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A turbulent–laminar banded pattern in plane Couette flow is studied numerically. This
pattern is statistically steady, is oriented obliquely to the streamwise direction, and
has a very large wavelength relative to the gap. The mean flow, averaged in time and
in the homogeneous direction, is analysed. The flow in the quasi-laminar region is not
the linear Couette profile, but results from a non-trivial balance between advection
and diffusion. This force balance yields a first approximation to the relationship
between the Reynolds number, angle, and wavelength of the pattern. Remarkably,
the variation of the mean flow along the pattern wavevector is found to be almost
exactly harmonic: the flow can be represented via only three cross-channel profiles as
U(x, y, z) ≈ U0(y)+U c(y) cos(kz)+U s(y) sin(kz). A model is formulated which relates
the cross-channel profiles of the mean flow and of the Reynolds stress. Regimes
computed for a full range of angle and Reynolds number in a tilted rectangular
periodic computational domain are presented. Observations of regular turbulent–
laminar patterns in other shear flows – Taylor–Couette, rotor–stator, and plane
Poiseuille – are compared.

1. Introduction
Pattern formation is associated with the spontaneous breaking of spatial symmetry.

Many of the most famous and well-studied examples of pattern formation come from
fluid dynamics. Among these are the convection rolls which spontaneously form in a
uniform layer of fluid heated from below and the Taylor cells which form between
concentric rotating cylinders. In these cases continuous translational symmetries are
broken by the cellular flows beyond critical values of the control parameter – the
Rayleigh number or Taylor number.

A fundamentally new type of pattern has been discovered in large aspect-ratio shear
flows in recent years by researchers at GIT-Saclay (Prigent & Dauchot 2000; Prigent
et al. 2002; Prigent et al. 2003; Prigent & Dauchot 2005; Bottin et al. 1998). Figure 1
shows an example from plane Couette experiments performed by these researchers.
One sees a remarkable spatially periodic pattern composed of distinct regions of
turbulent and laminar flow. The pattern itself is essentially stationary. The pattern
wavelength is large compared with the gap between the plates and its wavevector is
oriented obliquely to the streamwise direction.

The pattern emerges spontaneously from featureless turbulence as the Reynolds
number is decreased. This is illustrated in figure 2 with time series from our numerical
simulations of plane Couette flow for decreasing Reynolds number (conventionally
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Figure 1. Photograph of a turbulent–laminar pattern in plane Couette flow from the Saclay
experiment. Light regions correspond to turbulent flow and dark regions to laminar flow. The
striped pattern of alternating laminar and turbulent flow forms with a wavevector k oblique
to the streamwise direction. The wavelength is approximately 40 times the half-gap between
the moving walls. The lateral dimensions are 770 by 340 half-gaps and the Reynolds number
is Re= 385. Figure reproduced with permission from Prigent et al.
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Figure 2. Space–time plot from numerical simulations of plane Couette flow showing the
spontaneous formation of a turbulent–laminar pattern at Re= 350. The kinetic energy in the
mid-plane is sampled at 32 equally spaced points along an oblique cut (in the direction of
pattern wavevector) through three wavelengths of the pattern. At time zero, Re= 500 and the
flow is uniformly turbulent. Over about 3000 time units Re is decreased in steps to 350, and
then held constant.

defined based on half the velocity difference between the plates and half the gap). At
Reynolds number 500, the flow is uniformly turbulent. Following a decrease in the
Reynolds number below 400 (specifically 350 in figure 2) the flow organizes into three
regions of relatively laminar flow and three regions of more strongly turbulent flow.
While the fluid in the turbulent regions is very dynamic, the pattern is essentially
steady.

Shear flows exhibiting regular coexisting turbulent and laminar regions have been
known for many years. In the mid 1960s, a state known as spiral turbulence was
discovered (Coles 1965; Van Atta 1966; Coles & Van Atta 1966) in counter-rotating
Taylor–Couette flow. Consisting of a turbulent and a laminar region, each with a spiral
shape, spiral turbulence was further studied in the 1980s (Andereck, Liu & Swinney
1986; Hegseth et al. 1989). Experiments by the Saclay researchers (Prigent & Dauchot
2000; Prigent et al. 2002, 2003; Prigent & Dauchot 2005) in a very large aspect-ratio
Taylor–Couette system have shown that the turbulent and laminar regions in fact
form a periodic pattern, of which the original observations of Coles and Van Atta
comprised only one wavelength. Analogues of these states occur in other shear flows
as well. Cros & Le Gal (2002) discovered large-scale turbulent spirals in the shear flow
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Figure 3. Computational domain oriented at angle θ to the streamwise–spanwise directions.
The z-direction is aligned to the pattern wavevector while the x-direction is perpendicular
to the pattern wavevector. The turbulent region is represented schematically by hatching.
(a) Domain oriented with streamwise velocity horizontal, as in figure 1. (b) Domain oriented
with z horizontal, as it will be represented in this paper. In (a), (b) the near (upper) plate
moves in the streamwise direction; the far (lower) plate in the opposite direction. (c) View
between the plates.

between a stationary and a rotating disk. Tsukahara et al. (2005) observed oblique
turbulent–laminar bands in plane Poiseuille flow. A unified Reynolds number based
on the shear and the half-gap can be defined for these different flows (Prigent et al.
2003) and is described in the Appendix. When converted to comparable quantities in
this way, the Reynolds-number thresholds, wavelengths, and angles are similar for all
of these turbulent patterned flows. The patterns are always found near the minimum
Reynolds numbers for which turbulence can exist in the flow.

In this paper we present a detailed analysis of these turbulent–laminar patterns.
We will focus on a single case – the periodic pattern at Reynolds number 350. From
computer simulations, we obtain the flow and identify the symmetries of the patterned
state. We consider in detail the force balance responsible for maintaining the pattern.
From the symmetries and harmonic content we are able to reduce the description to six
ordinary differential equations which very accurately describe the patterned mean flow.

2. Preliminaries
2.1. Geometry

The unusual but key feature of our study of turbulent–laminar patterns is the use of
simulation domains aligned with the pattern wavevector and thus tilted relative to the
streamwise–spanwise directions of the flow. Figure 3 illustrates this and defines our
coordinate system. In figure 3(a) a simulation domain is shown as it would appear
relative to an experiment, figure 1, in which the streamwise direction (defined by
the direction of plate motion) is horizontal. The near (upper) plate moves to the
right and the far (lower) plate to the left in the figure. As we have discussed in
detail (Barkley & Tuckerman 2005a , b), simulating the flow in a tilted geometry has
advantages in reducing computational expense and in facilitating the study of pattern
orientation and wavelength selection. The important point for the present study is
that the coordinates are aligned to the patterns. The z-direction is parallel to the
pattern wavevector while the x-direction is perpendicular to the wavevector (compare
figure 3(a) with figure 1).
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Figures 3(b) and 3(c) show the simulation domain as it will be oriented in this
paper. In this orientation the streamwise direction is tilted at angle θ (here 24◦) to
the x-direction. This choice of angle is guided by the experimental results and by
our previous simulations. (In past publications (Barkley & Tuckerman 2005a , b) we
have used un-primed x, z coordinates for those aligned along spanwise-streamwise
directions and primes for coordinates tilted with the simulation domain. Here we focus
exclusively on coordinates fixed to the simulation domain and so for convenience
denote them without primes.) In these tilted coordinates, the streamwise direction is

ex cos θ + ez sin θ ≡ αex + βez, (2.1)

where

α ≡ cos θ = cos(24◦) = 0.913, β ≡ sin θ = sin(24◦) = 0.407. (2.2)

We take Lx = 10, for the reasons explained in Jiménez & Moin (1991), Hamilton,
Kim & Waleffe (1995), Waleffe (2003) and Barkley & Tuckerman (2005a , b).
Essentially, Lx sin θ must be near 4 in order to contain one pair of streaks or spanwise
vortices, which are necessary to the maintenance of low-Reynolds-number wall-
bounded turbulence. Although our simulations are in a three-dimensional domain,
we will average the results in the homogeneous x direction, as will be explained
in § 2.3. For most purposes it is sufficient to view the flow in the z, y coordinates
illustrated in figure 3(c). The mid-plane between the plates corresponds to y = 0.

