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Spherical Couette flow is studied with a view to elucidating the transitions between various 
axisymmetric steady-state flovv configurations. A stable, equatorially ns)~~~merl-ic state discovered by 
Biihler [Acta Mech. 81, 3 il~9~)] consists of two Taylor vortices, one slightly larger than the other 
and straddling the equator. By adapting a pseudospectral time-stepping formulation to enable stable 
and unstable steady states to be computed (by Newton’s method) and linear stability analysis to be 
conducted (by Arnoldi’s method), the bifurcation-theoretic genesis of the asymmetric state is 
analyzed. It is found that the asymmetric branch originates from a pitchfork bifurcation; its 
stabilization, however, occurs via a subsequent subcritical Hopf bifurcation. @ 1995 .Americatz 
hstitm of Pltysics. 

I. INTRODUCTION 

Spherical Couette flow-the iiow between differentially 
rotating concentric spheres-is known to undergo transitions 
leading to asisymmetric vortices analogous to those in the 
classic cylindrical Taylor-Couette flow. In spherical Couette 
flow, Taylor vortices form only in the immediate neighhor- 
hood of the equator, and the maximum number of vortices is 
set by the nondimensional gap width defined by 
cr’(r,-r,)/r~, where r1 and y2 are the radii of the inner 
and outer spheres. For the medium-gap cases discussed in 
this article, states are observed with zero, one, or two vorti- 
ces in each hemisphere. [Nonaxisymmetric flows are also 
observed (e.g., Refs. l-3) but these will not be discussed 
here.] 

Experimental and numerical work has highlighted the 
role played by equatorial symmetry-breaking in the transi- 
tions in spherical Couette flows. Notably, an outstanding 
puzzle raised by the experimental work of Wimmer’ con- 
cerning the one-vortex tlow was resolved by sym.metry- 
breaking: Numerical calculations4“7 showed that for tr-0.18 
the transition from the zero-vortex to the one-vortex flow 
(both equatorially symmetric states) occurred via an asym- 
metric transition caused by a subcritical pitchfork bifurca- 
tion. 

More recently, Biihler’ numerically and experimentally 
surveyed a large Reynolds number range (r.KReG2500) for 
the gap width CT= 0.154 and discovered a stable, equatorinll;v 
~upmetric state. Although it resembles a symmetric state 
with one vortex on either side of the equator, in the asym- 
metric version one. v0rtc.x is larger than the other and 
straddles the equator. 

Generically, in a system with reflection symmetry, one 
would expect an asymmetric state to arise from a pitchfork 
bifurcation undergone by a closely related symmetric state. 
Indeed, Biihler found that the symmetric one-vortex branch 
ceased to exist or be stable at the lower end of his approxi- 
mate existence range for the asymmetric state. The obvious 
scenario would he a pitchfork bifurcation, via which the 

symmetric one-vortex state would be destabilized in favor of 
the asymmetric one-vortex states. Transitions would occur 
from each state to the other, possibly with a slight hysteresis. 

However. this is not the case. Time-dependent computa- 
tions instead show jumps to a mu-wrtex state, both from the 
symmetric one-vortex state (.by increasing Rej and from the 
asymmetric state (by decreasing Rej. A different, less 
straightforward, account of the bifurcation-theoretic origin of 
Biihler’s asymmetric states is therefore necessary, and it is 
this task which we now undertake. 

II. NUMERICAL METHODS 

To fully understand the bifurcation-theoretic structure of 
solutions to a set of nonlinear evolution equations, three 
types of information are desirable. The first, and most often 
used in fluid dynamics, is the time evolution of the system 
from various initial conditions. These constitute the physi- 
cally realizable phenomena to be explained. The second type 
of information is the set of steady-state solutions. For equa- 
tions describing medium and high Reynolds number hydro- 
dynamic systems, the number of steady states can be vast; 
however it is useful to obtain as much of the picture as pos- 
sible, especially concerning unstable steady states. The third 
type of information is the eigenspectrum of the steady states. 
Leading eigenvalues are associated with transitions and loss 
of stability. 

These three types of information are usually obtained by 
separate analyses, involving separate codes and researchers. 
Here we propose a unified computational approach to the 
three types of calculation, all based on a single time- 
dependent code and using the same set of low-level routines. 
We can readily transfer flow fields between each of the three 
computational tools: Time-dependent simulations can be 
used to generate initial states for branch continuation. Un- 
stable steady states, possibly perturbed by the addition of 
eigenvectors, can serve as initial conditions for time evolu- 
tion. Suspected bifurcations can be confirmed by linear sta- 
bility analysis. 
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The remainder of Sec. II describes our numerical meth- 
ods, and can be skipped without loss of continuity by readers 
wishing to pass directly to the results. 

A. Governing equations and spatial discretization 

The three calculations use the basic routines and spatial 
discretization described in Marcus and Tuckerman.’ We use 
a streamfunction-vorticity formulation to represent the axi- 
symmetric velocitv field U in terms of two scalar fields. The 
first field, w, is obtained from the azimuthal velocity U, by 
subtracting the solution to the Stokes problem: 

ih:t:r~- 6 j 
w=ll,~-- , sin 8. 

m 

Here R is the angular velocity of the inner sphere at rl (the 
angular velocity of the outer sphere at Y? is zero). Hence w 
satisfies homogeneous boundary conditions: 

o= 0 at r=rl ,r2. 

The second field is the meridional streamfunction $ such 
that 

L~$,.-!- U,,e,= Vx zI,e,+= V( Jw sin 0) X&. (1) L 

In order that U,,UB=O at r=rl.r2, the streamfunction 
obeys both Dirichlet and Neumann homogeneous boundary 
conditions: 

Il/=J,.fjl=o at r=r, ,r2. 

The equations by which w and @evolve are obtained by 
taking the azimuthal component of the Navier-Stokes equa- 
tions and of their curl: 

1 I 
d,o=Nd( U) -t it- V’O, 

a,~“$r=N*(TJ)-t-L ‘+$. 

