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Rapid temperature quenches have long been known to produce metastable thermodynamic phases.
We analyze a Landau-Ginzburg model of front propagation and show that metastable phases can arise
via a transition that splits the front separating the disordered from the stable phase into one front be-
tween the disordered and the metastable phases and another between the metastable and the stable
phases. For systems described by a single nonconserved order parameter, the splitting transition is con-
tinuous with no hysteresis as the control parameter is varied. For two order parameters, the transition
can be continuous, hysteretic, or require a finite-amplitude perturbation. We also discuss briefly applica-
tions to pattern-forming systems, where the pattern formed behind a propagating front may change

discontinuously as the front velocity is increased.

PACS number(s): 64.60.My

I. INTRODUCTION

Metastable phases of matter are commonplace in na-
ture. At ambient temperatures and pressures, for exam-
ple, two forms of carbon are found, graphite and dia-
mond, although diamond has a higher free energy than
graphite [1,2]. Other elements with coexisting “allo-
tropes” include tin and manganese [3]. If we turn our at-
tention to alloys and mixtures, the number of known
metastable phases is almost limitless. Indeed, it has been
claimed that “almost no metallic material of importance
to a materials scientist is thermodynamically stable” [4].
Much of the interest of the materials scientist arises from
the unusual physical properties possessed by many meta-
stable materials. For example, diamond, in addition to
being the hardest material, also has the highest room-
temperature thermal conductivity. As another example,
the hardest form of common steel, martensite, is metasta-
ble and is formed by cooling austenite steel at rates of
about 200 °C/sec [5].

Experimentally, metastable phases can be created by
rapidly cooling or quenching a liquid. Indeed, the devel-
opment, in the early 1960s, of techniques such as “‘splat
cooling” at rates of 10°—108°C/sec led to the discovery of
vast numbers of metastable phases [6]. Explanations for
the formation of metastable phases have focused on two
mechanisms [7]: In the first, the nucleation rate of meta-
stable germs exceeds that of stable germs. Even though
the bulk driving force is always larger for the stable
phase, either a low solid-liquid surface tension or the
presence of catalytic sites on the sample container can
favor the metastable phase. In the second mechanism,
the growth rate of the metastable phase exceeds that of
the stable phase. Such a situation can occur, for example,
if the stable phase has a faceted solid-liquid interface
while the metastable phase has a molecularly rough inter-
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face [8]. Even if the two solid phases nucleate in compa-
rable proportions, the bulk will be largely metastable if
the metastable phase grows more rapidly than the stable
one does. Both these mechanisms imply that a small
amount of the stable phase will be created along with the
metastable one, so that eventually the stable phase will
grow throughout the sample. If the temperature is rapid-
ly reduced, however, the kinetics may become so sluggish
that neither phase grows and the proportion of stable to
metastable phases becomes frozen in at a high-
temperature value. A third way to form metastable
phases is by going to a region where one phase is stable,
nucleating it, and then going to a different part of the
phase diagram where the created phase is now metasta-
ble. If the barrier to nucleating the stable phase is very
high, for example, the system will stay in the metastable
phase. This is the basis for one method of growing dia-
monds artificially [1].

In a previous Letter, written in collaboration with
Lowen, we proposed a fourth mechanism for the forma-
tion of metastable phases during quenching [9]. Our
mechanism identifies an instability of the moving inter-
face between the stable solid and the liquid phase.
Specifically, we show that for large undercoolings and
high velocities, the interface can split into two fronts.
The leading front separates the liquid from the metasta-
ble phase, the trailing front the metastable from the
stable solid. When the leading front moves faster than
the trailing front, an arbitrarily large amount of metasta-
ble phase may be created. Two questions arise: Under
what conditions will the liquid-metastable front move fas-
ter than the metastable-stable front? And second, given
the required condition on front velocities, will plausible
initial conditions lead inevitably to front splitting? Both
conditions must be fulfilled in order for the front to split.

A unique feature of our mechanism is that direct nu-
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cleation of the metastable phase is not required. Rather,
the metastable phase “wets” the surface dividing the
stable solid from the liquid. Indeed, the transition is
nothing more than the nonequilibrium generalization of
the much-studied surface melting [10,11] and wetting
transitions [12-14] that occur in thermodynamic equilib-
rium. In the nonequilibrium version of the wetting tran-
sition, a phase that never wets the interface in equilibri-
um may do so when the interface moves sufficiently fast.
The front-splitting transition also resembles models of ki-
netic disordering of solids [15,16], where a rapidly mov-
ing solid-liquid interface leads to a disordered solid. In
our case, we consider the formation of ordered metasta-
ble phases, which leads to a number of differences with
respect to the kinetic-disordering models. Our mecha-
nism is similar to one that has been studied in the context
of reaction-diffusion equations [17] and also of propaga-
ting patterns in nonlinear systems [18,19].

In our Letter, we discussed the splitting transition in
the case of a system modeled by a single nonconserved
order parameter [9]. In that case, we found that the split-
ting transition was always continuous. That is, the front
between the stable and liquid phases begins to separate
only when a critical undercooling is exceeded. The initial
splitting velocity is arbitrarily small, and there is no hys-
teresis as the system is cycled above and below the criti-
cal undercooling.

In this article, we generalize to the case of two noncon-
served order parameters. (Prior discussions of the conse-
quences of multiple order parameters—whether for ther-
modynamic or pattern-forming systems—have concen-
trated on systems in or near equilibrium [20-24].) For
two order parameters, we show that the splitting transi-
tion can be hysteretic or finite amplitude. When the tran-
sition is hysteretic, the splitting appears at finite separa-
tion velocity as the undercooling is varied. When the
transition is finite amplitude, the perturbation required to
split a front between the disordered and stable phases
might be so large that splitting will in practice not be
seen. We shall argue in the discussion that the two-
order-parameter case is more general than it appears,
essentially because the three phases define a plane in
order-parameter space.

In Sec. II, we define our model of solidification. In Sec.
ITI, we review the results of the one-order-parameter
case. In Sec. IV, we show how, with two order parame-
ters, there are other scenarios for the splitting transition.
In Sec. V, we argue that we usually need consider no
more than two nonconserved order parameters, and also
that one generally expects a splitting transition to occur
for large undercoolings. We conclude with a discussion
of pattern-formation and phase transition experiments
where one might be able to observe the splitting transi-
tion. Numerical methods are detailed in an appendix.

II. LANDAU-GINZBURG MODEL
FOR FRONT MOTION

We shall consider systems with one spatial dimension,
described by a coordinate x ranging over (— oo, + o).
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We model the solid-liquid transition via a set of coupled
Landau-Ginzburg equations for two nonconserved order
parameters a (x,¢) and p(x,t). As usual, the free energy
is the sum of two terms: one a function of the local values
of the order parameters, the other a function of their gra-
dients. Since we shall be considering the consequences of
three locally stable phases, we take the local free energy
per unit volume F to be the sum of three Gaussians. Our
results are qualitatively independent of the detailed shape
of the potential, so that the precise form of F will be
unimportant. With all the Gaussian widths set
toa =V0.3, F(q,p) is given by

—[(q—aj)2+<p—;>j)2]/a2

2
Flgp)=—3 hje (1)
j=0

i=
Although the centers of the three individual Gaussian
wells j=0,1,2 are located at (§;,p;), these are not the po-
sitions of the three minima of the sum (1), because each
minimum is slightly shifted by the tails of the other two
Gaussians. Thus, to place the three minima at desired
phase locations (g;,p;) in the g-p plane, one must choose
the nominal positions (§;,p;) so as to satisfy the six equa-
tions

We find the nominal positions by Newton iteration, start-
ing from the desired phase positions.