The length Lz of our computational domain is guided by the experimental results
and by our previous simulations. One of the distinctive features of the turbulent–
laminar patterns is their long wavelength relative to the gap between the plates. A
standard choice for length units in plane Couette flow is the half-gap between the
plates. In the simulation with Lz = 120 and θ = 24◦ shown in figure 2, a pattern of
wavelength 40 emerged spontaneously from uniform turbulence when the Reynolds
number was lowered to Re =350. For this reason, the simulations we will describe
below are conducted with Lz = λz =40. The corresponding wavenumber is

k ≡ 2π

40
= 0.157. (2.3)

This large wavelength, or small wavenumber, expresses the fact that the pattern
wavelength in z is far greater than the cross-channel dimension.

2.2. Equations and numerics

The flow is governed by the incompressible Navier–Stokes equations

∂u
∂t

= −(u · ∇)u − ∇p +
1

Re
∇2u in Ω, (2.4a)

0 = ∇ · u in Ω, (2.4b)

where u(x, t) is the velocity field and p(x, t) is the static pressure. Without loss of
generality the density is taken to be one. The equations have been non-dimensionalized
by the plate speed and the half-gap between the plates. Ω is the tilted computational
domain discussed in the previous section.

No-slip boundary conditions are imposed at the plates and periodic boundary
conditions are imposed in the lateral directions. In our coordinates the conditions are

u(x, y = ±1, z) = ±(ex cos θ + ez sin θ), (2.5a)

u(x + Lx, y, z) = u(x, y, z), (2.5b)

u(x, y, z + Lz) = u(x, y, z). (2.5c)
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Linear Couette flow uL is a solution to (2.4)–(2.5), which is stable for all Re and
satisfies

∇2uL = (uL · ∇)uL = 0. (2.6)

In our tilted coordinate system,

uL = y(ex cos θ + ez sin θ) = y(αex + βez) = uLex + wLez. (2.7)

The Navier–Stokes equations (2.4) with boundary conditions (2.5) are simulated
using the spectral element (x–y)-Fourier (z) code Prism (Henderson & Karniadakis
1995). We use a spatial resolution consistent with previous studies (Hamilton
et al. 1995; Waleffe 2003). Specifically, for a domain with dimensions Lx =10 and
Ly = 2, we use a computational grid with 10 elements in the x-direction and 5
elements in the y-direction. Within each element, we use eighth-order polynomial
expansions for the primitive variables. In the z-direction, a Fourier representation
is used and the code is parallelized over the Fourier modes. Our domain with
Lz = 40 is discretized with 512 Fourier modes or gridpoints. Thus the total spatial
resolution we use for the Lx × Ly × Lz = 10 × 2 × 40 domain can be expressed as
Nx × Ny × Nz = 81 × 41 × 512 =1.7 × 106 modes or gridpoints.

2.3. Dataset and averaging

The focus of this paper is the mean field calculated from the simulation illustrated
by the spatio-temporal diagram in figure 4(a). The velocity field in the portion of the
domain shows high-frequency and high-amplitude fluctuations, while the flow in the
right portion is basically quiescent. We will call the flow on the left turbulent, even
though it could be argued that it is not fully developed turbulence. We will call the
flow on the right laminar, even though occasional small fluctuations can be seen in
this region.

The turbulent–laminar pattern persists during the entire simulation of 14 × 103 time
units. However the pattern undergoes short-scale ‘jiggling’, seen particularly at the
edges of the turbulent regions, and longer-scale drifting or wandering in the periodic
z-direction. We seek to describe the field which results from smoothing the turbulent
fluctuations, but for which drifting is minimal, by averaging over an appropriate
time interval. The desired averaging time interval represents a compromise between
the short and long time scales. We have chosen to average the flow in figure 4(a)
over the shaded time interval [t, t + T ] = [6000, 8000], during which the pattern is
approximately stationary.

The time-averaged flow is homogeneous in the x-direction. This is illustrated in
figure 4(b) where we plot one of the velocity components time-averaged flow over the
interval [6000, 8000]. Cuts at different x locations show that there is essentially no
variation in the x-direction. All other quantities are similarly independent of x. It is
therefore appropriate to consider mean flows as averages over the x-direction as well
as over the time.

We define mean flows as

〈u〉(y, z) ≡ 1

T

1

Lx

∫ t+T

t

∫ Lx

0

u(x, y, z, t) dx dt, (2.8a)

〈p〉(y, z) ≡ 1

T

1

Lx

∫ t+T

t

∫ Lx

0

p(x, y, z, t) dx dt. (2.8b)
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Figure 4. (a) Time series of a turbulent–laminar pattern. The kinetic energy E = u · u/2
is shown along the line x = y = 0 at 32 equally spaced points in z for 0 � t � 14000. The
interval [6000, 8000] used for time averaging is shown in grey. (b) Time-averaged velocity at
five x-locations illustrating the x-independence of the time-averaged flow. We have plotted
1
T

∫
dt(u − uL), the average x-component of velocity with linear Couette flow subtracted, ave-

raged over the interval [6000, 8000] indicated in (a). Colour range from blue to red: [–0.4, 0.4].

U(y, z)

Ψ(y, z)

Eturb(y, z)

P(y, z)
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Figure 5. U (y, z): transverse component of mean flow. Ψ (y, z): streamfunction of in-plane
mean flow. A long cell extends from one laminar–turbulent boundary to the other. Gradients
of Ψ are much larger in y than in z, i.e. |W | � |V |. In the laminar region at the centre,
W,V ≈ 0. Eturb(y, z): mean turbulent kinetic energy 〈ũ · ũ〉/2. There is a phase difference of
λz/4 = 10 between extrema of Eturb and of U . P (y, z): mean pressure field. Pressure gradients
are primarily in the y-direction and within the turbulent region. Colour ranges for each field
from blue to red: U [–0.4, 0.4], Ψ [0, 0.09], Eturb [0, 0.4], P [0, 0.007].

The mean fields obey the averaged Navier–Stokes equations

0 = −(〈u〉 · ∇)〈u〉 − 〈(ũ · ∇)ũ〉 − ∇〈p〉 +
1

Re
∇2〈u〉, (2.9a)

0 = ∇ · 〈u〉, (2.9b)

where

ũ ≡ u − 〈u〉 (2.10)
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is the fluctuating field and 〈〉 denotes the x–t average. The mean fields are subject
to the same boundary conditions as equations (2.4). We denote the Reynolds-stress
force from the fluctuating field in equations (2.9) by F:

F ≡ −〈(ũ · ∇) ũ〉 = −∇ · 〈ũũ〉, (2.11)

We shall focus almost exclusively on the difference between the mean flow and linear
Couette flow, for which we introduce the notation

U ≡ 〈u〉 − uL, (2.12)

as well as P ≡ 〈p〉.
Letting the components of U be denoted by (U, V, W ) and the components of

F be denoted by (F U, F V , F W ), then the averaged Navier–Stokes equations for the
deviation from linear Couette flow in component form become

0 = −(V ∂y + (W + βy)∂z)(U + αy) +
1

Re

(
∂2

y + ∂2
z

)
U + F U (2.13a)

0 = −(V ∂y + (W + βy)∂z)V − ∂yP +
1

Re

(
∂2

y + ∂2
z

)
V + F V (2.13b)

0 = −(V ∂y + (W + βy)∂z)(W + βy) − ∂zP +
1

Re

(
∂2

y + ∂2
z

)
W + F W (2.13c)

0 = ∂yV + ∂zW. (2.13d)

U is required to satisfy homogeneous boundary conditions at the plates

U(y = ±1, z) = 0 (2.14)

and periodic boundary conditions in z.
A system of this type, with three components depending on two coordinates, is

sometimes called 2.5 dimensional. The transverse, or out-of-plane flow U (y, z) appears
only in the first equation and is effectively a passive scalar advected by the in-plane
flow (V, W ) and driven by the Reynolds-stress force F U . The in-plane flow can be
expressed in terms of a streamfunction Ψ where

V ey + W ez = ex × ∇Ψ = −∂zΨ ey + ∂yΨ ez. (2.15)

We shall use both (U, V, W )(y, z) and (U, Ψ )(y, z) to describe the mean flows.