(2) 

In (,2&-(3), length and time have been nondimensionalized by 
rI and R-‘, respectively, and the Reynolds number defined 
as Re=rfO/v, with I’ the kinematic viscosity. The elliptic 
operator ‘?j’ is defined by 

V”f=eed;-VL(fe$)= V’- & 
! i 

f 
L I 

and tbc nonlinear terms are 

N$Uj=:e .IJx(VxU) br , (4) 

h”~~‘(l’)~-e,~.Cx(Ux(VxU)). (5) 

For numerical computations, the functions o and z,+ are 
represented by Chcbyshev-sine series 

f(r,Hj=$ 2 f~,~~l,i~~)sin(ii,Oj. ia 
f;O m-1 3 i 

Spatial derivatives are calculated by differentiating (6). The 
multiplicatic!ns in the nonlinear terms (4j-(5) arc carried out 
in a gridspace representation obtained by fast Chebyshev and 

sine transforms.” Typically, we use M,= 16 radial modes or 
gridpoints and M,= 128 angular modes or gridpoints, al- 
though for higher Reynolds numbers, we double the resolu- 
tion in each direction. With two fields, a total of 
M =2X M ,XM, values are used to represent a velocity 
field. 

B. Time stepping 

Time stepping is carried out by a Crank-Nicolson 
Adams-Bashforth algorithm: 

&+A+ g *1)-J (I-i- &P+(f) 
+~(3N”(u(t)j-NCO(U(r-Af)jj , I 

$(t+At)= 

xt’2tl/(t)+ ~(3NYI’(U(rj)-h’i(U(i-A~))) . 1 
is! 

The subscript D means that homogeneous Dirichlet bound- 
ary conditions are applied in inverting the second-order op- 
erator in (7). The subscript ND means that both homoge- 
neous Neumann and Dirichlet boundary conditions are 
imposed on (I/ in inverting the fourth-order operator in (8), 
via an influence-matrix or Green’s function technique.” 

C. Steady-state solving 

Steady-state solving by Newton iteration is rendered ef- 
ficient by an adaptation of the time-stepping code, as de- 
scribed in Ref. 10. To explain the difficulty of a straightfor- 
ward application of Newton’s method and our resolution of 
the problem, we first write the Navier-Stokes equations in 
an abbreviated form as 

dU 
lit=N(U)+LU=AU 19) 

where .N and L are the (spatially discretized) nonlinear and 
linear operators, respectively, and U is the velocity field. The 
goal of the steady-state code is to solve 

O=N(Uj+LU. jlOj 

Newton’s method for solving (10) is 

(NU+L)u=(hr+L)(U), Ut-U-u (11.) 

The notation N,,+L represents the linearization of NtL 
about the current guess U, i.e., the Jacobian. The action of 
this operator is calculated by replacing the nonlinear terms 
N@(U) and NJ’(U) in (4) and (5) by 

N~u=e~.(UxVxtl-tuxVxUj, (12) 

N&i=-e~~Vx(lJxVxu-kuxVxUj. (13) 

It is the storage and inversion of the Jacobian matrix 
which constitute the stumbling block in a steady-state calcu- 
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lation. Our flows are typically represented by M=41)96 un- 
knowns, so the Jacobian matrix is 4096X4096. (For the finer 
resolution used at higher Re, M= 163S4.) The Jacobian ma- 
trix is not banded, which makes the cost of direct inversion 
proportional to an unmanageable hf’. Iterative conjugate 
gradient methods for solving linear systems incur, in general, 
the same cost: a solution to the linear system is successively 
approximated by combining /21 multiplications of a vector by 
the matrix, each of which costs ,1f”. 

However, two factors can greatly reduce the cost of con- 
jugate gradient solution: ( 1 j The cost of multiplication by a 
matrix may be much less than 0(hf’), when the matrix is 
sparse or has a special structure. This is the case in our 
pseudospectral algorithm, where the multiplications in No 
are carried out in the gridspace representation and where the 
special structure of L in the Chebyshev-sine basis can be 
exploited.‘-” Here, the cost of a matrix-vector multiplication 
is approximately proportional to ,If. (2) A matrix may be WVZ~ 
conditiomzd, meaning that its condition number-roughly the 
ratio of largest to smallest eigenvalue-is close to one. Then, 
many fewer than 111 matrix-vector multiplications may be 
necessary to arrive at a converged solution to the linear sys- 
tem. Unfortunately, the Jacobian matrix arising from a dis- 
cretization of the Navier-Stokes equations is almost invari- 
ably poorly conditioned. Tn such a case: one seeks a 
preconditioner. that is, a more easily accessible approximate 
inve.rsc to the poorly c0nditione.d matrix. 

To understand our method of preconditioning, we first 
consider the reason for the poor conditioning of the Jacobian 
matrix. Its large range of eigenvalues originates primarily in 
the linear operator L, at least for the moderate Reynolds 
numbers associated with transition between different non- 
turbulent flows. The range of eigenvalues already poses a 
problem in solving the governing differential equations, 
where it implies a large range of time scales and is called 
stifjkss. It is for this reason that the linear operators are 
treated implicitly, as, for example, in (7)-(X). 

Our preconditioner will be based on a backwards-Euler 
forwards-Euler time-stepping scheme for integrating (9): 

Cl(r+At)=(I-A.rL!-‘(T+AtN)Ujr)~BUir!. (14) 

Taking the difference between successive time steps: 

(B-~!U(tj=Uit+A~)-Uitf 

=(I-AtL,)-‘(I+ArNiUjr)-Urt) 

=(I-AtL)‘--‘(Z+ArN-(I-ArL))Ujr) 

=(I-AtL j-‘AtjN+LjUjtj 

=(I-AtL j ‘AiAU(t). 05) 
For At large, 

Similarly, the linearization of B -I reduces to 

B,-I~-L-l.~~.=-L-l~NU+L)=-i(I+L-lN~j. 
(16) 

[Note that At farge is the limit opposite to that for which 
(14) was formulated. The goal of time stepping is, roughly 
speaking, to approximate eAiltl which is accomplished by 
(‘14:) when At is shell.] 