Figure 1 illustrates the placement of the three phases in
the g-p plane. We take well O, which represents the liquid
phase, to be at (gy,py) = (1,0). Well 2, which represents
the stable solid phase is at (g,,p,)=(—1,0). Well 1,
which represents the metastable solid phase, is at a vari-
able position (g;,p;). We shall focus much of our atten-
tion on the evolution of the nature of the splitting transi-
tion as the position of well 1 is varied.

The free energy (1) contains three control parameters
h;, which describe the depth of the well corresponding to
each of the three phases. Since we want to describe the
effect of temperature quenches, we parametrize variations

FIG. 1. Contour plot of the free energy F(q,p) showing three
wells and two saddle points. Here, the three wells are located at
(q0,P0)=(—1,0), (q,,p1)=(0,1), and (g,,p,)=(1,0) with
heights h,=1.0, h, =2.9, and h,=3.0.
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of the potential (1) by a single control parameter A via
hy=1, h;=h—0.1, h,=h . (3)

Just as the minima of (1) are located near but not at the
nominal positions (g;,p;), so too the actual depths of the
three wells are slightly different from 4, the amplitudes
of the individual Gaussians. Thus phases O and 2 (the
liquid and stable solid) are in equilibrium at 2 =1. For
h 2 1, the stable solid phase grows into the liquid. The
specific parametrization in Eq. (3), while arbitrary, takes
into account that the free energy of the liquid phases nor-
mally varies with temperature more rapidly than does
that of either of the two solid phases. (The existence of
solid-solid phase transitions means that the difference be-
tween A, and h, must vary with temperature. Here, we
neglect that variation with respect to that between s, and
either 4, or h,). We then have that 4 —1 is roughly pro-
portional to (T,,—T) with T the growth temperature
and T,, the 20 coexistence temperature. Thus v,,=0 at
h=1. (See Fig. 6.) Note that the depth of the well
representing phase 1 is chosen so that it is always meta-
stable with respect to phase 2.

In addition to three minima, the free energy defined by
(1) has either one maximum and three saddle points, or,
more usually, no maximum and two saddle points (see
Fig. 1). When two minima are sufficiently close or of
sufficiently different heights, one of them may merge with
the saddle separating the two minima and disappear. Ac-
cording to our parametrization (3), the well at phase 2 is
always lowest, so that only phases O or 1 may disappear.
In phase-transition theory, such a point is known as a spi-
nodal. At the spinodal point, the given phase is under- or
supercooled so much that it becomes thermodynamically
unstable. In our discussion below, we shall see that the
range of the control parameter governing the relative
depths of the three minima is often limited by spinodal
points. For the real solid-liquid transition, no spinodal
has ever been observed. Strongly undercooled liquids be-
come glasses before the spinodal point, and surface melt-
ing implies that solids cannot be more than slightly su-
perheated. So, in practice, temperature variations are
bounded on the low end by the glass transition and on the
high end by surface melting.

For small gradients in the order parameter, the full
free energy may be written

2
dq (x,t)
dx

2
] , @

where £, and §, are microscopic correlation lengths.
The equations of motion for the two order parameters are
then given by a set of coupled Landau-Ginzburg equa-
tions [25]

Flgx,0,p(x,0]= [ dx

1
F(zp)+ &

ap (x,t)

dx
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where 7, and 7, set the time scales for the order parame-
ters g and p to relax to equilibrium and the 7(x,t) are sto-
chastic terms representing the effects of thermal fluctua-
tions. We set 1, =7, =0 because we are interested in the
growth of fronts rather than their nucleation. In general,
7 will depend on p, ¢, and the temperature, but here we
shall assume 7,=7, =7 to be constant. In addition, we
set §,=§,=&. Scaling 7 and § out of Egs. (5), we have

9 . _ 0% OF
EY (x,1) ox?  3q

dp 98P OF
3t (x,1) ol op

We shall primarily look for constant-velocity solutions
that are stationary in a moving frame defined by
x —x —vt,t—t. (We shall sometimes refer to these as
steady solutions.) Then 9dq /3t — —vdq /dx, where v is
the unknown front velocity. In this new frame, Eqgs. (6)
become

d’q  dg _9F _
dx2+vdx 3 0
d’p , dp OF

—+ _ =
dx? Vdx ap 0

’

The boundary conditions to Egs. (6) or (7) are that g and
p adopt values corresponding to local equilibrium at
x =+t 0. Specifically, a front propagating between phase
i and phase j satisfies
g(—o,t)=gq; p(—,t)=p;,
(8

By multiplying Egs. (7) by dq /dx and dp /dx, respec-
tively, adding the two equations, and integrating over x,
one finds that the velocity v;; of a front propagating be-
tween phase i and phase j is

AF..

=Y 9

U oy ) 9)
where

AF;=F(q;,p;)—F(q;,p;) (10)
and

dg | dp |’
=[ a9 | 4 |eL dx . 11
i f*w dx dx * (1D

F;; is the free-energy difference between phases i and j,
and o;; is proportional to the surface tension between
phases i and j. Our convention is that phase / propagates
from x =—o to +o. Equation (10) implies that
v; = —v;;. Equation (9) does not give the velocity explic-
itly because the surface tension depends on the profiles
g (x) and p(x), which in turn depend on v. However,
near equilibrium, the order-parameter profiles do not
vary much with velocity and may be well approximated
by their v =0 solutions. [When v =0, Egs. (7) have a first
integral.]
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We shall often use the “width” w to characterize the
different steady-state 20 front solutions. The width is
defined by exclusion and measures the portion of a trajec-
tory that is near neither phase O nor phase 2. When
phase 1 is placed at the origin, midway between phase 0
at go=—1 and phase 2 at g, =1, we can define “near
phase j” to be g —q;| <} for j =0 or 2. We then define
the width w by the difference |x (g =3)—x(g=—3)l,
where x (q) is the position at which the order parameter
takes the value g. Generalizing this definition to an arbi-
trary placement of phase 1 on the g-p plane requires some
care. Setting /;; to be the Euclidean distance between
phases i and j, we define “near phase j”’ to mean within a
circle of radius ;/; centered on phase j. (See Fig. 2.)
That is, we define the leading edge of the front to be the x
value corresponding to the intersection of the solution
with a circle of radius }/,, centered on phase 0. The
trailing edge is defined analogously using a circle of ra-
dius {/,; centered on phase 2. The width is then the
difference between these two x values.