3. Results
We present a characterization of the turbulent–laminar pattern at Re =350. We

describe in detail the mean flow, its symmetries, and the dominant force balances
within the flow. Our goal here is not to consider closures for averaged Navier–Stokes
equations (2.13). We will make no attempt to model the turbulence, i.e. to relate
the Reynolds-stress tensor 〈ũũ〉 to the mean flow U . Instead we use fully resolved
(three-dimensional, time-dependent) numerical simulations of the turbulent flow to
measure both the mean field U and Reynolds-stress force F. From these we extract
the structure of these fields and the dominant force balances at play in sustaining
turbulent–laminar patterns.

3.1. Mean flow

The mean flow is visualized in figure 5 via the transverse, out-of-plane flow U (y, z)
and the in-plane streamfunction Ψ (y, z). Recall (equation (2.12)) that these fields are
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Figure 6. Mean flow profiles in y at four equally spaced locations in z. (a) Centre of the
laminar region (z =0), (b) laminar–turbulent boundary (z = 10), (c) centre of the turbulent
region (z = 20) and (d) turbulent–laminar boundary (z = −10). Components U (solid), V
(dotted), W (dashed) of deviation from linear Couette flow uL. In the laminar region, W ≈ 0,
indicating no deviation from uL. V is very small throughout.
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Figure 7. The same as in figure 6, but with laminar Couette flow uL included.

the deviations of the mean flow from linear Couette flow uL. The mean turbulent
kinetic energy

Eturb ≡ 1
2
〈ũ · ũ〉 (3.1)

serves to clearly identify the turbulent region. In these and subsequent plots, the middle
of the laminar region is positioned at the centre of the figure and the turbulent region
at the periodic boundaries of the computational domain. In figure 5 (but not in
subsequent figures), plots are extended in the z-direction one quarter-period beyond
each periodic boundary to help visualize the flow in the turbulent region. The pattern
wavelength is λz =40, so that z = 30 and z = −10 describe the same point, as do
z = −30 and z = 10.

The mean flow can be described as follows. U is strongest in the turbulent–laminar
transition regions. In the transition region to the left of centre (z = −10) in figure
5, U is negative and primarily in the upper half of the channel. To the right of
centre (z = 10), U is positive and is seen primarily in the lower half of the channel.
Comparison with turbulent kinetic energy shows that the transverse mean flow U

is out of phase with respect to the fluctuating field ũ by λz/4. This has been seen
experimentally by Coles & Van Atta (1966) and Prigent et al. (2002, 2003, 2005).

The in-plane flow Ψ in figure 5 has a large-aspect-ratio cellular structure consisting
of alternating elliptical and hyperbolic points. The flow around the elliptical points,
located in the centre of the turbulent regions, rotates in an anti-clockwise sense,
opposing linear Couette flow. In the vicinity of the hyperbolic points, centred in the
laminar regions, the in-plane deviation from linear Couette flow is very weak (W and
V are nearly zero).
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Figure 8. Mean velocity components seen in three planes with standard orientation for
Couette flow. The turbulent regions are shaded. (a) Velocity components in the streamwise–
spanwise plane at y =0.725 (the upper part of the channel). (b) As (a) except y = −0.725 (the
lower part of the channel). (c) Flow in a constant spanwise cut. The mean velocity is shown
in the enlarged region (d).

Figure 6 shows y-profiles at four key points equally spaced along the pattern: centre
of the laminar region, turbulent–laminar transition region, centre of the turbulent
region, and the other turbulent–laminar transition region. While the V -profile is
plotted, its variation is very small on the scale of U and W and can essentially be
used to indicate the axis. Figure 7 shows profiles for the full mean flow 〈u〉 = U + uL

containing the linear Couette profile.
The U -profiles in figure 7 are S-shaped, of the type found in turbulent Couette flow.

This is to be expected in the turbulent region, even at these low Reynolds numbers.
However, it is very surprising that the U -profile in the laminar region is also of this
form. In the laminar region, local Reynolds stresses are absent (see figure 5) and so
cannot be responsible for maintaining the S-shaped velocity profile in the laminar
regions. The other prominent features in figures 6 and 7 are the asymmetric profiles
at the transition regions.

The relationship between the mean flow field and the regions of turbulence can
be seen in figure 8. Here the flow is shown in the standard orientations. In each
view, the greyscale indicates the size of the turbulent energy and the arrows show
the mean flow within the plane. In (a) and (b), the flow is shown in the streamwise–
spanwise planes located at y = 0.725 and at y = −0.725. Figure 8(c) shows the flow
between the plates, i.e. in a streamwise–cross-channel plane, and figure 8(d) shows an
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Figure 9. Balance of forces in the centre of the laminar region. (a) Forces in the U direction.
Advective terms (solid), viscous terms (dashed), Reynolds-stress terms (dotted). (b) Viscous
terms in the U -direction. (1/Re) ∂2

yU (dashed) dominates dominates (1/Re) ∂2
z U (dotted).

(c) Advective terms in the U -direction. Curves show −β y ∂zU (solid), −W∂zU (dash-dotted),
−αV (dotted), −V ∂yU (dashed). (d) Advective terms in the W -direction (for later reference).
Curves show −β y ∂zW (solid), −W∂zW (dash-dotted), −βV (dotted), −V ∂yW (dashed).

enlargement of one of the laminar–turbulent transition regions. Note that the length
Lz = 40 of our tilted computational domain corresponds to a streamwise length of
Lz/ sin θ = 40/0.407 = 98.3 ≈ 100 and to a spanwise length of Lz/ cos θ =43.78.

The flow in figure 8 can be compared with the mean flow reported by Coles & Van
Atta (1966) in experiments on turbulent spirals in Taylor–Couette flow. Coles and
Van Atta measured the mean flow near the mid-gap between the rotating cylinders
and noted an asymmetry between the mean flow into and out of turbulent regions.
They found that the mean flow into turbulent regions was almost perpendicular to
the turbulent–laminar interface whereas flow out of the turbulent region was almost
parallel to the turbulent–laminar interface. We also observe a striking asymmetry
between the mean flow into and out of the turbulent regions. The orientation of our
mean flow does not agree in detail with that of Coles and Van Atta, but this is most
likely due to the fact that Coles and Van Atta considered circular Taylor–Couette
flow and measured the flow near the mid-gap. Referring to figures 5 and 6, one sees
that the mid-plane (y = 0) is not the ideal plane on which to observe the mean flow
since its structure is most pronounced between the mid-plane and the upper or lower
walls.

Before considering the symmetries and force balances in detail, it is instructive to
consider the dominant force balance just at the centre of the laminar region. Recall
that one of the more interesting features of the mean flow is that the U -profile appears
very similar to a turbulent profile, even in the absence of turbulence in the laminar
region. Here the balance is dominated by advection and viscous diffusion, as shown
in figure 9. Equation (2.13a) for flow in the x-direction is

0 = −(V ∂y + (W + βy)∂z)(U + αy) +
1

Re

(
∂2

y + ∂2
z

)
U + F U. (3.2)

Variations in y dominate variations in z, i.e. the usual boundary layer approximation
(∂2

y +∂2
z )U 	 ∂2

yU holds; see, e.g., Pope (2000). Indeed, approximating the y-dependence
of U by the functional form sin(πy) suggested by figure 6, we have

O

(
∂2

yU

∂2
z U

)
=

π2

k2
=

π2

(2π/40)2
= 400. (3.3)

This is confirmed by figure 9(b). In the centre of the laminar region F U , V , and W are
all negligible, so that −βy∂zU dominates the advective terms, as shown in figure 9(c).
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Thus the balance between advection and viscosity in the laminar region is

β y ∂zU ≈ 1

Re
∂2

yU. (3.4)

This equation is appealingly simple and yet leads immediately to some interesting
conclusions. The first is that a non-zero tilt angle θ is necessary to maintain the
S-shaped U -profile in the laminar region, since otherwise β = sin θ = 0 and U could
be at most linear in y and would in fact be zero, due to the homogeneous boundary
conditions (2.14). The second conclusion follows from consideration of y-parity. The
multiplication by y on the left-hand side reverses y-parity, while the second derivative
operator on the right-hand side preserves y-parity. The conclusion is that U should be
decomposed into odd and even components in y and equation (3.4) should actually
be understood as two equations coupling the two components. Specifically, as can be
seen in figure 6, U is odd in y in the centre of the laminar region, yet ∂zU must be
even for equation (3.4) to hold.

The remainder of the paper is devoted to formalizing, demonstrating and extending
this basic idea.

