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Scaling of the transition to parametrically driven surface waves in highly dissipative systems
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We present an experimental study of the onset of the Faraday instability in highly dissipative fluids. In this
regime of high viscosity and shallow fluid depth, we find that the critical acceleration for the transition to
parametrically excited surface waves scales as a function of two dimensionless parameters corresponding to the
ratios of the critical driving amplitude height and viscous boundary layer depth to the fluid depth. This scaling,
which exists over a wide range of fluid parameters, identifies the proper characteristic scales and indicates that
a Rayleigh-Taylor type mechanism drives the instability in this regime.@S1063-651X~97!51004-X#

PACS number~s!: 47.52.1j, 47.35.1i, 47.54.1r, 47.20.Gv
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The Faraday instability, which generates parametrica
driven surface waves, is one of a number of well-kno
pattern-forming systems. It occurs when a featureless la
of fluid, subjected to uniform, externally imposed oscill
tions in the vertical~parallel to gravity! direction, becomes
unstable to the spontaneous appearance of surface w
The accelerationa of the fluid layer can be viewed as th
system’s control parameter. The waves appear at a cri
value of the layer acceleration,ac, and oscillate at half of the
external driving frequency. The system is further charac
ized by the quantitiesv, h, n, r, L, and s defined as the
externally imposed angular frequency, depth of the fl
layer, kinematic viscosity, fluid density, lateral size of t
system, and surface tension, respectively.

Most previous experiments@1# in this system were per
formed in the lown, largeh limit where the linear dynamics
of the system are described by the Mathieu equation@2# with
dissipation, which governs the instability threshold, intr
duced phenomenologically@3,4#. In this regime, careful ex-
periments by Christiansenet al. @5# showed the instability
threshold to scale asac52nvk/tanh(hk) when corrections
@4# to the dissipation due to the moving contact line betwe
the fluid and the lateral walls bounding the experimental c
are taken into account.

Recent experiments have shown the utility of working
a regime of high fluid viscosity and relatively shallow flu
layers @6–8#. In this region of phase space, external dist
bances to the system are effectively damped out and
strong quantization of the unstable wave numbers in the
tem, enforced by the lateral boundaries, is relaxed. Thus
effective number of modes that can be excited in the sys
near onset is increased@6,7#. In this region, Kumar and
Tuckerman@9# showed thatac , calculated numerically from
the Navier-Stokes equation, deviates significantly from
threshold values predicted in the lown, high h limit. These
and later calculations in this regime agree well with measu
ments ofac that were performed for a number of differe
values ofh andn in systems driven at both one@6,7# and two
@10,11# frequencies.

Although numerical agreement between the calculati
in @9# and experiment is established, once we are far from
low n, high h limit in parameter space, the proper scali
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behavior ofac is unknown. There is some question as
whether a well-defined, scaling relation forac exists at all in
the case of the Faraday instability. The eight quantit
a, v, n, r, s, h, L, along with the gravitational accelera
tion g can be combined infive dimensionless parameter
There is, of course, an infinite number of ways to choo
these five parameters. The optimal choice is that which
fectively reduces the number of parameters: that is, the
pendence on some of the parameters is shown to be n
gible in the range of interest.

In this paper we demonstrate that simple scaling of
critical acceleration indeed occurs in a surprisingly wi
range of experimental parameters and the dominant dim
sionless parameters in the highn, low h regime are identi-
fied. As a result, the dimension of parameter space is ef
tively reduced from 5 to a more tractable 2. The form
these parameters suggests that, in this regime, a mecha
akin to the Rayleigh-Taylor instability may drive the inst
bility.

Our experimental apparatus was previously described
@8#. Experiments were performed in a 144.0 mm diame
circular cell where the fluid is supported by an aluminu
plate, polished to a mirror surface and flat to 1mm. The
cell’s lateral boundaries, made of Delrin, were sloped a
20° angle to reduce meniscus formation on the fluid surfa
The fluid depth varied between 1.0 and 5.0 mm. Fluids u
were glycerol-water mixtures and the hydrocarbon flush
fluids @12#, TKO-FF ~described at length in@8#! and TKO-
77. The fluid temperature was regulated to within 0.01 °C.
the latter fluidss andn were varied between 29.6 and 31
dyn/cm and 4.7 to 0.25 S~1 S51 cm/s! respectively as the
temperature was varied over a 20–45 °C range.