From the calculation in (15) it is clear that the roots of 
R -I are identical to those of A, barring values of At such 
that I -- Atl. is singular. Roots of B -I can be calculated by 
Newton’s method: 

(B,-I)u=(B-I)U, u-u-a. (17) 

The Jacobian Ru--I--I+L ‘NU is t’ar better condi- 
tioned than the operatorALr=NU+L appearing in (1.1). Mul- 
tiplication by f. - 1 or an approximation to it, as in Eq. ( 1.6), 
acts as a preconditioner, an approximate inverse to 1. + NC,, . 
Another way of saying this is that 1. -‘NII is, in some sense, 
a small perturbation to the identity. Multiplication by L ’ 
has been cdkd Stmks pr~r:olzc~itionir by Carey,“’ since I, 
by itself is the evolution operator for Stokes flow. 

We now discuss the solution of (‘17). An iterative 
conjugate-gradient solver such as NSPCC’T~~ in format-free 
mode requires, in addition to the right-hand side (R - T)U, a 
subroutine which acts with R,- I on any vector 11. Both are 
already essentially available within the time-stepping code. 
As seen in (lS), (:B - I)U is merely the difference between 
velocities at two successive (very widely spaced) time steps. 
To evaluate (B,- I)u all that need be done is to adapt rou- 
tines which calculate (4) and (5) to calculate the correspond- 
ing linearized versions (, 12) and (13). This method can also 
be implemented when the time evolution operator B uses 
Crank-Nicolson rather than backwards-Euler time stepping. 
Or 1. ’ itself can be used as a preconditioner, rather than 
(I-At=LplAr, at the cost of a slight increase in program- 
ming effort. Thus, the Newton steady-state algorithm can be 
implemented by changing fewer than 211 lines of the time- 
stepping code, and w-ithout writing any new low-level code. 

In the case of a symmetric positive (or negative) definite 
matrix, conjugate gradient iteration is a well-defined algo- 
rithm whose convergence is guaranteed. For other matrices, 
there exist a number of generalizations, none of which is 
superior or guaranteed to converge in all cases.” Of the vari- 
ants provided by the NSPCX software library,‘” we have found 
that hiconjugate grudient spur-cd ~E3CiiSj converges most 
quickly and reliably, usually in 31) to 70 steps. 

D. Continuation 

To follow a branch of steady solutions efficiently and, 
more fundamentally, to reach the “partner” of a branch con- 
nected by a saddle-node bifurcation, it is necessary to be able 
to carry out contillrlation.‘“,‘” That is, we sometimes wish to 
consider the control parameter-here, the Reynolds number 
-as a dependent variable, while fixing another variable in- 
stead, such as one of the velocity values. 

Here we will use the notation CJ,,, to mean any one of the 
M quantities used to represent a flow field, i.e., one ot’ the 
values of w or + in eithe.r the gridspace or the spectral rep- 
resentation. Sufficiently close to a saddle-node bifurcation, 
one of the components U, iand eventually all of themj must 
necessarily change faster along the branch than the Reynolds 

82 Phys. Fluids, Vol. 7, No. 1, January 1995 C. K. Mamun and L. S. Tuckerman 

Downloaded 02 Sep 2004 to 203.200.55.101. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



number. When this happens, the fastest-changing U,,Z is set 
equal to a specified value [I:, and Re treated as a dependent 
variable. 

We now formulate the expanded system of equations for 
( U,Re) and the Flewton method for solving them. We rewrite 
our schematic representation to explicitly include the Rey- 
nolds nmnbcr as in (2)~f.3): 

cil? x-Nllij-t &LU. 

If CT represents II with the restriction U,?, = Uz we may write 
the steady-state equations as a system of 111 equations in M 
unknowns: 

As before, both for the purpose of preconditioning and for 
compatibility with the time-stepping code, we define the 
time-stepping operator 

RI ~~,Rej~~l-htL,!-^‘~I+~t Re N)l;r 

so that steady states are solutions to R( cf,Re) - i? = 0. 
Letting zi and I‘L’ be the decrements to the current guesses for 
the truncated velocity 0 and the Reynolds number Re, one 
Newton step is \;vritten: 

(Bf,-Ii&I R,Qc=H(L~,R~)-(/, 

&fJ-& iw 
Kc+“-Re-lY, 

where 

B,.-I-Cl--Ad)- ‘(l+Ar ReN[/)-I 

w: -I, - ’ ( Kc Ni; -t- I, j , 

Equation (18’) is again solved iteratively via BCGS. To act 
with the linear operator on the left-hand side of ( 18) on II and 
it?, while retaining as much as possible of the ordinliry timc- 
stepping rautincs, we exp:tnd ti by setting u, = 0, act with 
HtJ _ I by subtracting two successive linearized time steps, 
and then add the vector ,BR,r~~. 

Newton solving and continuation provide a far more 
rapid method of calculating stable steady states than integrat- 
ing in time until a stationary state is reached: calculating 
unstable steady states by time integration is, of course, im- 
possible. An entire branch iO~-Rt .- ‘-c 2SOOj cm be calculated 
using this method in less than an hour of CPU time on a Cray 
YMI? 

E. Linear stability analysis 

The linear stability of a steady state or flow 11 is detrr- 
mined by its leading eigenvalues: those with greatest real 
part. However, the eigenvalues found most readily by itera- 
tive methods are the dominant ones: those with largest mag- 
nitude. The remedy is an exponential transformation: leading 
eigenvalues of A are dominant cigenvalues of esp(f4). Since 
exactly esponentiating A would itself require the diagonal- 
ization we seek to accomplish, we act with an approximate 

exponential instead, derived from the time-stepping code. 
The block power, or Arnoldi’s, method is used in order to 
find several leading eigenvalues, including complex or mul- 
tiple eigenvalues, simultaneously. This combination of mcth- 
ods is essentially that described by Goldhirsch, Orszag, 
Maulik,17 and in Christodoulou and Scriven;‘s we summarize 
our adaptation of it below. 