As has been recognized many times before, the solu-
tions to Egs. (7) are most easily found by appealing to a
mechanical analogy [26]: The order-parameter profiles
g(x) and p (x) are interpreted as the x and y coordinates
of a unit-mass particle moving in a potential —F with a
linear damping coefficient v. The wells (minima) of the
free energy F become hills (maxima) of the potential —F;
see Fig. 6. The front profile is the motion of a particle
that starts on top of a potential hill representing one of
the three stable phases. It slides down the hill starting at
“time” x = — oo and just reaches the top of another hill
(another phase) at “time” x =+ o, as illustrated in the
lower part of Fig. 6. Because the boundary conditions (8)
imply that dg /dx =dp /dx =0 at x =% 0, the “velocity”
of the particle at the beginning and end of the trajectory
must be zero. If the two hills have equal heights (i.e., if
the two phases have the same free energy), then the only
trajectory connecting the two phases will be one without
friction, so that v =0. In other words, the front is sta-
tionary when the two phases are in equilibrium. If one of
the phases has a lower free energy than the other, the two

FIG. 2. Definition of the width of the 20 front. The radius of
the dashed circles around phases 0 and 2 is 1 the distance be-
tween phases O and 1 and between 2 and 1, respectively. The
width is defined to be the extent (over x) of the 20 trajectory ly-
ing between the two circles. In the figure, that part is traced in
a heavy line.
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hills will have different heights, and a trajectory connect-
ing the two hills will exist only if there is damping, i.e.,
only if the front moves, creating more of one phase at the
expense of the other. Unlike in ordinary mechanics, neg-
ative damping permits a particle to move from a lower to
a higher hill, increasing its potential energy; this corre-
sponds merely to the front moving from right to left. Be-
cause we will use the mechanical analogy extensively in
what follows, we will generally refer to phases 0, 1, and 2
as hills rather than as wells.

III. ONE ORDER PARAMETER

In this section, we set the position of hill 1, (¢,,p;), to
the origin. Hill 1 is then midway between hills 2 and O,
which are at (—1,0) and (1,0) respectively. Because the
three hills and the two saddles lie on the g axis, there is
effectively only one order parameter: all solutions have
p(x)=0. Except for the choice of Gaussian hills rather
than polynomial hills, this case is essentially that studied
previously [9]. The equations we study in this simpler
case of one order parameter are essentially those studied
by Fife and McLeod in an earlier work on reaction-
diffusion equations [17]. The values of 4 that we may
consider are limited by two spinodal points:
h=hg,,=0.382, at which hill 1 is so low that it disap-
pears and h =h,,=3.535, at which hill 0 disappears.

In Fig. 3, we plot profiles of g (x) for two values of the
control parameter h. Near A =1, g goes directly from
phase 2 to phase O via an approximate tanh function. As
h is increased, a shelf around ¢ =1 forms. Figure 4(a)
shows the width of this shelf w as a function of A. As
h—hgy,=1.141, w diverges logarithmically. [See the en-
larged portion in Fig. 4(b).] For h Shg,, the shelf
around g =0 is large enough that we may consider it to
be a macroscopic region of phase 1. Although we began
with a single front separating phases 2 and 0, we now
have two fronts, the first separating phases 2 and 1, and
the second separating phases 1 and 0. Time-dependent
simulations show all of these 20 solutions to be stable. At
h =hg,, the profile can be considered to be a concatena-

l )
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E Y h = 1.141
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T T T
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FIG. 3. Order-parameter profiles ¢g(x) for the one-order-
parameter case (q;,p;)=(0,0). The narrow profile is for
h =100, where the 20 front is stationary. A shelf around
g=q,=0develops as h —h g, =1.142.
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FIG. 4. (a) Width w of the 20 front vs A when (gq;,p,)=(0,0).
(b) Semilog logarithmic plot of the same front widths, showing
that the divergence is logarithmic.

tion of a 21 and a 10 front. For h > hg,, an initial 20
front widens steadily over time, as shown in Fig. 5(a).
The time-dependent profile of Fig. 5(b) resembles the sta-
tionary profile of equal width shown in Fig. 3.

To understand this behavior, we obtain the velocities
of the three possible front solutions (10, 21, and 20) by us-
ing the appropriate boundary conditions (8). We show
these as a function of h in Fig. 6. The three velocities
vio(h), vy (h), and v,y(h) all intersect at hy,. The 10 and
21 fronts, unlike the 20 front, continue to exist for
h>hg,. For h>hg,, the 10 front travels faster than the
21 front. Indeed, in time-dependent simulations dw /dt
asymptotically approaches v,y —v,;, confirming the pic-
ture of the 20 front as separate 21 and 10 fronts. Rough-
ly speaking, when v,, > v, the trailing edge of the front
moves faster than the leading edge, and the 20 profile
propagates as a bound state with a velocity intermediate
between v,; and v,y. When v,q>v,;, the 20 front splits
into two pieces, each of which moves with its own veloci-
ty. (See also [17].)

To understand why there is no 20 steady-state front
when h > h,,, we use the mechanical analogy of particles
moving in a potential (as illustrated in the lower part of
Fig. 6) to demonstrate the inequality

Vg <Vayo <Vqp - (12)
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Compare two different particle trajectories each begin-
ning at the rightmost hill 2, one of which stops at hill 1,
the other continuing on to the leftmost hill 0. (Both tra-
jectories begin and end with the zero velocity ¢, =0 re-
quired by the mechanical analogy.) In order for the par-
ticle to continue on to hill O, it must cross over hill 1 with
a nonzero velocity. Hence it has been subjected to less
friction than the particle that stopped at hill 1. Recalling
that friction corresponds to front velocity, we have
Vy9 <V,,. Now compare two trajectories terminating on
hill O, beginning at hills 1 and 2. The trajectory that be-
gins at hill 2 crosses over hill 1 with a nonzero velocity.
The friction necessary to stop its motion at hill O is there-
fore greater than if it had begun on hill 1 with zero veloc-
ity, implying that v,,>v,;,. When v,, becomes greater
than v,, at hg,, the 20 front ceases to exist.

Three potentials —F(q,0), for h <hy,, h=hg,, and
h > hyg;,, are shown in the lower part of Fig. 6. The first
potential is at the coexistence value # =1, and we have
Uy0=0 and v,,= —v,;. That is, hills 0 and 2 have equal
heights, so no friction is required to travel between them.
Traveling from the shorter hill 1 to either of the other

(a) 15+
- 10 -
£
= 2 1 0
5 A
0 T T4 T
20 -10 0 10 20

Position x (stationary frame)

(b)

Order parameter q

T

T T
-20 -10 0 10 20
Position x (moving frame)

FIG. 5. (a) Space-time diagram of the motion of the 10 and
21 fronts for h =1.6> hy;,. Initial condition is the stationary 20
solution at # =1.00. Note the ever-widening region of phase 1.
(b) Time-dependent 20 profile at t =16, same conditions as in
(a). Profile is shown in a moving frame, space-time diagram in
the stationary frame. The velocities of the leading edge (10
front) and trailing edge (21 front) are shown schematically by
arrows.
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P1=0

Velocity v

T I T T I
0.6 0.8 1.0 1.2 14 1.6

Control parameter h

1.00 1.142 1.60
o 1 2

FIG. 6. Velocities of the 20, 21, and 10 fronts as a function of
the control parameter A, satisfying v,q <v,9 <v,;. Velocities v,,
and v cross at hg;,, above which the 20 solution ceases to exist.
Below are three curves showing the negative of the free energy
—F(q) as a function of the order parameter q. For & =1.00,
hills 2 and O are of equal heights: the 20 front is stationary and
Vo= —v,,. For h=1.142=hg,, we have v, =v,=v,,. For
h=1.60> hg;,, v1p>v21 and no 20 solution is possible. The
motion of a particle in the mechanical analogy is illustrated
schematically on the 2 =1.00 potential.