3.2. Symmetry and Fourier modes

We now consider in depth the symmetry properties of the flow. We start with the
symmetries of the system before averaging, that is, the Navier–Stokes equations (2.4)
and boundary conditions (2.5). The system has translation symmetry in x and z as
well as centrosymmetry under combined reflection in x, y and z:

κxyz(u, v, w)(x, y, z) ≡ (−u, −v, −w)(x0 − x, −y, z0 − z), (3.5)

where the origin x0, z0 can be chosen arbitrarily. Linear Couette flow uL possesses
all the system symmetries, as does the mean flow at Reynolds numbers for which
turbulence is statistically homogeneous in x and z.

Note that in the absence of tilt (θ = 0), the system possesses two reflection
symmetries. These can be taken to be κxyz and reflection in the spanwise direction. For
the tilted domain (at angles other than multiples of 90◦), the only reflection symmetry
is κxyz. This can be seen in figure 3(a): for general tilt angles θ , spanwise reflection does
not preserve the domain, i.e. does not leave the periodic boundaries in place. The ex-
perimental system shown in figure 1 possesses spanwise reflection symmetry and hence
bands can be observed in the either of the two symmetrically related angles, the choice
is dictated by factors such as initial conditions. By design, our tiled computational
domain precludes the symmetry-related pattern given by spanwise reflection.

The transition to the turbulent–laminar patterned state breaks symmetry.
Specifically, both the mean flow and the Reynolds-stress force break z-translation
symmetry but break neither x-translation symmetry nor centrosymmetry. The spatial
phase of the pattern in z is arbitrary, but given a phase there are two values of z0,
separated by half a period, for which the flow is invariant under κxyz, as is typical
for a circle pitchfork bifurcation (Crawford & Knobloch 1991). As can be seen in
figure 5, the values of z0 about which the patterns are centrosymmetric are the centres
of the laminar (z0 = 0) and of the turbulent (z0 = ± 20) regions.

The centrosymmetry operator for our averaged fields U , which depend only on y

and z, is

κyz(U, V, W )(y, z) ≡ (−U, −V, −W )(−y, z0 − z). (3.6)

Since the Reynolds-stress force (F U, F V , F W ) is centrosymmetric in the case we
consider, then the averaged equations (2.13) for the mean field have centrosymmetry.
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z even z odd

y even 0.03% 25.48%
y odd 74.48% 0.01%

Table 1. Energy
∫

dx
∫

dy
∫

dz |U |2/2 of deviation from Couette flow contained in modes
with different symmetries in y and z. Modes with centrosymmetry (opposite parity in y and z)
contain 74.48% +25.48% =99.96% of the total energy. Reflection in z is about the centre of
the laminar region.

z even (cosine) z odd (sine)
z wavenumber 0 k � 2k k � 2k

y even 25.2% 0.3%

y odd 69.7% 4.7% 0.1%

Table 2. Energy contained in z Fourier modes. Modes retained (in boxes) are U0(y),
Uc(y) cos(kz) and U s(y) sin(kz). These contain 69.7% +4.7% + 25.2% =99.6% of the total
energy.

We formalize this further as follows. Any x-independent field g can be decomposed
into even and odd functions of y and z as

g(y, z) = goo(y, z) + goe(y, z) + geo(y, z) + gee(y, z) (3.7)

where, for example, goe is odd in y and even in z − z0. Applying the operator in (3.6)
to (3.7), we obtain

κyz g(y, z) = −goo(−y, z0 − z) − goe(−y, z0 − z) − geo(−y, z0 − z) − gee(−y, z0 − z)

= −goo(y, z) + goe(y, z) + geo(y, z) − gee(y, z). (3.8)

For the field g to be centrosymmetric requires κyz g = g, so that in fact

g(y, z) = goe(y, z) + geo(y, z). (3.9)

Table 1, as well as figure 5, shows that this is indeed the case for U; it holds for F
as well.

We now Fourier-transform in z to further decompose the mean velocity and the
Reynolds-stress force. We find that the z-wavenumbers 0 and ±k have contributions
to U which are an order of magnitude higher than the remaining wavenumber
combinations. See table 2. The deviation from the z average is thus almost exactly
trigonometric, with almost no higher harmonic content. The dominance of these terms
in the Fourier series means that U and F can be represented by only three functions
of y, namely,

g(x, y, z) = g0(y) + gc(y) cos(kz) + gs(y) sin(kz), (3.10)

which is a special case of (3.9), with the first two terms of (3.10) coinciding with
goe(y, z) and the last with geo. Thus, g0 and gc are odd functions of y, while gs is
even. The fields thus consist of a z-independent component g0 and two components
which vary trigonometrically and out of phase with one another, gc dominating in the
laminar and turbulent regions and gs dominating in the boundaries between them.
Moreover, gs dominates in the bulk, since g0 and gc are odd in y and thus zero in
the channel centre.
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cos(0z) = 1 cos(kz) sin(kz)

Figure 10. Fourier decomposition of mean velocity. U -component (solid), V -component
(dotted), W -component (dashed). Wc ≈ −W0, corresponding to the fact that W shows no
deviation from the linear in the laminar region.
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z

Figure 11. Mean flow as a function of z at y = 0.725 (lower curves) and y = −0.725 (upper
curves). U (solid), V (dotted), W (dashed). Points show values calculated from trigonometric
formula (3.10).

That is,

g = g0(y) + gc(y), z = 0: centre of laminar region, (3.11a)

g = g0(y) + gs(y), z = λz/4 = 10: laminar–turbulent boundary, (3.11b)

g = g0(y) − gc(y), z = λz/2 = 20: centre of turbulent region, (3.11c)

g = g0(y) − gs(y), z = 3λz/4 = 30: turbulent–laminar boundary. (3.11d)

Figure 10 shows the three trigonometric components, each a function of y, obtained
by Fourier-transforming U , V , and W . Figure 11 shows U , V and W as functions of
z at locations in the upper and lower channel and compares them with the values
obtained from the trigonometric formula (3.10) using the functions shown in figure 10.
Figures 12, 13 and 14 depict U (y, z), Ψ (y, z) and F U (y, z) with their trigonometric de-
compositions. Each of these figures uses only the three scalar functions of y, figure 10,
to reproduce the corresponding two-dimensional field. As shown by (2.15), the stream-
function Ψ of a centrosymmetric field has symmetry opposite to that of the velocity
components, i.e. it is composed of functions of the same parity in y and z.

Figures 15 and 16 show the three Reynolds-stress forces and their Fourier
decompositions. Each component obeys Fc ≈ −F0, a necessary condition for F to
vanish at the centre of the laminar region, as shown by (3.11a) and also illustrated in
figure 14. More precisely,

F U
c = −1.09F U

0 , F V
c = −1.22F V

0 , F W
c = −1.16F W

0 . (3.12)
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=

U0(y)

+

Uc( y) cos(kz)

+

Us( y) sin(kz)

U(y, z)

–20 –10 0 10 20

Figure 12. Mean velocity U and its trigonometric decomposition. Because the magnitude of
the fields vary, different colour scales are chosen to emphasize qualitative features. U [−0.2, 0.2],
U0 [−0.2, 0.2], Uc [−0.05, 0.05], Us [−0.154, 0.154].

=

+

+

Ψ0(y)

Ψc( y) cos(kz)

Ψs( y) sin(kz)

Ψ(y, z)

–20 –10 0 10 20

Figure 13. Mean streamfunction Ψ (y, z) for deviation of in-plane flow from linear Couette
flow and its trigonometric decomposition. Colour scale is Ψ [0, 0.09], Ψ0 [0, 0.046],
Ψc [−0.042, 0.042], Ψs [−0.008, 0.008].

=

F0
U(y)

+

Fc
U( y) cos(kz)

+

Fs
U( y) sin(kz)

FU(y, z)

–20 –10 0 10 20

Figure 14. Reynolds-stress force FU and its trigonometric decomposition. Colour scale is
FU [−0.017, 0.017], FU

0 [−0.0085, 0.0085], FU
c [−0.0085, 0.0085], FU

s [−0.0085, 0.0085].

In addition,

F ≈ −∂y〈ũṽ〉. (3.13)

as is typical for turbulent channel flows; see e.g. Pope (2000).