Using the notation of the previous sections, the equa- 
tions governing the evolution of an infinitesimal perturbation 
M to U can be abbreviated as 

du 
dt=NIi1~+L14=Acr14. i19) 

Replacing N by NII in either of (7)~(8) or (1411, as before, 
results in a time-stepping operator B, for (19). For simplic- 
ity of exposition, we discuss Euler time stepping for which 

B.=!I-~ttl:)-‘iIt~tNo) 

=expif4.Atj for At small. i20) 

Based on i20), the cigcnvcctors of Acr and BU are approxi- 
mately (to order At) the same, while their eigenvalues are 
rclatcd by 

h(A.)= & log X(B,). 

To estimate the K leading eigenvectors and eigenvalues 
OfA,, we integrate (19) for some fairly long period of time 
T, or equivalently, act repeatedly with Bli on some initial 
vector. The effect of this is to purge the vector of the most 
quickly decaying eigenvectors, yielding a vector containing 
primarily the leading eigenvectors. We then take K addi- 
tional time steps, creating vectors uI=zr(T),u2 
=u(T+Atj ,...,u~,,=u(T+KAt). Each vector 1~~ is or- 
thogonalized to those previously generated, yielding a vector 
tzlk, and then normalized to yield another vector LV~. The 
space spanned by the first K of these, {L!, ,...!uK}, is called 
the Krylov subspace. 

The vectors Llk can be assembled into an N X K matrix 
V, and the inner products (Vi ,BUuk), which are generated as 
a by-product of the orthonormalization procedure, into a 
KX K matrix H. This procedure is described formally by the 
A rmkli qiatiort : 

BuV-VH=wl,+,c; 

where eK is the Kth unit vector. Thus, the hrnoldi procedure 
is successful-i.e., the action of B, on the subspace spanned 
by the V~‘S is well approximated by H-insofar as ~t’~~~, is 
small. More details may be found in Refs. 19-21. 

This small matrix H is diagonalized, yielding eigenval- 
ues X and eigsnvectors 11’. Approximate eigenpairs of the 
large matrix HI: are X and 19 as is shown by the following: 

[[(R,-X)(V1~~)II’=IIBcV~-VH~lI’ 

=IIwK+lcpl(’ 

=IIwK+.]I~~~e~%q2 (21) 

where (21) gives the error in each approximate eigenpair. If 
the required number of eigenpairs has not been calculated to 
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Steady Vortex States 

one two 
Re= 1192 Re = 1222 

asymmetric 
Re = 1885 

zero 
Re = 1920 

FIG. 1. Steady flows. Contours of the meridional streamfunction are shown. 
Counter-clockwise circulation is shown as solid curves, clockwise circula- 
tion as dashed curves. The region shown, r, srI ,3 -rr/8< B6.S r/8, is actu- 
ally curved, although it is depicted here as rectangular for simplicity. Shown 
are a one-vortex state at Re= 1192, a two-vortex state at Re= 1222, an asym- 
metric one-vortex state at Re= 1855, and a supercritical zero-vortex state at 
Rc=192!). The one-vortex and asymmetric states have weak inflow hound- 
aries at or near the equator, while the two- and zero-vortex states have 
strong outflow at the equator. 

the desired accuracy, the process may be repeated, by time- 
integrating (-19) for another period T beginning from the vec- 
tor 11, . 

In practice, we find that K=4 works well for obtaining 
the two converged eigenvectors that our bifurcation analysis 
will requi.re. When computing parity-breaking bifurcations, 
K can be taken even smaller, since eigenvectors of both pari- 
ties can be calculated simultaneously as a single eigenvector. 

III. RESULTS 

A. Stable flows and transitions between them 

Figure 1 depicts the flows studie.d in this article. For 
simplicity, we represent the domain as rectangular, although 
it is actually curved. We show only the region of interest 
3~-/8< 065~-/8, a subset of the domain of calculation 
0~ 06 7~. Contours of @-sin8 are plotted; these are tangent 
to the meridional velocity, as shown by (1). The solid curves 
designate counter-clockwise circulation, and the dashed 
curves clockwise circulation. As in cylindrical Taylor- 
Couette flow, there also exists a much larger azimuthal ve- 
locity component, which is not shown here. 

Ekman pumping at the poles causes large-scale meridi- 
onal flow whose direction is counter-clockwise in the north- 
ern hemisphere, and clockwise in the southern hemisphere.. 
This large-scale circulation is present at all nonzero Rey- 
nolds numbers; its edges are visible on the upper and lower 
parts of each of the flows depicted. 

The first state shown in Fig. 1 is a one-vortex state at 
Re= 1192. Each hemisphere contains one Taylor vortex. 
These are separated at the equator by a relativety weak in- 
flow boundary, which differs markedly from the two strong 
outflow boundaries that separate the vortices from the large- 
scale meridional flow. Strong outflow and weak inflow I 

One- to Two- Vortex Transition at Re = 1193 

FIG. 2. Transition from one-vortex to two-vortex state. The initial condition 
is a one-vortex state at Ru=IlW; at t-0, Re is suddenly increased to 1.193. 
The same transition takes place whenever Re is increased from values Mow 
1192 to vdues within the range 1192rRci1244. 

boundaries are a typical feature of Taylor-vortex flow in both 
spherical and cylindrical geometries.“5’“’ The next state de- 
picted is a two-vortex state at Re=1222. Each he.misphere 
contains two Taylor vortices and the equator is a strong out- 
flow boundary. The asymmetric one-vortex state shown at 
Re= 1885 has a larger “southern” vortex, but the other sym- 
metrically related state can be created as well. Throughout 
the remainder of this article, we will refer to an asymmetric 
one-vortex state mere.ly as an asymmetric state; the nomen- 
clature zero-, one-, and two-vortex states will always refer to 
symmetric states. 

The one- and two-vortex states depicted in Fig. 1 can be 
obtained via time-integration by adiabatically increasing Re 
from 0. However, the Asymmetric one-vortex state cannot be 
obtained in this way. Instead, we followed the procedure sug- 
gested by Biihler.’ This “recipe” requires, first, a sudden 
acceleration from rest to Re=1920. This yields the zero- 
vortex state also depicted in Fig. 1, termed the supcrcriticd 
zero-vortex state” to differentiate it from zero-vortex states 
obtained by adiabatically increasing Re from 0. The asym- 
metric one-vortex state is then obtained by decreasing Re. 
The necessity for this procedure can be understood from the 
bifurcation diagram presented in Sec.. III B. 