-F(q)
o
]

two hills requires friction, whose value is the negative of
that of the time-reversed trajectory. The second potential
is at h =hgy,, where v,; =v,, so that the two trajectories
may be concatenated to form a single 20 trajectory. The
third potential is at h > hg, . In that case, any friction
that allows the particle to pass from hill 2, passing over
hill 1, will be too small to stop the particle by hill 0.

The mechanical analogy can also by used to show that
the 20 trajectory, if it exists, is unique. Let v* be the fric-
tion corresponding to a 20 trajectory. Then, if we in-
crease the friction, the trajectory will oscillate back and
forth before settling in the minimum between hills 1 and
0, or that between hills 2 and 1. If, on the other hand, we
decrease the friction, the trajectory will have a finite ve-
locity at the top of hill 0 and will continue down the oth-
er side and go off to — . Thus v* is the only possible
value of the friction, and the solution is unique.

Both of these arguments assume that the trajectory
connecting hills 2 and O passes over hill 1, and are there-
fore particular to one order parameter. We will see that
in the two-order-parameter case, the trajectories are not
unique, and the inequality v, <v,; <v,; is not always
obeyed.

IV. TWO ORDER PARAMETERS

In this section, we look at front motion for the case
where the metastable phase 1 is located at a position
p1>0 with g, =0. The three phases now form a sym-
metric triangle, as illustrated in Fig. 1. Because of the
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way in which we parametrize variations in the free ener-
gies of the three phases via (3) (the height of hill 2 is
varied, but that of hill 0 is fixed), this does not imply any
special symmetry for the potential F(q,p). (See Fig. 1.)
We thus expect the phenomena observed with g, =0 to
persist at other values of ¢,. As p, is increased, we en-
counter four qualitatively different regimes, which will be
illustrated by the graphs of 20 front widths versus A.

A. RegionI

In region I, which extends over 0<p, <0.819, the be-
havior of the splitting transition is similar to that ob-
served for one order parameter. A front corresponds to a
rapid variation in both ¢ (x) and p (x). Narrow and wide
fronts are illustrated in Fig. 7, where p; =0.70. The wide
profile has not only a shelf in g around g =¢q,=0, but
also a shelf in p around p=p,;=0.70. A graph of width
w as a function of & is shown as the upper part of Fig. 8
for the same value of p,. As in the one-parameter case,
which, indeed, is a special case of region I, all solutions
along this branch are stable. The width of the front
diverges logarithmically as h —h g, =1.182. For h > hg,,
the 20 front splits into separating 21 and 10 fronts.

The divergence hg4;, again coincides with the triple in-
tersection of the velocities of 10, 21, and 20 fronts. The
lower portion of Fig. 8 shows the evolution of the 20
front as h approaches hgy,. Here, solutions are represent-
ed in the g-p plane, the curves being parametrized by the

1
q
5
z
g P
< 0
-9
]
=
1%
@)
-14 h=1.00
T [ [
1
q
5
k]
8
E oP
o
S
=]
Bt
(=)
'17 h=1.182
I I I
-5 0 5

Position x

FIG. 7. Order parameter profiles in region I for p, =0.70.
The profile at # =1.00 (v,,=0), shows a narrow 20 front with
little trace of phase 1, while that at # =1.182=hg, shows a
wide 20 front with a substantial region of phase 1.
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P1=0.70
z
5 h
= i
= :
E DIV
0 T T T n
0.6 0.8 1.0 1.2 14
Control parameter h
1 Joso 1.00
a [ ] [
0 2 /\
0 & e
T T T
-1 0 1
q

FIG. 8. Front behavior in region I for p,=0.70. The width
of the front diverges logarithmically as A —hgy,. Parametric
plots of the front in the g-p plane are shown for different values
of the control parameter 4 corresponding to the hollow circles
in the w vs h plot. As h—hgy, =1.182, the front converges to-
wards a concatenation of 21 and 10 trajectories with a sharp an-
gle at phase 1.

spatial variable x. In the language of the mechanical
analogy, the 20 trajectory at h 4, is again a concatenation
of the 21 and 10 trajectories, since the friction of all three
is the same. The concatenated trajectory is the limiting
case of a 20 trajectory where the particle spends an ever-
longer time and makes an ever-sharper turn near phase 1.

B. Region II

At p;20.819 the w-h curve develops two saddle-node
bifurcations near 2 =1.10, which we denote by SN, and
SNg. For region II, ie., 0.819<p, <0.845, we have
hsna <hsnp <hg,. Figure 9 shows a plot of w as a func-
tion of h for p, =0.84, accompanied by parametrized g-p
representations of the profiles. We see that three solu-
tions exist over the range hgy, <h <hgyg. To under-
stand how multiple solutions can arise, consider the ex-
treme case of thin but widely separated hills. In this case,
one expects two solutions, one directly connecting hills O
and 2, the other bouncing off hill 1. They will exist when-
ever the three hills are well-enough separated, i.e., when-
ever the hill widths are much smaller than the distances
between them.

Since all of the steady 20 solutions are stable for p, be-
longing to region I, we may argue by continuity in p, that
solutions far from the new saddle-node bifurcations con-
tinue to be stable in region II. Specifically, the low-width
solution that exists for 4 <hgy g and the high-width solu-
tion that exists for hgy, <h <hgy, are both stable. Be-

P1=0.84
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FIG. 9. Front behavior in region II for p,=0.84. Two
saddle-node bifurcations SN, and SN cause a region of hys-
teresis in the front width to develop. Corresponding to the hol-
low circles are parametric plots, illustrating the evolution of
front solutions. At h =1.11, the solid curve is the unique and
stable 20 solution. By # =1.135, an additional pair of solutions,
one stable (dotted) and one unstable (dashed) has been created
via SN,. The plot at A =1.165 immediately precedes the de-
struction of a pair of solutions (solid and dashed curves) via
SN;. The single remaining dotted solution at A =1.189 disap-
pears by diverging at DIV.

cause the stability of the solution branch changes if and
only if a saddle-node bifurcation is encountered, the
intermediate-width solution that exists for
hsno <h <hgyp is unstable. In this range of A, there are
two stable solutions, and one could in principle observe
hysteretic transitions between them. But since the upper
and lower branches are both finite-width solutions, it
would be difficult in practice to detect such transitions.
For this reason, we shall continue to focus on the split-
ting transition from a steady, finite front to an unsteady,
ever-widening front. In region II, this transition occurs
at h =hg,, with the same qualitative behavior as in re-
gion L.

