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Scaling of the transition to parametrically driven surface waves in highly dissipative systems
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We present an experimental study of the onset of the Faraday instability in highly dissipative fluids. In this
regime of high viscosity and shallow fluid depth, we find that the critical acceleration for the transition to
parametrically excited surface waves scales as a function of two dimensionless parameters corresponding to the
ratios of the critical driving amplitude height and viscous boundary layer depth to the fluid depth. This scaling,
which exists over a wide range of fluid parameters, identifies the proper characteristic scales and indicates that
a Rayleigh-Taylor type mechanism drives the instability in this reg{i8&063-651X97)51004-X]

PACS numbe(s): 47.52:+j, 47.35+i, 47.54+r, 47.20.Gv

The Faraday instability, which generates parametricallybehavior ofa; is unknown. There is some question as to
driven surface waves, is one of a number of well-knownwhether a well-defined, scaling relation far exists at all in
pattern-forming systems. It occurs when a featureless layahe case of the Faraday instability. The eight quantities
of fluid, subjected to uniform, externally imposed oscilla- a, w, v, p, o, h, L, along with the gravitational accelera-
tions in the vertical(parallel to gravity direction, becomes tion g can be combined iffive dimensionless parameters.
unstable to the spontaneous appearance of surface wav@here is, of course, an infinite number of ways to choose
The acceleratiora of the fluid layer can be viewed as the these five parameters. The optimal choice is that which ef-
system’s control parameter. The waves appear at a criticdéctively reduces the number of parameters: that is, the de-
value of the layer acceleratioa,, and oscillate at half of the pendence on some of the parameters is shown to be negli-
external driving frequency. The system is further charactergible in the range of interest.
ized by the quantitieso, h, v, p, L, and o defined as the In this paper we demonstrate that simple scaling of the
externally imposed angular frequency, depth of the fluidcritical acceleration indeed occurs in a surprisingly wide
layer, kinematic viscosity, fluid density, lateral size of therange of experimental parameters and the dominant dimen-
system, and surface tension, respectively. sionless parameters in the highlow h regime are identi-

Most previous experimentdl] in this system were per- fied. As a result, the dimension of parameter space is effec-
formed in the lowy, largeh limit where the linear dynamics tively reduced from 5 to a more tractable 2. The form of
of the system are described by the Mathieu equd@dmvith ~ these parameters suggests that, in this regime, a mechanism
dissipation, which governs the instability threshold, intro-akin to the Rayleigh-Taylor instability may drive the insta-
duced phenomenologicall,4]. In this regime, careful ex- bility.
periments by Christianseet al. [5] showed the instability Our experimental apparatus was previously described in
threshold to scale as.=2vwk/tanh(hk) when corrections [8]. Experiments were performed in a 144.0 mm diameter
[4] to the dissipation due to the moving contact line betweercircular cell where the fluid is supported by an aluminum
the fluid and the lateral walls bounding the experimental celplate, polished to a mirror surface and flat touin. The
are taken into account. cell’'s lateral boundaries, made of Delrin, were sloped at a

Recent experiments have shown the utility of working in20° angle to reduce meniscus formation on the fluid surface.
a regime of high fluid viscosity and relatively shallow fluid The fluid depth varied between 1.0 and 5.0 mm. Fluids used
layers[6—8]. In this region of phase space, external distur-were glycerol-water mixtures and the hydrocarbon flushing
bances to the system are effectively damped out and thituids [12], TKO-FF (described at length if8]) and TKO-
strong quantization of the unstable wave numbers in the sys#7. The fluid temperature was regulated to within 0.01 °C. In
tem, enforced by the lateral boundaries, is relaxed. Thus, thihe latter fluidso and v were varied between 29.6 and 31.0
effective number of modes that can be excited in the systerdyn/cm and 4.7 to 0.25 & S=1 cm/9 respectively as the
near onset is increasdd,7]. In this region, Kumar and temperature was varied over a 20—45 °C range.
Tuckerman{9] showed that,., calculated numerically from The cell was mounted on a mechanical shaker providing
the Navier-Stokes equation, deviates significantly from thevertical acceleration from 0 to gJover a frequency range of
threshold values predicted in the lowy high h limit. These  20—80 Hz. The acceleration, monitored by a calibrated ac-
and later calculations in this regime agree well with measureeelerometer, was regulated to within 0Og0T o determine the
ments ofa, that were performed for a number of different instability onset, the system was visualized from above by
values ofh andv in systems driven at both ofi6,7] and two  shadowgraph with stroboscopic illumination. Two effects
[10,11] frequencies. contribute to the experimental error in determinimg The

