erratum
in Eur. J. Mech. B/Fluids 10 575 (1991).

for the case of the axial direction in Taylor-Couette flow. The excellent agreement between
theory and experiment for obtained in 1923 by G.I. Taylor for the formation of axisymmetric
vortices comprised the final argument for the acceptance of the Navier-Stokes equations.
However, the agreement between theory and experiment for spiral vortices in the case in
which the cylinders counter-rotate remained imperfect for many decades. In 1993, Edwards
et al. carried out numerical simulations of Taylor-Couette flow in which zero net flux was
imposed by allowing a net axial pressure gradient, in contrast with previous calculations
which had assumed an axially periodic pressure. This new calculation rectified the long-
standing disagreement that had existed between experimental and calculated wavespeeds.

A few additional notes:
The difference between setting the overall pressure gradient and the flux is not manifested
at the linear level: the eigenmodes leading to spiral vortex flow have both zero net axial flow
and zero overall pressure gradient.
The difference between setting the overall pressure gradient and the flux is also not man-
ifested when the flow is reflection-symmetric in that periodic direction. Spiral vortex flow
breaks the reflection symmetry in the axial direction.

In a genuinely periodic direction, for example the azimuthal direction in Taylor-Couette
flow, the pressure itself must be the same at θ = 2π and at θ = 0; there can be no overall
pressure gradient in θ, and so an azimuthally periodic pressure must be imposed. However,
the periodicity assumed for the axial direction in Taylor-Couette flow is different. The points
z = 0 and z = Lz are not the same physical locations; instead, a periodic flow is observed
and this is used as a modelling assumption. The assumption of a periodic flow is formally
compatible with either an overall pressure gradient or an overall flux. However, since the
actual Taylor-Couette apparatus is long but finite, and the net axial flux must be constant
at every axial location, imposing zero axial flux corresponds more closely to what would
happen in an axial section of a Taylor-Couette apparatus.

The assumption of periodicity in plane channel flows is made for the same reason as that in
the axial direction in Taylor-Couette flow. Experimental plane channel flow configurations
have very long streamwise and spanwise extents. These directions are modeled as infinite,
composed of periodically repeating sections. To correspond to a finite experimental appara-
tus, it seems preferable to impose zero flux in the spanwise direction, along with whichever
conditions are chosen in the streamwise direction.
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Papers that mention this point are:

• W.S. Edwards, R.P. Tagg, B.C. Dornblaser, L.S. Tuckerman, H.L. Swinney, Periodic trav-
eling waves with nonoperiodic pressure, Eur. J. Mech. B/Fluids 10 205–210 (1991); Erratum
in Eur. J. Mech. B/Fluids 10 575 (1991).
• J. Antonijoan, F. Marquès, J. Sánchez, Non-linear spirals in the Taylor-Couette problem,
Phys. Fluids 10, 829 (1998)
• P. Ashwin, G.P. King, A study of particle paths in non-axisymmetric Taylor-Couette flows,
J. Fluid Mech 338, 341 (1997).
• J.G. Heywood, R. Rannacher, S. Turek, Artificial boundaries and flux and pressure con-

ditions for the incompresible Navier-Stokes equations, Int. J. Num. Meth. Fluids 22, 325
(1996).
• R. Raffai, P. Laure, The influence of an axial mean flow on the Couette-Taylor Problem,
Eur. J. Mech. B/Fluids 12, 277 (1993).

Scanned copies of all of these papers can be found at:

http://www.pmmh.espci.fr/ laurette/papers/Edwards corrected.pdf
http://www.pmmh.espci.fr/ laurette/Poiseuille/Antonijoan Marques.pdf
http://www.pmmh.espci.fr/ laurette/Poiseuille/Ashwin King.pdf
http://www.pmmh.espci.fr/ laurette/Poiseuille/Heywood Rannacher Turek.pdf
http://www.pmmh.espci.fr/ laurette/Poiseuille/Raffai Laure 1993.pdf
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