C. Region III

The location of the second saddle-node bifurcation
hgn p increases rapidly with p;. At p, =0.845, the saddle
node crosses the divergence: hgyz=hgy, =1.189. This
marks the beginning of region III, which extends over
0.845<p, <1.146. For each p, in region III, the in-
equality hgy, <hgy, <hsnpg<hgyo is satisfied. A typical
case, p; =0.88, is shown in Fig. 10. As before, continuity
in p, dictates the stability of the solutions.

In region III, the multiple solutions imply that the
splitting transition is hysteretic. For h <h;,, finite-width
20 solutions will not split. For hgy, <h <hgyp, a large
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FIG. 10. Front behavior in region III for p,=0.88. This re-
gion differs from region II in that the second saddle-node bifur-
cation SNz now occurs after DIV, making the splitting transi-
tion hysteretic. Parametric curves correspond to the open cir-
cles, with solid and dotted curves representing stable solutions
and the dashed curve an unstable one.

enough perturbation will split the stable 20 solution. The
resulting 21 and 10 fronts then separate with a finite
asymptotic velocity, roughly proportional to (h—hy;,).
As h — hgy g, the perturbation required to split the front
decreases, until it vanishes at hgyg. For h>hgyg, any
front will split. If the control parameter is subsequently
reduced, the 20 front will not reappear until h <hg;,,
meaning that the range of observable hysteresis is
hsnp—hgiy- Thermal fluctuations, which we have been
neglecting, will reduce the range of hysteresis actually ob-
served.

Figure 11 shows the velocity of the 10, 21, and 20 solu-
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FIG. 11. Velocity curves vs A for region III for p, =0.85. In
contrast to Fig. 6, the v,, curve is not sandwiched between v,
and v,,;. After turning sharply at the saddle-nodes SNg and
SN,, vy does eventually approach asymptotically the intersec-
tion between the v,, and v,; curves as in the one-order-
parameter case.

DYNAMICAL MECHANISM FOR THE FORMATION OF . ..

3185

tions as functions of h. The divergent trajectory of
infinite width at hg, is always the concatenation of 21
and 10 solutions with equal velocities v,; =v,,. (See the
parametrized trajectories of Figs. 8—10.) In region III,
20 solutions exist for h > h 4, where v, >v,;; hence it is
clear that inequality v,y <v,y <V, is violated. However,
the inequality does continue to hold for 20 trajectories
that pass sufficiently close to hill 1. The saddle-node bi-
furcation always occurs at hgy, <hg, and so w(h) ap-
proaches the divergence line from the left. [Were hgy,
to cross hg;,, it would disappear and an infinite portion of
the w (&) curve would change its character and stability.]
Solutions of sufficiently high width always satisfy & Shy;,
and vy <V, <V,

D. Region IV

At p,=1.146, the second saddle-node bifurcation
meets the hill O spinodal: hgyg=hg, o~ 140. This marks
the beginning of region IV. For h > hg,,, phase 0 is un-
stable and spontaneously decays to phases 1 or 2. At that
point, it is no longer meaningful to describe fronts involv-
ing phase 0. (In fact, thermal fluctuations make this true
at values of A slightly less than hg,,.) This case is illus-
trated in Fig. 12, for p; =1.20. What distinguishes the
splitting transition in region IV is that a finite perturba-
tion is needed to split a 20 front for any permissible value
of h. The size of the required perturbation grows as we
go further out into region IV, i.e., with increasing p,. At
some point, it will be so large as to make the splitting
transition impossible in practice. Region IV extends over
p;>1.146.

E. Summary of regions I-IV

We have seen that, for increasing p,, the splitting tran-
sition is continuous (regions I and II), then hysteretic (re-
gion III), then finite amplitude (region IV). This evolu-
tion is summarized in Fig. 13, which traces as a function
of p, the critical values of h: the spinodals at hg,; and

1.0
1V P;=1.20

2

-

§ 0.5 —

=

0.0 T I I
0 100 200

Control parameter h

FIG. 12. Front behavior in region IV for p,=1.20. Here,
the w-h curves intersect the spinodal line h,,. Thus the two
separate branches of the w-h curve never meet.
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g0, the saddle-nodes at hgy, and hgyg, and the diver-
gence hg,. The successive intersections of hgy g with the
other critical curves delimit the four regions. As previ-
ously stated, the intersection of hgy g with hgy, separates
regions I and II and takes place at p, =0.819. Its inter-
section with hy, at p, =0.845 separates regions II and
I11, and its intersection with h,q at p, =1.146 separates
regions IIT and IV. Each of these p; values is thus a
point of codimension two, where two critical & curves in-
tersect.

Generically, two saddle-node bifurcations meet in a
cusp [27], which can be seen in the expanded graph in the
lower part of Fig. 13. Another feature visible in Fig. 13 is
that hgyp intersects the spinodal line hg,, transversely.
We see that hgy, approaches hg, asymptotically from
below as p; — . Recall that this implies that the diver-
gence is always approached from below, which in turn
implies that inequality (12) is satisfied for sufficiently wide
20 trajectories.

1000 S
=
5 100 ~
E
5 10 H
[}
o 1 -
E ‘
s 0.1
(=]
&)
0.01 I oI I v
T T
0.0 0.5 1.0 1.5
P
14
B (b)
5 1.3
2
£
-]
S 124
[=%
=
e 114
(=3
&)
I 11 111
1'0 T T T T
0.75 0.80 0.85 0.90 0.95 1.00
P

FIG. 13. Critical curves as a function of p, for hill 1 located
at ¢;=0. Shown are the spinodals SP, and SP, (heavy solid
curves), the saddle-nodes SN, and SN (light solid curves), and
the divergence DIV (dashed curve). Intersections of SNg with
other critical curves divide the p, axis into regions I-IV. (b) In-
set showing the intersection of the two saddle-node bifurcation
curves in a cusp, as expected generically. The SN, curve ap-
proaches DIV asymptotically, while the SNy curve intersects
DIV transversely.
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F. Other angles

We now allow the position of hill 1 to vary over the en-
tire g-p plane, extending our results to ¢;70. It is con-
venient to describe the position of hill 1 by polar coordi-
nates r=1/¢2+p? and tan6=p,/q,. Thus the cases
described above all had angle 8=w/2, with p, playing
the role of the radius r. Figure 14 shows a collage of
graphs similar to Fig. 13. Critical 4 values are plotted as
a function of r, but now for a variety of angles 6. Placing
hill 1 at +p, or at —p, should lead to the same scenario
(interchanging p — —p), which implies a symmetry be-
tween (7+80) and (7—6). We use this to show 6 and
(m—0) on one graph, with the understanding that these
two angles actually comprise a single diameter.

Away from 6=0 and , the qualitative features of the
/2 scenario persist in Fig. 14. The width of the 20 solu-
tion continues to diverge at the intersection of v,y(4) and

6 =m/2 /2 SP,

Control Parameter h

1.5 1.0 0.5 0.0 0.5 1.0 15
Radius r

FIG. 14. Critical curves as a function of r for representative
values of 6. Symmetry allows angles 8 and m— 60 to be plotted
along their common diameter. Spinodals are heavy solid
curves, DIV the dashed curves, SNy the light solid curve (SN, is
too close to DIV to be shown). For each angle, intersections of
SNy with other critical curves divide the r axis into regions
I-IV. The 7/2 scenario remains qualitatively unchanged ex-
cept near 6=0, where SP, cuts off DIV.
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v,;(h) which remains at hy,~1.1. The saddle-node bi-
furcation curve hgy,(7) cannot be seen on the figure, but
it continues to join hgyp(r) at a cusp and to approach
hg,(r) asymptotically from below. For each angle 0
away from 0 or m, regions I-IV are separated by
codimension-two points, which we denote by r;;(6),
rim(6), and ry v(6). As in the 7/2 case, these critical
radii are defined by the successive intersections of
hsnp(r) with the other critical curves hgn,(7), g (r),
and h,o(7).