3.3. Force balance for U

We now turn to investigating the balance of forces responsible for maintaining the
mean flow profiles. We focus primarily on U , both because it is the component of
largest amplitude and also because it appears only in (2.13a): U is subject to Reynolds-
stress and viscous forces, and is advected by (V, W ) but is not self-advected. We begin
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Figure 15. Reynolds-stress force F = −〈(ũ · ∇)ũ〉 as a function of y. Curves show FU

(solid), FV (dotted) and FW (dashed).
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(a) cos(0z) = 1 (b) cos(kz) (c) sin(kz)

Figure 16. Fourier decomposition of Reynolds-stress force. FU -components (solid), FV -
components (dotted), FW -components (dashed). Fc ≈ −F0, as required for the vanishing
of F at z = 0.

by showing the balance of forces in the U -direction as a function of z at locations
in the upper and lower channel in figure 17. One can again see the centrosymmetry
of each of the forces, i.e. invariance under the combined operations of reflection in
y and z and change of sign. The Reynolds-stress force disappears at the centre of
the laminar region and the advective and viscous forces exactly counter-balance, as
emphasized in the figures on the right. Figure 18 shows another view of this balance,
displaying the forces as a function of y at four locations in z. As previously stated,
∇2U is dominated by ∂2

yU and F U by −∂y〈ũṽ〉. In figure 19, we show the Fourier-space
analogue of figure 18.

We now turn to the more complex advective forces, whose Fourier decompositions
are shown in figure 20. The cos(0z)-component of the advective force is small but
non-zero. Because this term results from the product of trigonometric functions, it
also provides a measure of the generation of higher harmonics, a point which we
will explore further in § 3.5. The advective cos(kz) term is well approximated by the
contribution from advection by wL = βy. The advective sin(kz) term is dominated
near the walls by advection by wL, but in the bulk by advection by V . Properties of
the cos(kz) and sin(kz) modes echo their physical space counterparts: the advective
term is well approximated by advection by wL in the laminar region, as was shown
in figure 9, while the advective forces in the laminar–turbulent boundaries combine
advection by wL near the walls and by V in the bulk.

We illustrate these conclusions via schematic visualizations of the dynamics of U .
Figure 21 illustrates the dynamics in the laminar and turbulent regions. The dynamics
in the laminar region are essentially described by the simple balance between viscous
diffusion of U profiles and advection by linear Couette flow in z, given by (3.4).
Viscous diffusion tends to reduce curvature, but the profiles have greater curvature
upstream (to the left for the upper channel, to the right for the lower channel).
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y = 0.725
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Figure 17. Balance of forces in the U -direction as a function of z at y = ±0.725 for turbulent–
laminar pattern at Re= 350. Advective −(U · ∇)U (solid), viscous ∇2U (dashed), and turbulent
−〈(ũ · ∇)ũ〉 (dotted) forces. In the laminar region (z ≈ 0), the Reynolds-stress force vanishes
and the viscous and advective forces are equal and opposite to one another. In the figures on
the right, enlarged around the laminar region, ∇2U and +(U · ∇)U are shown to emphasize
equality between viscous and advective forces.

Hence advection replenishes the curvature damped by viscosity. However, this trend
towards greater curvature upstream cannot continue indefinitely, since the pattern
is periodic in z. Hence eventually a maximum is reached (at a turbulent–laminar
boundary), beyond which the curvature decreases upstream. Thus, in the turbulent
region, advection and diffusion act together to decrease curvature and must both be
counter-balanced by turbulent forcing. These features are essentially described by the
cos(0z) = 1 and cos(kz) modes. Figure 22 illustrates the dynamics in the turbulent–
laminar boundaries. These dynamics include advection by V in the bulk, leading to
the U > 0 (U < 0) patch in the lower right (upper left) of figure 12 and are described
by the sin(kz) mode.

3.4. Force balance for W and V

Figure 23 shows the balance of forces in the W -direction and figure 24 its analogue
in Fourier space. This balance resembles that in the U -direction shown in figures 18
and 19. In physical space (compare figure 23a and figure 18a), the main difference is
that the advective and viscous forces are both small in the laminar region, in keeping
with the fact that W ≈ 0. The pressure gradient ∂zP is far smaller than the other
forces throughout (see below). In Fourier space (compare figure 24b and figure 19b),
the main difference with the U balance is that the relative importance of the viscous
and advective forces in the cos(kz) balance is reversed from that in the case of U : for
W , the viscous component is larger than the advective component, which is especially
small in the bulk. The decomposition of the advective terms (figure 25) shows that, as
is the case for U , the advective cos(kz) term is well approximated by the contribution
from advection by wL = βy, whereas all four advective components contribute to the
sin(kz) term.



Mean flow of turbulent–laminar patterns 125

1
Laminar Turbulent

(a) (b) (c) (d)

0

–1
–0.02 0 0.02 –0.02 0 0.02 –0.02 0 0.02 –0.02 0 0.02

y

Figure 18. Balance of forces in the U -direction. Curves show advective force (solid), viscous
force (dashed) and Reynolds-stress force (dotted). In the laminar region, the Reynolds-stress
force is negligible and the advective and viscous forces counter-balance one another.
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(a) cos(0z) = 1 (b) cos(kz) (c) sin(kz)

Figure 19. Balance of forces in the U -direction, decomposed into modes. Curves show
advective (solid), viscous (dashed) and Reynolds-stress (dotted) forces. Constant mode:
Reynolds-stress and viscous forces approximately counter-balance each other. Mode cos(kz):
advection is larger than viscous force, which is especially small in the bulk.
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Figure 20. Advective terms in the U -direction, decomposed into modes. Curves show −βy∂zU
(solid) −W∂zU (dash-dot), −αV (dotted), −V ∂yU (dashed). The constant mode is generated
by the product −kWcUs/2; a second harmonic of the same small size is also generated. The
cos(kz) mode is dominated by −β y k Us . The sin(kz) term is dominated by β y k Uc near the
boundaries and by −Vs∂y(U0 + αy) in the bulk.

The balance of forces in the V -direction is entirely different. The dominant balance
in this equation is

0 = −∂yP + F V , (3.14)

as shown in figure 26. This is typical for turbulent channel flows; see e.g. (Pope 2000).
This balance between the mean pressure gradient P and the Reynolds-stress force
F V does not constrain or provide information about any of the velocity components.
Since

F V = −∇ · 〈ũṽ〉 ≈ −∂y〈ṽ2〉, (3.15)

we in fact have

P ≈ −〈ṽ2〉 (3.16)
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Figure 21. Schematic depiction of the dynamics of U near the centres of the laminar and of the
turbulent regions. The cross-channel direction is exaggerated. U (profiles) and W +βy (arrows)
are shown. Viscous diffusion tends to diminish both peaks of the profile. In the laminar
region surrounding z = 0, the peaks in the upper half-channel increase in amplitude with
decreasing z; advection towards positive z (upper arrow) replenishes these peaks, maintaining
U . Conversely, the peaks in the lower half-channel increase with z; advection towards negative
z (lower arrow) replenishes these peaks. That is, the sign of −(W + βy) ∂zU is opposite to that
of ∂2

yU in both the upper and lower parts of the laminar region. In the turbulent region around
z = ± 20, the size of the upper (lower) peak decreases to the left (right) and so advection, like
viscous diffusion, acts instead to diminish the peaks. U is maintained by the Reynolds-stress
force, which counter-balances both. The effect is to modulate the amplitude of the U -profiles
periodically in z.
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Figure 22. Schematic depiction of the dynamics of U near the turbulent–laminar boundaries.
The cross-channel direction is exaggerated. U+αy (profiles) and (V,W+βy) (arrows) are shown.
Near the upper and lower walls, the U +αy-profiles are advected towards increasing/decreasing
z by W + βy. In the bulk, advection by V is significant. At z ≈ 10, V advects downwards the
right-moving fluid in the upper portion of the channel. At z ≈ −10, V advects upwards the
left-moving fluid in the lower portion of the channel. The effect is to tilt the U =0 boundary
periodically in z.

up to a small z-dependent correction. Figure 5 shows the pressure field P calculated
from (3.16) and suggests that its y-dependence can be approximated by the functional
form cos(πy/2). This leads to an estimate of the relative importance of the pressure
gradients in the y- and z-directions:

O

(
∂yP

∂zP

)
=

π/2

k
≈ 10, (3.17)

while our data show
(∂yP )max

(∂zP )max

=
0.012

0.0017
= 7.05. (3.18)

The same estimate applies to the relative magnitudes of V and W , using the
streamfunction shown in figure 5,