Although numerical agreement between the calculationéirst of these is due to experimental uncertaintie$ i(0.3—
in [9] and experiment is established, once we are far from th&.5%), v (<3%), and the precision o, measurements
low v, high h limit in parameter space, the proper scaling (<0.5%). The second contribution to the error involves un-
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Driving frequency (Hz) FIG. 2. The instability thresholg, as a function ofh for

ol(2m)=41 Hz andv=0.58 S,(H), »=0.8 S(@®), andv=0.48 S

(A). To facilitate comparisong, in each plot was normalized by
the smallest measured threshold value in each data set. For com-
parison, we includdsolid ling) the predictions for largén low »
regime.

FIG. 1. Typical instability threshold measurements ffier 0.13
cm, »=0.8 S(@®), h=0.15 cm,»=0.8 S(V¥), h=0.15 cm,»=0.58
S (#), h=0.21 cm,»=0.48 S(A), h=0.25 cm,»=0.41 S,(9),
h=0.51 cm,»=2.53 S(OJ), The lines represent the calculated val-
ues for the threshold.

certainty (~5%) in the absolute value dd. resulting from  when scaled, largely collapse onto a single curve. The data in
slight inhomogeneities in the apparatus leveling. AlthoughFig. 3 also cover a wide range of the other dimensionless
for given conditions, the value @, is entirely reproducible, parameters. In particular, 0.08b/(pw?h®)<0.7, 26<L/h
a 0.1 mrad tilt of the apparatus, at small valueshpfcan <140, and 0.0%¥g/(hw?)<0.6.
induce a shift of a few percent, in absolute value. Additional A closer look at some experimental data sets, however,
shifts [7] of a few percent ina, can occur due to lateral reveals systematic deviations from scaling. Guided by these,
guantization of the wave numbarat very low values oilv ~ we have extended our data by performing numerical calcu-
(largeN). lations using the Kumar-Tuckerman algoriti® (lines in

Fluid patterns observed in the near vicinityafthrough-  Fig. 3 for parameter combinations chosen to display a more
out nearly the entire measuragh,» parameter space are marked deviation from the scaling suggested by the figure.
subharmonic, spatially localized staigsonfined states” as The deviations from scaling occur in precisely the region
observed if8]) with no observed hysteresis in the transition (\/h)?>1, where we would most expect the scaling to hold
[13]. Globally distributed patterns were only observed whenfor the following reason. The parame#th governs the dis-
A\ waswithin an order of magnitude of the cell diameter andsipation in the system. Our choice lbfas the characteristic
mode quantization was enforced by the lateral boundaries déngth in the system is equivalent to stating that the dominant
the system. dissipative mechanism in the system is the shear between the

In Fig. 1 we present typical plots of both measured andluid flow and the bottom plate. This dissipation is balanced
calculated values dd, as a function ofo for different values  against the parameter,/(hw?), or the driving term, which,
of h and v. As the figure shows, for a given excitation fre- when large enough, leads to instability of the fluid surface. In
guency,a; can vary by over an order of magnitude as the
fluid height and viscosity are varied. In looking for scaling
behavior in the system, our first task is to identify the char-
acteristic length and time scales that lead to dissipation in the
system. In Fig. 2 we plot the change @ as a function of
h for a fixed value ofw and different values of. The strong
dependence dd, on h contrasts sharply with the instability
threshold observed in the low largeh regime(line in the
figure) where \ is considered to be the dissipative length
scale. In the highy, low h regime, the dependence af on
\ is negligible in contrast to its stronly dependence until .00' o1 02 03
approximatelyA/h<<4. This suggests that, in this regime, the ) ’ (5/h)? ’ '
dominant dissipative scale in the systenhis

We use this scale to determine the proper dimensionless FIG. 3. Scaling of reduced acceleration threshald,(hw?), as
parameters in this regime. Non-dimensionalizing length by functi o 2 .