As we increase 6 from 6=1/2, the saddle-node curve
hgn g becomes flatter, initially enlarging the radial extent
of regions II and III. As 6— 7, however, the effect of
flattening is soon counterbalanced by the drastic fall in
spinodal ko, which precipitates the beginning of region
IV. As hg, falls, hy,, rises. For @=m, hills 0 and 1 are
very close together and separated by a shallow saddle:
only small % variations are necessary for one of the hills
to overwhelm the other. Near 6=, hg, passes through
the narrow channel between the two spinodals. The
saddle-node curves are also thus confined, and their ex-
tent in 4 and in r becomes infinitesimal. When 6=, the
two spinodals meet at » =1, where the positions of hills 1
and O coincide and no height difference can preserve both
hills. The reappearance of hg;, for r > 1 and 6= can be
understood via pictures similar to those in the lower part
of Fig. 6, but with hill 1 to the left of hills O and 2. With
this arrangement, it is solution 21 which is threatened by
changes in A and which must obey a sandwiching inequal-
ity. The parametrization (3) implies that for A X hg,,
there exists a trajectory which begins at 2, crosses 0, and
continues leftwards almost to 1 before reversing direction
and coming to rest again at 0. At h =hg;, this trajectory
is the concatenation of 21 and 10 trajectories with
Uz1 = V1o-

The situation is quite different for small 6. We see
from Fig. 14 that curve hgyp becomes more vertical, in-
tersecting the rising spinodal A, at a steeper angle. The
curve hgyg extends over a small range of r and a large
range of h; the transition between regions I and IV occurs
over a small radius. For 8—0 and r—1, the spinodal
hg,, rises to intersect and annihilate hg;, and its accom-
panying saddle-node curves. We denote the region for
which h g, no longer exists as region A and the critical
radius separating regions I and A as r; ,. In region A,
there are no steady 20 front solutions for & between the
spinodals hg,; and A : any initial condition will split.

We can again use the mechanical analogy to gain in-
sight into this behavior. For 6=0 and r > 1, the hills are
ordered as 0,2,1. Because hill 2 is higher than hill 1, v,,
must be positive. Because a 10 trajectory must pass over
the higher hill 2, v,; must be negative. Hence the v,, and
V1o can never cross and a divergent 20 trajectory which is
the concatenation of 21 and 10 trajectories can never ex-
ist. Since our parametrization, Eq. (3), calls for the
height difference between hills 2 and 1 to remain (approx-
imately) 0.1, the difference between v,; and v, also
remains finite for 6=0. We can therefore extend the re-
gion in which v,, =v,, is forbidden to finite values of 6.
This provides a heuristic explanation for the disappear-
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FIG. 15. Plot of regions I-IV and A in the ¢,-p; plane.
Boundaries are shown as lines joining the codimension-two
points ry(6) (circles), ry(0) (triangles), ryy v(6) (squares),
and r; o(6) (diamonds). Region II consists of a thin sliver, not
visible on this scale. In region A there are no steady 20 fronts
for the allowed h values. Dashed lines are hypothesized con-
tinuations of existing boundaries into the atypical regions where
the two spinodals come together. Below are typical w vs & plots
for the four regions.

ance of hgy, and the resulting breakdown in the splitting
scenario at small values of 8. Many features of the evolu-
tion as 8—m or 0 and r— 1, i.e., as phase 1 approaches
phase O or 2, are consequences of our particular parame-
trization and we shall not emphasize them further.

In Fig. 15, we plot the codimension-two points collect-
ed from Fig. 14 as well as other intermediate angles.
These partition the (g;,p;) plane into regions I-IV and
A. Figure 15 summarizes all of our results, showing the
phase-1 positions where the splitting transition is con-
tinuous, hysteretic, and finite amplitude.

V. DISCUSSION

A. Additional order parameters

We have seen in Sec. IV that for one order parameter,
20 trajectories must pass over hill 1 and, hence, that they
are unique and obey the inequality v, <v,y <v,,. For
two order parameters, this is no longer true, and the
splitting transition is qualitatively different as a result.
Will additional order parameters change the two-order-
parameter scenario? At first glance, the answer is no: for
three phases, we can always define two order parameters
whose coordinates span the plane defined by the three hill
maxima. An analogy can be made to motion in the pres-
ence of three repelling bodies. A particle traveling from
one repellor to another moves in the plane defined by the
three repellors. Were it to escape from the plane, there
would be no force to send it back.
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However, the situation is subtler: if the free energy has
saddle points that lie outside of the plane defined by the
three maxima, then front trajectories can in fact deviate
from the plane. To understand this, let us consider again
the two-order-parameter case, where, by construction,
motion is confined to the plane. Although one expects
trajectories between two hills to lie within the triangle
defined by the straight lines connecting the three hills, in
fact, saddles outside the triangle can deflect the trajec-
tories back in. We commonly observe this in our simula-
tions. Similarly, saddles lying outside the order-
parameter plane can deflect trajectories back into the
plane. (See [13], pp. 57-64, 219-220, for a discussion.)
In this case, we could replace our plane with a two-
dimensional curved surface generated by the ensemble of
front trajectories. In practice, of course, this surface
would be hard to compute, and the more relevant ques-
tion is whether projecting the motion onto the plane
defined by the three maxima constitutes a good approxi-
mation. The saddles will be in the same plane as the
maxima if the free energy is symmetric under reflection
about that plane, a condition satisfied by a free-energy
function that is the sum of spherically symmetric poten-
tials. Therefore free-energy functions of the form (1) with
many order parameters would still have trajectories
confined to a plane. The only way for a saddle to be lo-
cated off the plane defined by the three maxima is if the
shape of each hill about its maximum is locally not a cir-
cular paraboloid. If, as seems reasonable, their anisotro-
py is small, then saddles will not lie far outside the plane.
Front trajectories will then travel close to the plane and
we expect that the splitting-transition scenario will not be
strongly affected.

B. Parametrization of the free energy

In our discussion so far, we have adopted an apparent-
ly arbitrary parametrization of the free energy (potential),
in which hill O had a fixed height of 1, hill 2 had an ad-
justable height A, and hill 1 was always A —0.1. In this
section, we argue that such a parametrization is a reason-
able description of the effects of varying temperature,
provided that we set (h —1)x(T,,—T). At the 20 coex-
istence temperature, phase 1 is by definition metastable.
Since hills O and 2 are of equal height, we must have
Vo <0 and v,; >0. Because the free energies of the two
solid phases 1 and 2 descend in lock step with respect to
that of the liquid phase 0, v,, will increase, while v,; will
remain approximately constant. [Recall from Egs. (9)
and (10) that for small deviations from equilibrium, phase
i propagates into phase j with v;; < AF;;.] Eventually, we
expect v,, to become larger than v,;, which is the neces-
sary condition for front splitting.