The cell was mounted on a mechanical shaker provid
vertical acceleration from 0 to 30g over a frequency range o
20–80 Hz. The acceleration, monitored by a calibrated
celerometer, was regulated to within 0.01g. To determine the
instability onset, the system was visualized from above
shadowgraph with stroboscopic illumination. Two effec
contribute to the experimental error in determiningac . The
first of these is due to experimental uncertainties inh ~0.3–
1.5%!, n ~,3%!, and the precision ofac measurements
~,0.5%!. The second contribution to the error involves u
R3832 © 1997 The American Physical Society
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55 R3833SCALING OF THE TRANSITION TO PARAMETRICALLY . . .
certainty ~;5%! in the absolute value ofac resulting from
slight inhomogeneities in the apparatus leveling. Althou
for given conditions, the value ofac is entirely reproducible,
a 0.1 mrad tilt of the apparatus, at small values ofh, can
induce a shift of a few percent, in absolute value. Additio
shifts @7# of a few percent inac can occur due to latera
quantization of the wave numberl at very low values ofv
~largel!.

Fluid patterns observed in the near vicinity ofac through-
out nearly the entire measuredn,h,v parameter space ar
subharmonic, spatially localized states~‘‘confined states’’ as
observed in@8#! with no observed hysteresis in the transiti
@13#. Globally distributed patterns were only observed wh
l waswithin an order of magnitude of the cell diameter a
mode quantization was enforced by the lateral boundarie
the system.

In Fig. 1 we present typical plots of both measured a
calculated values ofac as a function ofv for different values
of h andn. As the figure shows, for a given excitation fr
quency,ac can vary by over an order of magnitude as t
fluid height and viscosity are varied. In looking for scalin
behavior in the system, our first task is to identify the ch
acteristic length and time scales that lead to dissipation in
system. In Fig. 2 we plot the change inac as a function of
h for a fixed value ofv and different values ofn. The strong
dependence ofac on h contrasts sharply with the instabilit
threshold observed in the lown, largeh regime~line in the
figure! where l is considered to be the dissipative leng
scale. In the highn, low h regime, the dependence ofac on
l is negligible in contrast to its strongh dependence unti
approximatelyl/h,4. This suggests that, in this regime, th
dominant dissipative scale in the system ish.

We use this scale to determine the proper dimension
parameters in this regime. Non-dimensionalizing length
h, time by v21, mass byrh3, and defining the viscous
boundary layer height asd[(n/v)1/2, we obtain the
five dimensionless quantitiesa/(hv2),n/(vh2)[(d/h)2,
s/(rv2h3), L/h, andg/(hv2). In Fig. 3 we plot the scaled
acceleration threshold,ac /(hv2), as a function of the param
eter (d/h)2, which characterizes the dissipation in the sy
tem. Although the values ofac in the figure typically span
over an order of magnitude for a given value ofd/h, the data

FIG. 1. Typical instability threshold measurements forh50.13
cm, n50.8 S~d!, h50.15 cm,n50.8 S~.!, h50.15 cm,n50.58
S ~l!, h50.21 cm,n50.48 S ~_!, h50.25 cm,n50.41 S,~!,
h50.51 cm,n52.53 S~h!, The lines represent the calculated va
ues for the threshold.
,
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when scaled, largely collapse onto a single curve. The dat
Fig. 3 also cover a wide range of the other dimensionl
parameters. In particular, 0.001,s/(rv2h3),0.7, 20,L/h
,140, and 0.01,g/(hv2),0.6.