O

(
W

V

)
= O

(
∂yΨ

∂zΨ

)
=

π/2

2π/40
= 10, (3.19)
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Figure 23. Balance of forces in the W -direction. Curves show advective term (solid), viscous
force (dashed) and Reynolds-stress force (dotted). In the laminar region, W ≈ 0 and each
of the forces is negligible. In the turbulent region, the viscous and Reynolds-stress forces
counter-balance one another. In the laminar–turbulent boundaries, the advective, viscous and
Reynolds-stress forces all play a role.
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Figure 24. Balance of forces in the W direction, decomposed into modes. Curves show
advective term (solid), viscous term (dashed) and turbulent forcing term (dotted).
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Figure 25. Advective terms in the W -direction, decomposed into modes. Curves show −βy∂zW
(solid) −W∂zW (dash-dotted), −βV (dotted), −V ∂yW (dashed). The cos(kz) mode is dominated
by −β y k Ws . The sin(kz) term is dominated by β y k Wc near the boundaries and by
−Vs∂y(W0 + βy) in the bulk.
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Figure 26. Forces in the V -direction. Reynolds-stress force FV (dashed) is counter-balanced
by pressure gradient −∂yP (solid). Both are zero in the laminar region. Advective and viscous
forces (dotted) are negligible throughout.
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while the actual ratio of maximum values is

Wmax

Vmax

=
0.15

0.013
= 11. (3.20)

3.5. Model equations

We now derive a system of ordinary differential equations by substituting the
trigonometric form (3.10) into the Reynolds-averaged Navier–Stokes equations (2.13).
The drawback in this procedure is the usual one, namely that this form is not preserved
by multiplication. However, table 2 shows that higher harmonics contribute very little
to U .

We expand the advective term as:

((U + uL) · ∇)(U + uL) = (V ∂y + (W + βy) ∂z)(U + αyex + βyez)

= (Vc cos(kz) + Vs sin(kz))(U ′
0 + U ′

c cos(kz) + U ′
s sin(kz) + αex + βez)

+ (W0 + βy + Wc cos(kz) + Ws sin(kz))(−k U c sin(kz) + k U s cos(kz)) (3.21a)

=
1

2
(Vc U ′

c + Vs U ′
s + k (Wc U s − Ws U c))

+ (Vc(U ′
0 + αex + βez) + k (W0 + βy)U s) cos(kz)

+ (Vs(U ′
0 + αex + βez) − k (W0 + βy)U c) sin(kz)

+ 1
2
(Vc U ′

c − Vs U ′
s + k (Wc U s + Ws U c)) cos(2kz), (3.21b)

where primes denote y differentiation. We neglect the second harmonic term in the
lastline of (3.21b), and will discuss the accuracy of this approximation below. We now
rewrite the U - and W -components of the averaged momentum equations, neglecting
the z-derivatives ∂2

z U , ∂2
z W and ∂zP , as justified by equations (3.3) and (3.17):

0 = −(V ∂y + (W + βy) ∂z)(U + αy) +
1

Re
∂2

yU + F U, (3.22a)

0 = −
(
V ∂y + (W + βy) ∂z

)
(W + βy) +

1

Re
∂2

yW + F W (3.22b)

Substituting the first three lines of (3.21b) in (3.22) and separating terms in
cos(0z) = 1, cos(kz) and sin(kz), we obtain

0 = − 1
2
[VcU

′
c + VsU

′
s + k(WcUs − WsUc)] +

1

Re
U ′′

0 + F U
0 , (3.23a)

0 = −Vc(U
′
0 + α) − k (W0 + βy)Us +

1

Re
U ′′

c + F U
c , (3.23b)

0 = −Vs(U
′
0 + α) + k (W0 + βy)Uc +

1

Re
U ′′

s + F U
s , (3.23c)

0 = − 1
2
[VcW

′
c + VsW

′
s] +

1

Re
W ′′

0 + F W
0 , (3.23d)

0 = −Vc(W
′
0 + β) − k (W0 + βy)Ws +

1

Re
W ′′

c + F W
c , (3.23e)

0 = −Vs(W
′
0 + β) + k (W0 + βy)Wc +

1

Re
W ′′

s + F W
s , (3.23f)

where the Fourier modes of V and W are related via those of the streamfunction Ψ

of (2.15):

V0 = 0, W0 = Ψ ′
0, (3.24a)



Mean flow of turbulent–laminar patterns 129

1

0

–1
–0.2 0 0.2 –0.2 0 0.2 –0.2 0 0.2

–0.2 0 0.2 –0.2 0 0.2 –0.2 0 0.2

y

cos(0z) = 1 cos(kz) sin(kz)

1

0

–1

y

(a) (b) (c)

(d) (e) ( f )

Figure 27. Comparison between mean velocities (in Fourier representation) from full DNS
and ODE models. (a), (b), (c): Curves show U (solid) and W (dashed) from DNS. Dots show
solution to the full ODE model (3.23), essentially indistinguishable from the solid curves. (d),
(e), (f ): Curves again show U (solid) and W (dashed) from DNS. Dots show solution to
simplified ODE model (3.26). The agreement with DNS is very good, though there are small
differences particularly in the U -component.

Vc = −kΨs, Wc = Ψ ′
c , (3.24b)

Vs = kΨc, Ws = Ψ ′
s , (3.24c)

and where homogeneous boundary conditions are imposed:

0 = U0 = Uc = Us at y = ±1, (3.25a)

0 = W0 = Wc = Ws at y = ±1. (3.25b)

System (3.23) with boundary conditions (3.25) is composed of six ordinary
differential equations coupling the six scalar functions U0, Uc, Us, Ψ0, Ψc, Ψs of y,
with six turbulent forces F U

0 , F U
c , F U

s , F W
0 , F W

c , F W
s .

We have solved (3.23)–(3.25) numerically, using as inputs F U and F W obtained
from our full simulations, i.e. the F modes shown in figure 16. The resulting solutions
are shown in figure 27. For comparison, we reproduce from figure 10 the mean
velocity fields, in Fourier representation, from our full simulations (DNS). The ODE
solutions are virtually indistinguishable from the mean fields from DNS. Only in the
sine component of U can the ODE solutions be distinguished (and only very slightly)
from the DNS results. From the profiles in figure 27, the full mean fields could be
constructed as in figures 12 and 13. Thus, while the ODE model requires input of the
Reynolds-stress force terms, F U and F W , it demonstrates the simplicity of the force
balance responsible for generating the patterned flow when viewed in the Fourier
representation. Considering higher harmonics would be straightforward, but would
serve little purpose.

We can go in the other direction and attempt to simplify system (3.23). The
approximate equalities F U

c ≈ −F U
0 , F W

c ≈ −F W
0 (see equation (3.12)), necessary for F

to vanish at the centre of the laminar region, can be imposed exactly, reducing the
number of turbulent forcing input functions to four. The terms arising from the
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advective forces can be reduced by making approximations justified from figures 20
and 25. The nonlinear terms in (3.23a) and (3.23d) can be neglected. The advective
terms in (3.23b) and (3.23e) can be approximated by −k β y Us and −k β y Ws . Making
these approximations, we obtain:

0 =
1

Re
U ′′

0 + F U
0 , (3.26a)

0 = −k β y Us +
1

Re
U ′′

c − F U
0 , (3.26b)

0 = −Vs(U
′
0 + α) + k(W0 + βy)Uc +

1

Re
U ′′

s + F U
s , (3.26c)

0 =
1

Re
W ′′

0 + F W
0 , (3.26d)

0 = −k β y Ws +
1

Re
W ′′

c − F W
0 , (3.26e)

0 = −Vs(W
′
0 + β) + k(W0 + βy)Wc +

1

Re
W ′′

s + F W
s . (3.26f)

The solutions to this simplified ODE model are also presented in figure 27. There is
quite good agreement with full DNS results, thus demonstrating that the dominant
force balance is captured by this very simple system of ODEs. We stress that the only
nonlinearities in this model are in (3.26c) and (3.26f). This reflects the complexity of
the dynamics in the turbulent–laminar boundaries regions (and the simplicity of the
dynamics in the centre of the turbulent and laminar regions.)

From the simplified ODE model we can obtain the approximate equation satisfied
at the centre of the laminar region by adding (3.26a) and (3.26b):

k β y Us =
1

Re
(U0 + Uc)

′′. (3.27)

This is a restatement in terms of Fourier components of the balance described by
(3.4) and figure 9.