This argument confirms the intuition that metastable
phase are formed most easily when the metastable phase
closely resembles the stable phase. Here, we see that
“resembles” must be interpreted as having similar values
of order parameters and having nearly equal free ener-
gies. If the metastable phase is too far away in free-
energy space—if the distance between maxima greatly
exceeds the hill widths—the phases will not ‘“‘interact”

and there will be no splitting transition. If the free ener-
gy of the metastable phase is much higher than that of
the stable phase, the rule for splitting to occur, vy > v,,
will not be satisfied.

C. Relation to surface melting and wetting transitions

The splitting transition is closely related to van der
Waals models of surface melting. Near the triple point of
a pure material, the solid-vapor interface can develop a
thin liquid layer whose width diverges logarithmically as
the triple point is approached [28]. Our equations are the
same as those used in such models of surface melting,
provided one changes the parametrization of hill heights
so that ho=h,=1, hy=h. In that case, h =1 would
represent the triple point where phases 0, 1, and 2 coexist
[29,30]. Our front splitting transition is thus the non-
equilibrium generalization of surface melting. Note that
nonequilibrium effects on surface melting have been pre-
viously considered [31]; however, since such effects are
negligible in experiments on surface melting, their full
implications were not pursued.

It is interesting to compare the criterion for surface
melting with that for the splitting transition we have been
discussing. For surface melting to occur, the necessary
condition is that the solid-vapor surface tension o,,
equals the sum of solid-liquid o,; and liquid-vapor o
surface tensions. For the splitting transition, the condi-
tion is that the liquid-stable front velocity v,, equal the
stable-metastable v,; and the metastable-liquid v, front
velocities. The condition on interfacial tensions in sur-
face melting may be traced to the requirement that the
free energy be minimized. The condition on front veloci-
ties is one on the response functions. [The velocity is a
response function since v (k) gives the front velocity in
response to the nonequilibrium stress represented by 4.]
In this case, we do not know of any function that is being
minimized when the 20 front splits.

D. Applications to experiment

Splitting transitions ought to be present in both
pattern-formation experiments and during phase transi-
tions. In both cases, complications may occur.

For pattern-forming systems, several patterns may
coexist over a small range of parameter space. For exam-
ple, spatially uniform two-dimensional systems generical-
ly exhibit hexagon, line, and square patterns over small
ranges of parameters. Experimental realizations include
non-Boussinesq Bénard convection [32] and the Faraday
instability of a vibrating liquid layer [33]. For such ex-
periments, the splitting transition would correspond to
the breakup of a moving domain wall separating two pat-
terns. One complication is that the instabilities responsi-
ble for pattern formation are often supercritical bifurca-
tions, which are analogous to mean-field second-order
phase transitions. Because we have been discussing first-
order phase transitions, the corresponding instabilities
ought to be subcritical. The fronts between stable and
unstable states created by a sudden control-parameter
variation in the presence of a supercritical bifurcation
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can still propagate but calculating their velocity is a sub-
tle problem [19]. A second complication is that the am-
plitude equations describing instabilities are not always
derivable from a potential. The equations may still be
written in a form similar to the one we have studied here,
but the coefficients will be complex. We have yet to
study this case. A third, more obvious complication is
that these patterns exist in two spatial dimensions,
whereas our calculations are for one spatial dimension.

Although the splitting transition has not, to our
knowledge, been observed in convection or the Faraday
experiment, one of us has observed similar phenomena in
a moving front separating twisted from nontwisted re-
gions of a chiral nematic liquid crystal [34,35]. As the
front velocity is increased, different patterns of twisted
nematic are indeed left behind the front. Although sys-
tematic observations were not made at the time, the split-
ting transition is either second order or very nearly so in
that case. One difficulty in analyzing this case is that, al-
though the free energy may be expressed in terms of two
nonconserved order parameters, the function itself is very
complicated.

Another pattern-formation system where the splitting
transition may have been observed is in moving nematic-
isotropic interfaces of liquid crystals. Above a critical ve-
locity, a region of twisted nematic detaches from the in-
terface and leaves a triangular patch behind the interface
[36-38]. Here, the detachment of the twisted-nematic re-
gion is strongly hysteretic as the nematic-isotropic front
velocity is varied [39], so that this would be an example
of a first-order splitting transition. We emphasize that al-
though both of these experiments display behavior sug-
gestive of splitting transitions, no quantitative analysis
has yet been done.

For thermodynamic situations, there are two points to
consider. The first is that most phase transitions involve
conserved order parameters. Even the prototypical situa-
tion we referred to in the Introduction, the formation of
graphite or diamond, requires a conserved order parame-
ter to model the density difference between the two
phases. Introducing conserved order parameters does
not change the general form of free energy one considers
but does change the equations of motion somewhat. Ox-
toby and Harrowell, however, have recently considered
the effects of density differences on the kinetics of solid-
liquid interfaces and found them usually to be small [40].
A potentially more interesting situation is that of a
binary mixture or alloy, where concentration is a con-
served order parameter. In an alloy, Cahn has shown
that there may be no unique ordering of the stability of
different phases. For example, one may find cir-
cumstances where a given phase 2 cannot nucleate in the
presence of metastable phase O but can in the presence of
a different metastable phase 1, [41]. Thus, whether a
front will split may depend on the detailed history and
preparation of the sample.

The second point concerns practical experiments. One
might wonder how fast, in real units, fronts must travel
before they split. A rough answer is that in Egs. (4) and
(5), the only length scale is the bare correlation length &,
and the only time scale is the microscopic relaxation time
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7. For ordinary solids (e.g., metals), £~10"% cm and
7~10"!% sec. The length scale is characteristic of the
thickness of the solid-liquid interface and is set by the lat-
tice constant of the solid. The time scale can be thought
of as roughly the mean time between collisions in the
liquid, or, more to the point, the time it takes an atom on
the liquid side of an advancing solid-liquid front to find
its place in the solid phase. The characteristic front ve-
locity is then about 10* cm/sec, which is indeed compara-
ble to the solidification velocities achieved by techniques
such as splat cooling.

Such rapid cooling rates make experiments difficult to
control and interpret. Thus it is problematic to know
whether some of the metastable phases created by splat
cooling are in fact due to the splitting transition. Anoth-
er approach is to search for systems where the scale ve-
locity is smaller. The key observation is that materials
made of larger molecules or having structures with larger
repeat distances will have much slower relaxation times.
Thus we anticipate that systems such as liquid crystals or
copolymers, with their large molecules and high viscosi-
ties, may be good candidates to search for splitting insta-
bilities.

VI. CONCLUSIONS

In summary, we have introduced a dynamical mecha-
nism to explain the formation of metastable states. As
stated in the Introduction, the splitting transition de-
pends on two conditions. First, the velocity of the
metastable-liquid front (v,q) must exceed that of the
solid-metastable front (v,;). Second, given the condition
on velocities, realistic initial conditions must lead to split-
ting. We have seen that the first condition should be
satisfied for sufficiently large undercooling, while the
second can be expected to hold if the metastable phase is
close enough to the other two phases in order-parameter
space.