We now describe the transitions observed using timc- 
integration. The procedure is to begin with a stable steady 
state at some Reynolds number, set the Reynolds number to 
some other value, and time-integrate until a new stable 
steady state is reached, In our discussion of transitions, times 
are given in terms of revolutions of the inner sphere. 

Figure 2 depicts the transition from the one-vortex state 
to the two-vortex state which occurs when Re is increased 
from 1191 to 1193. An initially very small pair of vortices is 
created at the weak inflow boundary separating the two pre- 
existing equatorial vortices. The new vortices grow and dis- 
place the pre-existing vortices. This transition is essentially 
identical to that observed by Biihler in increasing Re from 
1250 to 1300. We have verified that the same transition oc- 
curs when Re is increased in smaller steps, and the flow 
allowed to equilibrate after each increase, or when Re is 
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Asymmetric- to Two- Vortex Transition 
at Re = 1222 

Supercritical-Zero to Asymmetric Transition 
at Re = 1885 
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. . .-;..; ,-,,~;, *::., _,:,. ;: . . . . :y.,.:.;: I.,:. ::.: :_: 1,:. :.“;~I 
’ :-- 

liil 

,zi 

@ l, 
.:+ ;r<.-:., :;~~,:,.::,:~::.:: 

iii;;{ ::c; 
$:,t~.:*. ::..._. ::;:: ; :,..:.;- :,.;:;: :y.j:: ::;::: i:;;i j i iE{i 

t=31 

. . .: li 
;,$” ,‘~“. i: ii f 
..::i$; .f..+’ 

5fizzIo 
61 

: .,;:.:. .+ . . ~::-:.‘.*: 
fIjE28) 
::,:i;ii~::-~~,,~..;.. $.“,.” ..;...,.. :; ;:::::: :::::;: :.,:;::.. ,~ .I.. % . . . . ::::;:: .::::: .- :;;;: : ;;si’ :::::: ,: *,*1** 

. .;.. . . . . . ; :,j: c;;,,;j i ; ‘.::.C:.>.;~,.:, ,. __ I.:::. _... 
0 

” 

a ,“;<l-.; ,jj;:, *.,.,‘,L;~z::::, :::.~~P;.~!~:‘;~ ‘.,:‘. : : .,,‘, I,(_ ‘.‘*y::: :.:.::.,;I.‘.:‘:: ‘...-,.“‘.~ .,: 
0 @ : :; j :‘+ .; ~v~~~‘~~,..- yj,:;y :.y.x.:;; : ::::: : ::::::: 

i 

t 

.., 

.I 

--/ 

-l 

FIG. 3. ‘Transition from :~symmetric to two-vortex state. The initial condition 
is an asymmetk state at Re A 1250: at r= 0, Rc is suddenly decreased to 
1222. The same transition takes place whenrver Rc is decreased from values 
ahnve 1244 to vslucs within tiw range 1192cRe=: 1244. 

increased to any value within the range 1193~ Re< 1244. 
Figure 3 shows the transition from the asymmetric state 

to the two-vortex state w-hich takes place when Re is de- 
creased from 1245 to 1222. A stagnation point first appears 
within the larger, southern vortex at approximately t = 28. 
Afterwards, regions of counter-rotating circulation appear 
near the sidewalls, at approsimutely the same latitude as the 
stagnation point. When these join, they form a narrow 
counter-rotating vortex that divides the former southern vor- 
tex into two. The narrow vortex expands and the flow even- 
tually becomes symmetric. iz theory proposed by Duma? 
concerning Taylor-vortex formation predicts that stagnation 
points could form within elongated Taylor vortices, thereby 
leading to the pinching off of additional vortices just as oc- 
curs in Fig. 3. 

This transition from the asymmetric to the two-vortex 
state contradicts I3iihler’s observation of a transition from the 
asymmetric to the one-I-‘orw.\; state when he decreased Re 
abruptly from 1300 to 1200. We reproduced his transition, 
but only by decreasing Re abruptly to bclo~* 1193. Transition 
to the two-vortex state octurs whenever the initial condition 
is an asymmetric state and Re is dccreasccl from values 
above 1244 to values within the range 1 193<Re-:: 1244. The 
two-vortex state persists whcr~ Re is further decreased to val- 

FIG. 4. Transition from supercritical zero-vortex itate to asymmetric state. 
The initial condition is a supercritical zero-vortex state at Re= 1 Y3; at 
t=O, Re is suddenly decreased to 1885. 

ues below 1193. Thus, lKG<Re<1244 is a “window” for 
transition to the two-vortex state from either the one-vortex 
or the asymmetric state. ‘The explanation for this window 
will be given in the next section. 

Figure 4 depicts the transition from the supercritical 
zero-vortex state to the asymmetric one-vortex state that oc- 
curs when Rc is decreased from 1925 to 1885. The stream- 
lines of the counter-clockwise, northern hemisphere become 
“pinched” at the latitude of their stagnation point. This per- 
mits regions of clockwise circulation to form near the two 
radial walls. Eventually, these regions join, forming a single 
clockwise vortex which divides the counter-clockwise region 
in two. Both new vortices grow, with the counter-clockwise 
vortex surpassing the clockwise vortex. This transition could 
also start off in the southern hemisphere, leading to an asym- 
metric state with a larger clockwise vortex. 

B. Unstable steady states and bifurcation diagram 

We have used our steady-state/continuation code to com- 
pute branches of all the solutions described in the preceding 
section. Figure 5 summarizes the states, stable and unstable, 
that we have calculated in the range f-OI~Re~I400. Each 
steady flow is represented by the torque G- it exerts on the 
outer sphere. 

As a bifurcation diagram, the representation of r vs Re is 
flawed. Figure 5 contains many crossings between the vari- 
ous curves, most of which do not represent bifurcations: two 
states at an intersection point arc generally not identical, but 
mcre.ly have the same torque. In addition, the bifurcations 
which do occur are generally grouped too closely together in 
Re to be easily distinguished in the figure. For these reasons, 
we have also provided a schematic representation of the bi- 
furcation diagram in Fig. 6. In order to avoid intersections, 
the vertical (“schematic”) axis of Fig. 6 is not a 
monotonic- nor even a single-valued-function of torque. 