A closer look at some experimental data sets, howe
reveals systematic deviations from scaling. Guided by the
we have extended our data by performing numerical ca
lations using the Kumar-Tuckerman algorithm@9# ~lines in
Fig. 3! for parameter combinations chosen to display a m
marked deviation from the scaling suggested by the figu

The deviations from scaling occur in precisely the regi
(l/h)2@1, where we would most expect the scaling to ho
for the following reason. The parameterd/h governs the dis-
sipation in the system. Our choice ofh as the characteristic
length in the system is equivalent to stating that the domin
dissipative mechanism in the system is the shear between
fluid flow and the bottom plate. This dissipation is balanc
against the parameterac /(hv2), or the driving term, which,
when large enough, leads to instability of the fluid surface

FIG. 2. The instability thresholdac as a function ofh for
v/~2p!541 Hz andn50.58 S,~j!, n50.8 S ~d!, and n50.48 S
~m!. To facilitate comparison,ac in each plot was normalized by
the smallest measured threshold value in each data set. For
parison, we include~solid line! the predictions for largeh low n
regime.

FIG. 3. Scaling of reduced acceleration threshold,ac /(hv2), as
a function of the dissipation parameter (d/h)2. Experimental data
(h in cm, n in S!: h50.1, n50.58 ~j!, h50.13, n50.58 ~m!,
h50.13, n50.8 ~d!, h50.15, n50.8 ~.!, h50.15, n50.48 ~l!,
h50.21, n50.8 ~1!, h50.21, n51.23 ~x!, h50.24, n50.8~* ! h
50.3, n51.23~s!, h50.51,n52.53 ~h!, h50.21,n50.48 ~_!, h
50.25, n50.41 ~L•!, h50.3, n50.48 ~s• !. Numerical data:h
50.13, n50.81, ~dot-dashed line! h50.15, n50.50, ~dashed
line! h50.13, n50.20 ~dotted line!. Note the systematic devia
tions from scaling.
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the lown, high h regime,d/h!1 and the major mechanism
for dissipation in the fluid bulk would instead be the she
over a pattern wavelength. Thus, whenh is large,l is the
characteristic scale for dissipation, and, balancing the d
pative term with the driving recovers the scalingac'nvk.
We would therefore expect the scaling behavior indicated
Fig. 3 to best hold in the limit where (l/h)2@1, which is
realized over most of our experimental range~1.5.l.0.5
cm, 0.5.h.0.1 cm!.

Since the thresholds, calculated for a laterally infinite s
tem, agree well with the measured values, the source of
deviations cannot be the dissipation at the lateral bounda
observed by Christiansenet al. @5#. Moreover, we find that
the scaled surface tensions/(rv2h3) and aspect ratioL/h
have a negligible effect onac /(hv2). @There was no observ
able change inac/(hv2) as either parameter was varied b
about a factor of 5, while keepingd/h fixed.# This leads us to
consider the relevance of the remaining parame
g/(hv2).

In order to better understand the dependence
g/(hv2), we consider the underlying equations governi
the behavior of our system. These are the externally for
Navier-Stokes~NS! equation in the comoving referenc
frame and the boundary condition at the free fluid surfa
which balances the normal stress with the Laplace pres
caused by the distorted surface. Nondimensionalizing len
by h, time byv21, and mass byrh3, these equations are

]tv1~v•“ !v52¹P1S d

hD
2

¹2v1
a

hv2 S sin~t!2
g

aDez
~1!

and

P52S d

hD
2

]zw1S s

rh3v2D ~]x
21]y

2!z, ~2!

where the dimensionless quantitiest, v, w, P, z, and ez
are, respectively, time, velocity, vertical velocity, pressu
height of the fluid, and the unit vector normal to the surfa
~the pressure above the layer is defined to be 0!. We will not
state explicitly the remaining boundary conditions, excep
mention that they introduce the quantityL/h. ~More details
can be found in, e.g.,@9#.! As expected, we recover the fiv
nondimensional parameters previously listed.