Although the model of the splitting transition we have
studied in this paper is still too simple to be compared
directly to experiment, it does suggest a number of
theoretical extensions and experimental projects that, to-
gether, will lead to stringent tests of the relevance of the
kind of transition we have considered in this paper.
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APPENDIX: NUMERICAL METHODS

To solve Egs. (7) with boundary conditions (8) numeri-
cally, we discretize the real line — o <x < © via a tanh

mapping
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x, =X arctanh(2n/N), n=—N/2,...,N/2 . (A1)

Grid points x4y, are at = o, respectively, and the order
parameters p (x4 ,,) and g(x .y ,,) are set equal to their
boundary values (8). Grid points x4 (n,-)
==+X arctanh(1—2/N) are the last finite points in the
domain. The scale factor X is set to some multiple—
usually 10—of the width w of the solution, i.e., the por-
tion of the real line over which p and g vary from their
boundary values. We study mainly solutions with two
fronts (the 20 solution), separated approximately by w,
which diverges as a function of the control parameter A
(e.g., Figs. 3 and 7). This imposes two distinct numerical
requirements on the grid (Al): X must be sufficiently
large to contain both fronts, and each front must be
resolved by a sufficient number of points. For a fixed
number N + 1 of points, this leads to a maximum width w
for solutions which can be represented on the grid (Al).
(See Fig. 16.) Solutions with only one front, i.e., the 21 or
10 solutions, do not suffer from this constraint.

We represent the spatial derivatives d /dx and d?/dx?
by centered finite-difference formulas on the grid (A1).
Equations (7) with boundary conditions (8) then consti-
tute an indeterminate system of 2(N + 1) equations in the
2(N +1)+1 unknowns {g(x,),p(x,),v}. The transla-
tional invariance of (7) and (8) can be broken by imposing
any condition which fixes the midpoint of the solution.
We usually use

q(0)=1[g(0)+g(—w)]. (A2)
For cases in which p70, we sometimes impose

d—p(0)=0 , (A3)

dx

or, more generally, a linear combination of (A2) and (A3).

Because system (7), (8), and (A2) can have turning
points and multiple solutions over some ranges of the
control parameter 4, the values {g(x,),p(x,),v} cannot
be considered to be functions of 4, and must be calculated
by numerical continuation (see, e.g. [42]). That is, we

10

Width w

hg;, = 1.189
0 T T
1.10 1.15 1.20 1.25
Control parameter h

FIG. 16. Width of the 20 front vs A for 100- and 500-point
resolution in x containing authentic w=2 and spurious w >3
saddle-node bifurcations.  (Spurious bifurcations reflect
insufficient resolution.)
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treat s as an additional unknown and progressively calcu-
late a branch, or curve of solutions described by the
2(N+1)+2 values {g(x,),p(x,),v,h}. An additional
equation must now be appended to the enlarged system,
as we shall now describe.

We first compare the two most recent solutions and
calculate which of {q(x,),p(x,),v,h} has changed the
most (weighing changes in 4 and v differently from the
other variables). Let us call this distinguished continua-
tion variable H, and predict the remaining components of
the next solution point via linear or quadratic extrapola-
tion in H. We then carry out Newton iteration to solve
system (7), (8), and (A2), with the added condition that H
retain its predicted value, i.e.,

H({q(x,),p(x,)0,h})=H 4 . (Ad)

Far from a saddle-node bifurcation the continuation vari-
able is h. Near a saddle-node bifurcation hgy, however,
any  other  variable, e.g., v behaves like
lvgn —vl < |hgy —h |72, Hence, inevitably another vari-
able will replace h as the continuation variable H as a
saddle-node bifurcation is approached.

Each Newton iteration requires the solution of a linear
system, setting the right-hand side equal to

JA{q(x,),p(x,)v,h}, (AS)

where J is the Jacobian of the combined system (7), (8),
(A2), and (A4). The 2(N +1)X2(N +1) submatrix of J
arising from (7) and (8) is septadiagonal. Extra rows re-
sult from the supplementary equations (A2) and (A4), and
extra full columns result from the supplementary vari-
ables v and h. J can be factored into lower and upper tri-
angular matrices in order to solve (A5) using time and
storage proportional to N.

The only subtlety in forming J is the necessity for
differentiating Egs. (7), more specifically the free energy
F(q(x,),p(x,)), with respect to h. F depends on h not
only explicitly, but also implicitly via the nominal posi-
tions (§;,p;). Thus the last column of J contains entries
of the form

2 ) B
or g [or % or

(A6)
/=o|9g, ok 3p, oh

Fortunately, the quantities dg; /dh,0p; /dh are computed
as byproducts of the Newton iteration for the nominal
positions (2), while the other partial derivatives in (A6)
are easily evaluated from (1) and (3)

The solution profiles used to initiate continuation at
low values of h are smooth tanh-like interpolation be-
tween the boundary values, i.e., for g,

I(—o0)—q(x)

1+e!0 A7

qg(x)=q(0)+

Information acquired as we proceed along the branch is
used to calculate the next solution. As is standard, AH is
set to be inversely proportional to the number of Newton
iterations required to solve for the previous solution. As
each new solution is calculated, its width is used to deter-
mine a new X. A new grid is calculated, and the solution
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interpolated onto that grid, along with the two previous
solutions.

Figure 16 illustrates the behavior of the finite-
resolution continuation algorithm as the width of the
solution diverges. The width w calculated using N =100
points agrees with that calculated using 500 points when
w < 3. For larger widths, the two curves diverge wildly.
The insufficient resolution of the N =100-point curve is
revealed by the spurious saddle-node bifurcations at high
widths. (Such a phenomenon is also observed, for exam-
ple, in a contour-dynamics simulation of vortex patches,
where an increasing number of points along a contour
eventually fails to represent a cusp in the asymptotic
solution [43].) These spurious bifurcations reflect only a
breakdown in the representation of solutions to (7), (8),
(A2), and (A4) on the finite grid (A1): like a polynomial,
the discretized system of coupled algebraic equations
must gain and lose roots in pairs via saddle-node or pitch-
fork bifurcations. The N =500 representation also even-

tually breaks down, at still higher widths. Figure 16 also
shows a pair of authentic saddle-node bifurcations near
w =2. These survive increased resolution and reflect
saddle-node bifurcations undergone by the differential
equation on the infinite real line.

In order to study diverging traveling front solutions
like that depicted in Fig. 5, which are not stationary in
any moving frame, we integrate the time-dependent equa-
tions (6) in an adaptively translating frame [44]. We seek
to define a frame position ¢(¢), measured in the stationary
frame, which is midway between the two fronts. Trans-
forming x —x +¢(¢) requires adding to the Egs. (6) extra
terms ¢,q, and ¢,p,. We calculate ¢(¢) at each time step
by updating the integral of the average velocity of the
two fronts in the stationary frame. We then use Crank-
Nicolson time stepping to propagate the diffusive terms
in (6), and Adams-Bashforth to propagate the remaining
terms connected with the free energy and the moving
frame.
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