We find it useful to indicate l’or each branch the number 
and parity of the eigenvectors to which it is unstable. A 
stable branch will be labeled with its ‘*instability index”” i 

Phys, Fluids, Vol. 7, No. 1, January 1995 C. K. Mamun and L. S. Tuckerman 85 

Downloaded 02 Sep 2004 to 203.200.55.101. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



TORQUE VERSUS REYNOLDS NUMBER 

250 

225 

150 

125 ’ 
600 

I I I 

800 1000 1200 1400 

Reynolds Number 

FIG. 5. Torque vs Re for the range 6tlOsRes 1400. Corresponding Rows (zero-, one-, two-vortex or rcrymmetric; Stable or unstable) are shown as insets. 

of 0. For a symmetric state, each eigenvector is necessarily 
either symmetric or antisymmetric, so an unstable symmetric 
branch will be labeled with an index of s if it has one sym- 
metric unstable eigenvector, of a if it has one antisymmetric 
unstable eigenvector, and of sa if it has one eigenvector of 
each parity. The eigenvectors of an asymmetric state have no 
definite parity, so unstable asymmetric branches will be la- 
beled with an instability index of 1,2,..., indicating one or 
more unstable eigenvectors. 

4 schematic 

l(L!&--z~: 

I I I 1 I I > 784 so4 882 913 1038/1049 1182 1192 124.4 
Reynolds Number 

FIG. 6. Schematic bifurcation diagram for Rt51400. The flows correspond- 
ing to each branch are labeled as zero, one, two, or asym. Each branch is 
labeled with its instability index, i.e., the number of eigenvectors (0, 1, or 2) 
to which it is unstable. Symmetric states have eigenvectors of definite parity 
and are instead labeled as s  (symmetrici, a (antisymmetric), or sa (one of 
each). For emphasis, stable states are denoted by bold curves. Note that the 
branches are not ordered by torque. A sequence of closely related transitions 
results from the saddle-node bifurcation at Re=784 and subcritical pitchfork 
bifurcations at Re=804, 882. Another sequence of transitions results from 
the subcritical pitchfork bifurcation at Re= 1182, the saddle-node bifurca- 
tion at Re=l192, and the subcritical Hopf bifurcation at Re=1244. 
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We see from Figs. 5 and 6 and from previous 
work X?S.X?h.f,S that one-vortex states originate in a saddle-node 
bifurcation at Re=784 where a pair of branches, one stable 
(inde.x 0) and one unstable (index s), is created. The fate of 
the unstable branch is quite complicated. Very close to the 
saddle-node it undergoes a supercritical symmetry-breaking 
pitchfork bifurcdtionh increasing its instability index from s 
to su. The unstable (index 1 j asymmetric branches thus cre- 
ated disappear shortly thereafter at Re=804, via a crucial 
subcritical pitchfork bifurcation which destabilizes the zero- 
vortex branch (increasing its index from 0 to a) and is re- 
sponsible for the initial formation of Taylor vortices.“-7 The 
states on the zero-vortex branch gradually become two- 
vortex states,5 and the branch restabilizes via another pitch- 
fork bifurcation. 

We now follow the stable one-vortex branch up to and 
around its turning point (saddle-node bifurcation) at Re 
= 1192, where its index increases from 0 to S. The branch 
undergoes a subcritical pitchfork bifurcation at Re= 1182, 
causing its index to increase further to su, and then under- 
goes another saddle-node bifurcation at Re=913, decreasing 
its index to a. Along the way, the states along this unstable 
branch become two-vortex states and finally zero-vortex 
states, as can be seen in the insets of Fig. 5. 

Symmetric and antisymmetric eigenvectors of the onc- 
vortex state at the turning point at Re=1192 are shown in 
Fig. 7. Their appearance is typical of eigenvectors all along 
the branch. The symmetric eigenvector in Fig. 7 is associated 
with the turning point, and so has eigenvalue 0 at this point. 
The antisymmetric eigenvector in Fig. 7 is responsible for 
the subcritical pitchfork bifurcation at Re=1182, and so at 
the nearby turning point its eigenvalue is small: 
X=-0.01851(2. 

States on the branches created at the pitchfork hifurca- 
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Eigenvectors of One-Vortex State 
at Re = 1192 
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FIG. 7. Eigenvcctors. The two most unstable eigenvectors associated with 
the one-vortea state tlahclrd “bascs’j undergoing a saddle-node bifurcation 
at Rc-11% The eigenvalues associated with the symmetric and antisym- 
metric eigenvectors at this point are 0 and - 0.0185R, respectively. 

tion at Re=l.l82 are asymmetric, and their asymmetry in- 
creases along the branches. These new branches bifurcate 
subcritical&, meaning that they inherit the stability index of 
the ICSS stuhk portion of the parent branch. We use the defi- 
nition of subcriticality found, e.g., in Ref. 24: here, this 
mezzns that the asymmetric branches are created with two 
unstable eigenvectors, and they bifurcate towards increasing 
Re. 
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FIG. 8. Eigenvalues. The two most unstable eigenvalues as a function of Re 
along a path leading to the asymmetric branch. For 1150~-Re~ 1182 the 
~CLX state is a one-vortex state with two positive eigenvalues, associated 
with a symmetric (s) and an antisymmetric (R) eigenvector resembling 
those of Fig. 7. We switch branches at Re-1182 (subcritical pitchfork bi- 
furcation), where the tz e&value is 0, leading to a discontinuity in the tirst 
derivative. For IltiZ~Re-s 1250, the base state followed is an asymmetric 
state. At Re=-1197, the two eigenvalms join to form a complex conjugate 
pair whose real part crosses zero at Kc-1244 (subcritical Hopf bifurcation). 
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FIG. 9. Torque vs time. Initial conditions are asymmetric states at Re 
slightly above 1250. Top: damped oscillations when Re is decreased to 
1250. Middle: growing oscillations when Re is decreased to 1240, just be- 
low Hopf bifurcation at Re=.1244. Rottom: abrupt oscillations culminating 
in transition to a two-vortex state when Re is decreased to 1223. 