1 3 unction of the dissipation parametes/f))“. Experimental data

h, time by ™", mass byph®, and defining the viscous (hin cm, v in 9: h=0.1, »=0.58 (M), h=0.13, v=0.58 (A)
boundary layer height ass=(v/w)'? we obtain the |_513 .—03 (@), h=0.15, 7~0.8 (V) h=0.15 y—0.48 ().
five dimensionless quantities/(hw?),v/(wh?)=(48/h)?, h=0.21, 1=0.8 (+)" h=021, 1=1.23 (X’), h=0.24, =0.8(+) h
ol(pw®h®), L/h, andg/(hw?). In Fig. 3 we plot the scaled -3 ,=1.230), h=0.51, y=2.53 (0), h=0.21, y=0.48 (A), h
acceleration threshold,.. /(hw?), as a function of the param- —gq 25, ¥=0.41 (¢), h=0.3, v=0.48 (O). Numerical data:h
eter (6/h)?, which characterizes the dissipation in the sys-=0.13, »=0.81, (dot-dashed lineh=0.15, v=0.50, (dashed
tem. Although the values dd, in the figure typically span line) h=0.13, »=0.20 (dotted lind. Note the systematic devia-
over an order of magnitude for a given value®h, the data tions from scaling.

aJ(ho?)
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the low v, high h regime,§/h<1 and the major mechanism 30
for dissipation in the fluid bulk would instead be the shear
over a pattern wavelength. Thus, whens large,\ is the
characteristic scale for dissipation, and, balancing the dissi-
pative term with the driving recovers the scaliag~ vwk.

We would therefore expect the scaling behavior indicated by
Fig. 3 to best hold in the limit wherex(h)?>1, which is
realized over most of our experimental rande5>\>0.5

cm, 0.5>h>0.1 cm.

Since the thresholds, calculated for a laterally infinite sys- (@ 00 01 02 03
tem, agree well with the measured values, the source of the 04— '
deviations cannot be the dissipation at the lateral boundaries _ 02l o
observed by Christiansegt al. [5]. Moreover, we find that q:‘*: * s
the scaled surface tensian (pw?h®) and aspect ratid./h =, 00 o v
have a negligible effect oa,/(hw?). [There was no observ- < 02 ";,VO o o
. 5 \ . -0.
able change ira./(hw?) as either parameter was varied by ‘o L
about a factor of 5, while keeping/h fixed.] This leads us to T o4 e °
consider the relevance of the remaining parameter, o
g/(hw?). 0800 005 010 015 020 035 030
In order to better understand the dependence on (b) (5/h)?

g/(hw?), we consider the underlying equations governing
the behavior of our system. These are the externally forced , _
Navier-Stokes(NS) equation in the comoving reference FIG. 4. ga) The scaled acceleration threshold=a(2/m
o . —gla.)/(hw?), with net upward acceleration taken into account.
frame and the boundary condition at the free fluid surfacey o the following data sets whera,<2—3g: h=0.25 cm
which balances the normal stress with the Laplace pressurg. g 41 S(¢), andh=0.3 cm, »=0.48 SC(@)_ The solid line Am’
caused by the distorted surface. Nondimensionalizing length. g 059+ 21.46(5/h)35 is a fit to the data. Representative error
by h, time by ", and mass byh?, these equations are  pars are showr(b) A high resolution plot of the relative deviations
from scaling behavior,A.— A1)/ As: - The data and symbols used

2 are as described in Fig. 3.