4. Discussion
We have presented an analysis of a particular turbulent–laminar pattern obtained

in simulations of large-aspect-ratio plane Couette flow. We have focused on a single
example so as to understand in quantitative detail the structure of these unusual flows.
The key findings obtained in our study are as follows. First we find that in the (quasi-)
laminar flow region the velocity profiles are not simply those of linear Couette flow.
Instead a non-trivial flow is maintained in the laminar regions by a balance between
viscous diffusion and nonlinear advection. Next we have considered the symmetries
of the flow. When the pattern forms, the time-averaged flow breaks the translation
symmetry but not centrosymmetry. The patterned state is centrosymmetric about the
centre of the laminar region and about the centre of the turbulent region. Next we
have considered a spatial Fourier decomposition of the mean flow in the direction
of the pattern wavevector. From this we find that the lateral structure of the pattern
is almost completely harmonic, i.e. composed of a constant and single harmonic.
Thus the pattern description can be reduced to just three cross-channel functions for
each field, in that U(x, y, z) ≈ U0(y) + U c(y) cos(kz) + U s(y) sin(kz). The absence of
higher harmonics suggests that the pattern is near the threshold, in some sense, of a
linear instability of a uniform turbulent state. Such an instability would be governed



Mean flow of turbulent–laminar patterns 131

by a linear equation with coefficients which are constant in z, whose solutions are
necessarily trigonometric in z.

From our analysis of the turbulent–laminar pattern, in particular its Fourier
decomposition, we derive a model which reproduces the patterned flow. The model is
derived from the averaged Navier–Stokes equations with the following assumptions.
The crucial assumption, which is strongly supported by our numerical computations,
is that the mean flow can be expressed in terms of just three horizontal modes.
Effectively the generation of higher harmonics via nonlinear terms in the Navier–
Stokes equations is negligible in the mean flow. The model is then further simplified
because viscous diffusion is dominated by cross-channel diffusion – the standard
boundary layer approximation – and because pressure variation is negligible along
the pattern wavevector. We take as input to the model the Reynolds-stress forces
measured from computations. Assuming that the Reynolds stresses exactly vanish in
the centre of the laminar regions, the number of inputs to the model is just four
cross-channel functions. The result is a system of six simple ordinary differential
equations which depend on four forcing functions. The model equations accurately
reproduce the mean flow from full direct numerical simulations.

A number of other researchers have attempted to reduce the description of turbulent
or transitional plane Couette flow by various means. At these low Reynolds numbers,
there is no doubt that fully resolved direct numerical simulation is feasible and gives
accurate results. The purpose of formulating a reduced description is therefore to
yield understanding. We now comment on the differences between the approaches
used by other authors and our reduction.

In parallel with their experiments, Prigent et al. (2002; 2003) considered a pair of
coupled Ginzburg–Landau (GL) equations with additive noise as a model for the
transition from uniform turbulence to turbulent–laminar banded patterns via noisy
(intermittent) patterns. These equations describe the variation in time and spanwise
coordinate of the amplitudes A± of two sets of laminar bands at opposite tilt angles.
These laminar bands modulate the uniform turbulence in competition with one
another. Each equation separately has one reflection symmetry which corresponds
physically to the centrosymmetry κyz (equation (3.6)) of a banded pattern. The coupled
GL equations possess a second reflection symmetry, corresponding physically to
a spanwise reflection, which takes the amplitude A+ to A− and vice versa. By
design, this symmetry is not present in our numerical computations. Prigent et al.
used their experimental results to fit the parameters in the GL equation and then
compared simulations of the equations with experimental results. Steady patterns in
the resulting GL equations have only one non-zero amplitude and this amplitude
possesses the reflection symmetry corresponding to κyz. Hence, the steady patterns in
these simulations have exactly the symmetries of the patterns we have considered.

An important class of models aims at reproducing dynamics of streamwise vortices
and streaks in plane Couette turbulence by using a small number of ordinary differen-
tial equations (ODEs). These equations describe the time-evolution of amplitudes of
modes with fixed spatial dependence. Waleffe (1997), guided by the discovery of the
self-sustaining process (SSP) in direct numerical simulations (Hamilton et al. 1995),
derived a system of eight ODEs, whose variables represent amplitudes of the key
ingredients of the SSP, namely longitudinal vortices, streaks, and streak waviness.
This model was later also studied and extended by Dauchot & Vioujard (2000) and
by Moehlis, Faisst & Eckhardt (2004).

Two other Galerkin projection procedures have been used to derive ODE
models. The most energetic streamwise-independent modes in a principle orthogonal
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composition has been used as a basis for a 13-equation model (Moehlis, Smith &
Holmes 2002) exhibiting heteroclinic cycles; when streamwise-dependent modes are
added, the resulting 31-equation model (Smith, Moehlis & Holmes 2005) reproduces
elements of the SSP cycle. Eckhardt and co-workers (Schmiegel & Eckhardt 1997;
Eckhardt & Mersmann 1999) have proposed a Fourier space truncation of the Navier–
Stokes equations in all three spatial directions leading to a 19-equation model. They
calculated turbulent lifetimes and saddle-node bifurcations giving rise to new steady
states in this model.

Manneville and co-workers (Manneville & Locher 2000; Lagha & Manneville 2006)
have proposed a drastic Galerkin truncation in the cross-channel direction y, retaining
one or two trigonometric (for free-slip boundary conditions) or polynomial (for rigid
boundary conditions) basis functions, but fully resolving both lateral directions.
Simulating the resulting PDEs using a Fourier basis, they have been able to study
phenomena such as the statistics of lifetimes of turbulent spots in domains with very
large lateral dimensions.

The reduction we have presented differs from the aforementioned studies in several
respects. Most importantly, we do not describe any time-dependent behaviour. We
consider here neither turbulent–laminar patterns which are themselves dynamic (as
in Prigent et al.), nor the dynamics of streaks and vortices within the turbulence, nor
the transient dynamics of turbulence. Instead we focus on the spatially periodic mean
flow of steady turbulent–laminar patterns. While the turbulent portions of patterns
are dynamic, containing streaks and streamwise vortices, these are on a fine scale
relative to spatial scales of interest here. Our model description follows directly from
an analysis of full numerical simulations (not from any a priori assumptions, physical
or phenomenological), that show that all averaged velocity components and forces,
including the Reynolds-stress force, are almost exactly trigonometric or constant in
the direction of the pattern wavevector. It follows directly that the steady Reynolds-
averaged Navier–Stokes equations can be reduced to six ODEs for cross-channel
profiles of the Fourier modes.

One of the more significant aspects of this work is the consideration of the force
balance in just the laminar region. This balance is expressed by simple equations
either in physical space (equation (3.4)), or in Fourier space (equation (3.27)). These
equations are particularly interesting because they do not contain the Reynolds
stresses, as these are negligible in the laminar region, and hence their implications can
be understood without the need for closure assumptions.

As noted in § 3.1, (3.4) implies that a non-zero tilt angle is necessary to maintain
the S-shaped U -profile in the laminar region. If the patterns were not tilted, the flow
would necessarily be laminar Couette flow in the centre of the laminar regions where
the turbulence vanishes. We can also derive implications for the relationship between
Reynolds number, tilt angle and wavelength of the patterns from (3.4), which we
rewrite as

Re sin θ

λ
=

(U0 + Uc)
′′

2π y Us

. (4.1)

Except where y Us ≈ 0, the function on the right-hand side is indeed approximately
constant across the channel, between about 2.8 and 3.6. The value of Re sin θ/λ used
in our simulations is 350 sin(24◦)/40 = 3.56.