For each asymmetric branch to become stable, both of its 
positive eigenvalues must change sign. Figure 8 displays 
these two eigenvalues as a function of Re. Between Re 
=1150 and Re=1182, we plot the eigenvalues of the un- 
stable (su) one-vortex branch. (The corresponding eigenvec- 
tors resemble those of Fig. 7.) At the bifurcation at Re 
=1182, where the antisymmetric eigenvalue is 0, we switch 
to following the eigenvalues of the new asymmetric 
branches, labeled 2 in Fig. 6. This branch-switching causes 
the curves of Fig. 8 to be continuous but not smooth at 1182. 
The two unstable eigenvalues coalesce to form a complex- 
conjugate pair at Re= 1197. The real part of the eigenvalue 
pair decreases, eventually changing sign at Re= 1244 in a 
Hopf bifurcation. Both asymmetric branches are subse- 
quently stable, and thus labeled 0 in Fig. 6. 

The Hopf bifurcation is confirmed and shown to be sub- 
critical by time-dependent integration. In Fig. 9 we present 
time series of the torque taken in the vicinity of the Hopf 
bifurcation. The initial conditions are asymmetric states at 
Re slightly above 12.50. When the Reynolds number is low- 
ered abruptly to 1250, damped oscillations are seen as the 
flow adjusts to the lower Reynolds number. At Re=1240, 
just below the Hopf bifurcation at Re=1244, the torque un- 
dergoes growing oscillations. At Re=1223, a sequence of 
abrupt, highly anharmonic oscillations culminates in a tran- 
sition to the two-vortex state. 
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FIG. 10. Torque vs Re for the range 1800~Re-,I ~~‘W. Corresponding flows (zero-, one-, two- vortex or asymmetric; stable or unstable) are shown as insets. 
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This Hopf bifurcation is, to our knowledge, the first to be 
computed in spherical Couctte ilow. Note that this t Iopf bi- 
furcation is not of the type associated with the breaking of 
axisymmetry and the onset of rotating waves; there is no 
reference frame in which the periodic orbit created is seen as 
a steady state. 

C. Higher Reynolds numbers 

Figures 11) and 11 show steady flows existing in the 
range 18OWRes2200. These wc.re. computed using 32 gid- 
points in Y and .256 gridpoints in 8, double the resolution 
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A pair of new zero-vortex branches are created at Re 
=‘I839 by a saddle-node bifurcation. Although both are ini- 
tially unstable (indices u and sn), the more stable (a) of the 
branches is stabilized by a subcritical pitchfork bifurcation at 
Rc = 1920. The resulting stable zero-vortex branch is obscrv- 
able in experiments”” and in time-dependent simulations’ as 
what is called the supercritical zero-vortex state. Symmetric 
and antisymmetric eigenvectors of the supercritical zero- 
vortex state at Re=1920 are shown in Fig. 12. 
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Schmuf7 computed bifurcations of the same type-a 
saddle-node bifurcation of zero-vortex branches and a sub- 
critical pitchfork bifurcation from one of these zero-vortex 
branches--for a variety of gap sizes. Extrapolating from his 
data to our gap size of rr=O.154, both bifurcations would 
occur at around Re=ZOOO, in accordance with our computa- 
tions. Especially interesting is the coalescence Schrauf dis- 
plays in the (Re,crj plane between this pitchfork bifurcation 
of a zero-vortex branch and that which occurs at low Rey- 
nolds number (see Fig. 6, Re = 804). This implies that the 
low and high Reynolds number zero-vortex branches are 
themselves connected in some way for rr>O.23. 

FIG, It. Schematic bifurcation diagram for 1800SRe~22W~. Conventions 
as in Fig. 6. The important features are the saddle-node bifurcations at 
Rc=183Y and Re=ZNlS and the pitchfork bifurcations at Re= 1920 and 
Re=XM Here, the “schematic” variable is a monotonic function of 
torque. 

The upper part of Fig. 11 shows the stable asymmetric 
branches terminating in a pitchfork bifurcation at Re=W34. 
This bifurcation is supercritical, since the bifurcating asym- 
metric branches inherit the stability of the more stable (index 
0) portion of the parent branch. Here, the parent branch is 
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used in the lower Reynolds number range. Figure 10, like 
Fig. 5, represents each state by its torque. Figure 11 is a 
schematic rendering, whose vertical axis, unlike that of Fig. 
6, preserves the ordering in torque. The branches at the left 
of Figs. 10 and 11 are Lwntinuations of those at the right of 
Figs. 5 and 6. The stable two-vortex branch and the unstable 
zero (n) and one (su) vortex branches undergo no qualita- 
tive changes in this range of Reynolds number. 
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Eigenvectors of Zero-Vortex State through relatively minor, high-level changes, to also carry 
at Re = 1920 out steady-state solving and linear stability analysis. 

symmetric ar ltisymmetric 

FIG. 52. Eigenvectors. Base state is supercritical zero-vortex state at Re 
=1920. The svmmetric eigenv&or is associated with the saddle-node bi- 
furcation at Rk= 1839, the antisymmetric eigenvector with the subcritical 
pitchtork bifurcation at Re= 1920. 

one of a pair of one-vortes branches created by a saddle- 
node bifurcation at Re=2015. This part of Fig. 11 should be 
viewed as somewhat conjectural. In particular, according to 
the scenario that we have just described, transition between 
the stable asymmetric and one-vortex branches should take 
place without hysteresis at Re=2034. This is in accordance 
with some qwrinwntd observations by Biih1er.t However, 
time-dependent computations by Riihler and by us produced 
a transition from the one- to the tu’o-vortex (rather than 
asymmetric) state w-hen Re was decreased. We have not been 
able to perform computations at sufficiently small intervals 
in Re to resolve this inconsistency. 