IN+(v-V)v=—VP+

Vav+ a (sin(r)—g)e
hw? al ?

h
1
@ defining the parametea(2/7w—g/a)/(hw?), which charac-

and terizes the meanpward acceleration over an excitation pe-
riod.
512 In Fig. 4 we replot the threshold data presented in Fig. 3
o ) " . .
PZZ(H) I+ = 2) (5x2+t9y2)§, ) after rescalzlng the critical accglerathn usyn@c(Z/w
P w —gl/a.)/(hw?). The data collapse in the figure is markedly

better. Asa. approacheg, the RT type mechanism for in-
where the dimensionless quantitiesv, w, P, £, ande, stability can no longer dominate and the scaling breaks
are, respectively, time, velocity, vertical velocity, pressure down. Two data sets where this occurs are presented in the
height of the fluid, and the unit vector normal to the surfacefigure forv=—0.46 and 0.52 S with fluid depths of 0.25 and
(the pressure above the layer is defined to bk will not 0.3 mm, respectively. Empirically, we find that far,>2
state explicitly the remaining boundary conditions, except to— 3g, the scaling works well.

mention that they introduce the quantityh. (More details A high resolution plot is presented in Figtb} where we
can be found in, e.g[9].) As expected, we recover the five subtract the measured data from the &t(2/7—g/ac)/
nondimensional parameters previously listed. (hw?)=0.059+21.4(5/h)3%* For values ofa., where the

We now propose a description of the Faraday instabilityRT type instability is relevant, there is little systematic de-
in this regime as a periodically driven version of the viation of the experimental data from the scaling function
Rayleigh-Taylor instability. The Rayleigh-Tayl¢RT) insta-  with the spread in the data falling within experimental error
bility [14] occurs at the interface of two fluids when the for 6/h>0.1. As in Fig. 4a), large deviations from scaling
denser fluid is forced into the lighter one. The initially planarare only seen for data whegda, approaches z/. Surpris-
interface then becomes unstable to a wide band of wavingly, the scaling holds even in data sets for whick 2h,
numbers. In our experiment, upon upwaadjainst the direc- where we might expect the she@nd hence the dissipatipn
tion of gravity) acceleration, the fluid layer is susceptible to over the horizontal scale of a pattern wavelength to be com-
this type of instability as it is forced into the layer of air parable with the shear between the fluid and cell bottom.
above it. Due to the large width of the unstable band of wave In conclusion, we have presented evidence for scaling be-
numbers allowed by the RT instability, the selected wavehavior of the transition to parametrically driven surface
number will still be determined by the forcing frequency via waves over a wide range of experimental parameters in the
the fluid’s dispersion relation. If the RT effect is dominant, regime of highly dissipative fluids. This scaling is derived by
we should take the full driving terna(sinr—g/a)/(hw?), into  using the fluid height and driving period as the characteristic
account when deriving the proper scaling. We do this bylength and time scales. Of the dimensionless parameters se-



55 SCALING OF THE TRANSITION TO PARAMETRICALLY . .. R3835

lected, the nondimensional surface tensioifpw?h®), and  standing both the dominant scales and proper scaling of the
aspect ratid_/h have little effect on the transition; this jus- System leads to a large reduction in the effective dimension
tifies a posteriorithe choices made in nondimensionalizing. of the parameter space and should facilitate the development
We find that two parametersa.(2/m—g/a.)/(hw?) and _of a thgoretical_ description of both these states and other
(8/h)2, entirely govern the scaling of the transition in this interesting nonlinear phenome(&,8,15 recently observed
regime. The first of these suggests that the instability, in thid this regime.

range of parameter space, is governed by a Rayleigh-Taylor The authors wish to acknowledge the support of the Wolf-
type mechanism. The second parametéth)?, was previ-  son Family Charitable TrusiGrant No. 43/93-2 We also
ously shown to govern the transition from localized patternghank B. Meerson, U. Alon, and H. Arbell for stimulating

to highly localized propagating solitary statf8]. Under-  conversations and invaluable advice.
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