We may obtain a qualitative understanding of this constant as follows; see
figure 28(a). Observe that in the centre of the laminar region the functional form of
U = U0 + Uc is like sin(πy). Hence its second y-derivative can be approximated by
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Figure 28. (a) Comparison of profiles of U0 + Uc (solid), (U0 + Uc)
′′/(−π2) (dashed) and

−2 y Us (points). The profile of (U0 + Uc)
′′/(−π2) is close to U0 + Uc , in accordance with

the approximate functional form (U0 + Uc) ∼ sin(πy). Note that (U0 + Uc)
′′/(−π2) is almost

indistinguishable from −2 y Us , showing that (U0 + Uc)
′′/(2π y Us) is near π over the entire

channel. (b) Plot of Re sin θ/λ as a function of Re for the experimentally observed patterns
of Prigent et al. (2003; 2005). The open triangle shows Re sin θ/λ= 3.56 for the case studied
numerically in this paper.

multiplication by −π2, or equivalently (U0 + Uc)
′′/(−π2) ≈ U0 + Uc. We also find that

the odd function −2 y Us is close to U0 + Uc and is in fact almost indistinguishable
from (U0 +Uc)

′′/(−π2). This implies that the right-hand side of (4.1) is nearly constant
across the channel and equal to π, leading to

Re sin θ

λ
≈ π. (4.2)

We believe that (4.2) provides a good first approximation for the relationship
between Re, λ, and θ . Figure 28(b) shows a plot of Re sin θ/λ as a function of
Re from the experimental data of Prigent et al. (2003). It can be seen that this
combination of quantities is approximately constant with a value near π. The range
of values of the individual factors Re, θ , and λ can be seen in table 3. In prior studies
(Barkley & Tuckerman 2005a , b), we have studied a large range of Reynolds numbers
and tilt angles in a domain of length Lz = 120. In this domain, the wavelength of a
periodic pattern is less constrained, though it must be a divisor of 120. Figure 29
shows the observed states as a function of Re and θ . Equation (4.2) captures the
correct order of magnitude of Re sin θ/λ; specifically 1.8 � Re sin θ/λ � 5. Moreover,
in figure 29 one sees that for fixed Re, λ increases with increasing θ , as (4.2) predicts.

Equation (4.2) does not hold in detail, however. Most notably, figure 29 shows that
when Re is decreased at fixed θ , the wavelength λ increases rather than decreases
as one would expect from (4.2). We believe that the force balance (3.4) holds for all
patterns which possess a laminar region free of turbulence, but that the additional
approximations made in deriving the simple relationship (4.2) do not hold over the
full range of conditions considered in figure 29. In particular, the right-hand side of
(4.1) depends implicitly on Re, θ , and λ via the dependence of U0, Uc, and Us on
these quantities. The approximate functional relationships between U0, Uc and Us that
we have observed in our simulations and on which we have relied in deriving (4.2)
may not hold for other parameter values. Finer adjustments must come from another
mechanism.

The main issue not addressed in our study is closure. We have not attempted to
relate the forcing of the mean flow due to Reynolds stresses back to the mean flow
itself. In the future we will report on studies employing closure models.
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Figure 29. Patterns as a function of Reynolds number Re and θ in a computational domain
of size Lx × Ly × Lz = (4/ sin θ ) × 2 × 120. Turbulent–laminar patterns with wavelength λ= 40
(×), λ= 60 (�), λ= 120 (∗). Uniform turbulence (�), intermittent turbulence (�), laminar
Couette flow (�). Wavelengths in computations are constrained to be divisors of 120. Numbers
are wavelengths of experimentally observed patterns of Prigent et al. (2003; 2005).
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Appendix. Turbulent–laminar bands in other shear flows
Turbulent–laminar banded patterns have been observed in a number of shear flows:

plane Couette (PC) flow, Taylor–Couette (TC) flow, rotor–stator (RS) flow (torsional
Couette flow; the flow between differentially rotating disks) and plane Poiseuille (PP)
flow (channel flow). Comparisons between these flows are impeded by the fact that
different conventions are used to non-dimensionalize each of them.

In order to compare their observations in Taylor–Couette flow with those in plane
Couette flow, Prigent et al. (2003) generalize the Reynolds number used in plane
Couette flow U = y/h by considering it as based on the shear and the half-gap:

RePC =
(shearPC) (half-gap)2

ν
=

(U/h)h2

ν
=

Uh

ν
. (A 1)

For flows whose shear is not constant, the average shear is used. We also convert
streamwise and spanwise wavelengths to total wavelength and angle of the pattern
wavevector via

tan(θ) =
λspan

λstream

λz = λspan cos(θ). (A 2)

Table 3 presents the Reynolds numbers, wavelengths, and angles for which turbulent–
laminar patterns have been observed experimentally or numerically. The subsections
which follow explain how table 3 was obtained from the data in Prigent et al. (2003),
Cros & Le Gal (2002) and Tsukahara et al. (2005).
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PC TC RS PP

Re 340 395 340 415 303 438 357
λstream 110 110 145 95 71 106 103
λspan 83 52 70 35 24 36 45
λz 60 46 63 33 23 34 41

θ (deg.) 37 25 26 20 19 19 24

Table 3. Turbulent–laminar banded patterns in plane Couette (PC), Taylor–Couette (TC),
rotor–stator (RS), and plane Poiseuille (PP) flow. Parameters reported in Prigent et al. (2003);
Cros & Le Gal (2002) and Tsukahara et al. (2005) are converted to a uniform Reynolds
number based on the average shear and half-gap, as described in the Appendix. The two
columns correspond to the values at the minimum and maximum Reynolds number reported.

A.1. Taylor–Couette flow

For Taylor–Couette flow between differentially rotating cylinders, the azimuthal and
axial directions correspond to the streamwise and spanwise directions of plane Couette
flow. For cylinders of radius ri and ro, rotating at angular velocities ωi and ωo with
2h ≡ ro − ri and η ≡ ri/ro, the shear averaged over the gap is

〈shearTC〉 =
riωi − ηroωo

(1 + η)h
, (A 3)

leading to the Reynolds number

ReTC ≡ riωi − ηroωo

(1 + η)h

h2

ν
≈ Rei − Reo

4ν
, (A 4)

where the last approximate equality corresponds to exact counter-rotation (ωo = −ωi)
and the narrow gap limit (η → 1), and Ri , Ro are the conventionally defined inner
and outer Reynolds numbers, e.g. Rei ≡ 2hriωi/ν. The wavelengths and Reynolds
numbers observed in Taylor–Couette and plane Couette flow are compared in figure 5
of Prigent et al. (2003).

A.2. Torsional Couette flow

The laminar profile for torsional Couette flow between a rotating and a stationary
disk (rotor–stator flow) is

u = eθ

ω r z

h
, (A 5)

and the Reynolds number based on axial shear and half-gap is

ReRS =
ωr

h

h2

4ν
=

ωrh

4ν
. (A 6)

For m spirals, the azimuthal wavelength in units of the half-gap is

λRS
stream =

2πr

mh/2
=

4πr

mh
. (A 7)

Turbulent spiral patterns which are rather regular occur for a range of angular
velocities and radii. In their figures 12, 16 and 18, Cros & Le Gal (2002) focus
particularly on the radius and gap:

r = 0.8 × 140 mm = 11.2 cm, h = 0.22 cm. (A 8)
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The highest and lowest rotation rates for which turbulent spirals are seen are

ω = 68 rev min−1 = 7.12 rad s−1 with m = 6, (A 9a)

ω = 47 rev min−1 = 4.92 rad s−1 with m = 9. (A 9b)

Substituting (A 8)–(A 9) and the viscosity ν = 10−2 cm2 s−1 of water into (A 6)–(A 7)
leads to the values shown in table 3. The pitch angle of the spirals remains
approximately constant at 19◦. We use (A 2) to calculate λspan and λz, neglecting
the variation in radius.

A.3. Plane Poiseuille flow

Figure 14 of Tsukahara et al. (2005) shows a visualization from a direct numerical
simulation of plane Poiseuille (PP) flow in a channel with domain and Reynolds
number

Lstream × Ly × Lspan = 51.2 δ × 2 δ × 22.5 δ Rec ≡ ucδ

ν
= 1430, (A 10)

where uc is the centreline velocity. The domain contains a single wavelength of
an oblique turbulent–laminar banded pattern oriented at θ =24◦ to the streamwise
direction. (Both the wavelength and the angle are dictated by the computational
domain.) Following Waleffe (2003), we view the Poiseuille profile in the half-channel
[−δ, 0], over which the shear has one sign, as comparable to the Couette profile in
the channel [−h, h], and thus take δ/2 as the unit of length, rather than δ. The shear
is obtained by averaging over [−δ, 0]:

〈shearPP〉 =

〈
du

dy

〉
=

uc

δ
. (A 11)

For the Reynolds number based on the average shear and half-gap, we obtain

RePP =
〈shearPP〉 (half-gap)2

ν
=

(uc/δ)(δ
2/4)

ν
=

ucδ

4ν
=

Rec

4ν
=

1430

4
= 357.5. (A 12)
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