The bifurcations at Re= 1192 and Rr=2034 which we 
have calculated for cr=O.154 delimit a range of non- 
existence for the stable one-vortex state, a result which is 
confirmed experimentally.’ We should point out that this re- 
sult depends sensitively on cr. For slightly larger gap widths 
((r=Cl.1‘?6 or o= O&l), it is well established”“-‘j that a con- 
tinuous stable one-vortex branch exists, rather than two dis- 
connected branches. However, a nonexistence range can eas- 
ily be erroneously produced either numerically”*“’ or 
experimentally,” thus indicating the “fragility” of the solu- 
tions to the Navier-Stokes equations in this region of (Re,cr). 

Iv. DlSCUSSlON 

We have demonstrated the feasibility of a unified com- 
putational approach that combines time integration, steady- 
state solving, and linear stability analysis to determine the 
bifurcation structure of hydrodynamic problems. At the heart 
of our approach is the discovery that the difference between 
two very widely spaced time steps can be used to calculate 
stable and unstable steady states via Newton’s method, and 
that the implicit viscous step already implemented in the 
time-stepping code serves as a very effective preconditioner. 
A pm-existing time-dependent code can thus be modified 
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We have used this comprehensive computational frame- 
work to unravel the rather complicated scenario connecting 
the one-vortex state with its asymmetric cousins in a 
medium-gap spherical Couette flow. A total of three bifnrca- 
tions are involved: (lj a saddle-node at Re=1192 from the 
stable to the unstable portions of the one-vortex state, (2) a 
subcritical pitchfork at Re= 1182, leading to the formation of 
the unstable asymmetric branches, and (3) a subcritical Hopf 
bifurcation at Re= 1244, stabilizing the asymmetric 
branches. 

We have also calculated bifurcations at higher Reynolds 
numbers via which the asymmetric branches die and a 
branch of supercritical zero-vortex states is born. Both of 
these events combine turning points and symmetry-breaking 
pitchfork bifurcations. 

Bifurcation scenarios very similar to the one we have 
calculated in the vicinity of Re=1200 have been observed 
both experimentally and numerically by Mullin, Cliffe, 
and PfisterZ7 and by Tavener, Mullin, and Cliffe”” in 
Taylor-Couette flow between short cylinders 
[3.2<L/(r2--r,)<5.6, where L is the length of the cylin- 
ders]. These authors interpret this sequence of bifurcations as 
the unfolding of a codimension-two bifurcation in which the 
pitchfork and saddle-node coincide. Guckenheimer’“‘“” and 
Knobloch and Moore”’ discuss the qualitative behavior near 
this bifurcation, whose normal form is given by 

a,a=a(E+CS)+0(3), (22) 

a,s=p-s2+a2+0(3). (23) 

The correspondence between (22)-(,23) and the Taylor- 
Couette problem is as follows: a and s are the amplitudes of 
antisymmetric and symmetric modes, respectively, and ,u is 
related to the Reynolds number; E is an additional control 
parameter, i.e., aspect ratio or gap width, which serves to 
bring the saddle-node and pitchfork bifurcations together. 
The dynamics described by (22) and (23) are illustrated in 
Fig. 13. In the systems studied by Mullin ef 01.“~ and by 
Tavener et al.,‘s the Hopf bifurcations arc supercritical and 
the resulting stable axisymmetric periodic orbits can be ob- 
served and studied. 

Certainly, asymmetry and time-dependence are closely 
linked. For symmetric states, it has been observed, both here 
and in earlier work (see Ref. 32 and references in Ref. 5) on 
spherical and finite-length cylindrical Taylor-Couette Row, 
that eigenvalues of symmetric and antisymmetric eigenvec- 
tors tend to be interleaved. We attribute this to the near- 
degeneracy of symmetric and antisymmetric eigenvectors 
derived from the translational symmetry of the infinite-length 
cylindrical case. As long as the eigenvalues remain inter- 
leaved, they cannot become complex, since eigenvectors of 
opposite parity cannot coalesce. Their eigenvalues can, how- 
ever, cross one another, freeing the same-parity eigenvectors 
to coalesce into complex-conjugate pairs. This is one way in 
which eigenvectors may become complex. The second way 
is the one we have computed here: the underlying steady 
states become asymmetric, coupling the eigenvectors that 
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FIG. 13. Unfolding of simultaneous saddle-node and pitchfork bifurcations 
described hy normal form (22)-(X3) with - 1/2<c<O. In each region of the 
(p, e) plane are shown phase portraits depicting dynamics in the symmetric 
(s) and antisymmetric iaj directions. Symmetric steady states are created 
and destroyed by saddle-node bifurcations along ~“0, asymmetric states by 
pitchfork bifurcations at ,u=(~Icj2. The Hopf and global bifurcations that 
create and destroy the limit cycles in the hatched region require cubic terms. 
The dashed path corresponds to the scenario observed in spherical Couette 
flow when increasing Re from below 1182 to above 1244 (see Fig. 6). 

were formerly of opposite parity. Both ways require broken 
translational symmetry: either boundary conditions are im- 
posed by the endplates of finite cylinders, or sphericity per- 
turbs a fictitious translational symmetry in latitude, reducing 
the symmetry group from O(2) to Z2?a 

Various hydrodynamic mechanisms, such as those pro- 
posed by Dumas,” may govern the types of transitions al- 
lowed. Examples of the kinds of questions raised are: When 
do transitions occur via formation of a stagnation point 
withii a region of same-sign circulation (e.g., Figs. 3 and 4), 
and when are vortex pairs created at inflow boundaries (e.g., 
Fig. 2)? Can a new vortex pair ever form at an outflow 
boundary‘!” Which transitions are reversible in time? What 
are the differences between the allowed evolution of states 
along a branch and in time? What physical features distin- 
guish stable from unstable steady states? These types of in- 
vestigations are usually carried out quite separately from a 
study of the bifurcations, and by different communities. Yet, 
it could prove fruitful to try to relate the bifurcation diagrams 
to hydrodynamics. Study of the bifurcation diagrams may 
suggest rules governing physical processes; conversely, hy- 
drodynamic mechanisms may provide explanations for the 
complexity of the bifurcation diagrams. 
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