We now propose a description of the Faraday instabi
in this regime as a periodically driven version of th
Rayleigh-Taylor instability. The Rayleigh-Taylor~RT! insta-
bility @14# occurs at the interface of two fluids when th
denser fluid is forced into the lighter one. The initially plan
interface then becomes unstable to a wide band of w
numbers. In our experiment, upon upward~against the direc-
tion of gravity! acceleration, the fluid layer is susceptible
this type of instability as it is forced into the layer of a
above it. Due to the large width of the unstable band of wa
numbers allowed by the RT instability, the selected wa
number will still be determined by the forcing frequency v
the fluid’s dispersion relation. If the RT effect is dominan
we should take the full driving term,a(sint2g/a)/(hv2), into
account when deriving the proper scaling. We do this
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defining the parameter,a(2/p2g/a)/(hv2), which charac-
terizes the meanupwardacceleration over an excitation pe
riod.

In Fig. 4 we replot the threshold data presented in Fig
after rescaling the critical acceleration usingac(2/p
2g/ac)/(hv2). The data collapse in the figure is marked
better. Asac approachesg, the RT type mechanism for in
stability can no longer dominate and the scaling bre
down. Two data sets where this occurs are presented in
figure forn520.46 and 0.52 S with fluid depths of 0.25 an
0.3 mm, respectively. Empirically, we find that forac.2
23g, the scaling works well.

A high resolution plot is presented in Fig. 4~b! where we
subtract the measured data from the fit:ac(2/p2g/ac)/
(hv2)50.059121.4(d/h)3.54. For values ofac where the
RT type instability is relevant, there is little systematic d
viation of the experimental data from the scaling functi
with the spread in the data falling within experimental err
for d/h.0.1. As in Fig. 4~a!, large deviations from scaling
are only seen for data whereg/ac approaches 2/p. Surpris-
ingly, the scaling holds even in data sets for whichl;2h,
where we might expect the shear~and hence the dissipation!
over the horizontal scale of a pattern wavelength to be co
parable with the shear between the fluid and cell bottom

In conclusion, we have presented evidence for scaling
havior of the transition to parametrically driven surfa
waves over a wide range of experimental parameters in
regime of highly dissipative fluids. This scaling is derived
using the fluid height and driving period as the characteri
length and time scales. Of the dimensionless parameters

FIG. 4. ~a! The scaled acceleration threshold,Ac[ac(2/p
2g/ac)/(hv2), with net upward acceleration taken into accou
Note the following data sets whereac,223g: h50.25 cm,
n50.41 S~!, andh50.3 cm,n50.48 S,~(!. The solid line,Afit

50.059121.46(d/h)3.54 is a fit to the data. Representative err
bars are shown.~b! A high resolution plot of the relative deviation
from scaling behavior, (Ac2Afit)/Afit . The data and symbols use
are as described in Fig. 3.
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lected, the nondimensional surface tensions/(rv2h3), and
aspect ratioL/h have little effect on the transition; this jus
tifies a posteriori the choices made in nondimensionalizin
We find that two parameters,ac(2/p2g/ac)/(hv2) and
(d/h)2, entirely govern the scaling of the transition in th
regime. The first of these suggests that the instability, in
range of parameter space, is governed by a Rayleigh-Ta
type mechanism. The second parameter, (d/h)2, was previ-
ously shown to govern the transition from localized patte
to highly localized propagating solitary states@8#. Under-
lub
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standing both the dominant scales and proper scaling of
system leads to a large reduction in the effective dimens
of the parameter space and should facilitate the developm
of a theoretical description of both these states and o
interesting nonlinear phenomena@6,8,15# recently observed
in this regime.

The authors wish to acknowledge the support of the Wo
son Family Charitable Trust~Grant No. 43/93-2!. We also
thank B. Meerson, U. Alon, and H. Arbell for stimulatin
conversations and invaluable advice.
ett.

v. E

e of
the
as
ere
r.

ro-
@1# See, e.g., N. B. Tufillaro, R. Ramshankar, and J. P. Gol
Phys. Rev. Lett.62, 422 ~1989!; S. Ciliberto, S. Douady, and
S. Fauve, Europhys. Lett.15, 23 ~1991!; A. B. Ezerskii, P. I.
Korotin, and M. I. Rabinovich, Zh. Eksp. Teor. Fiz.41, 129
~1985!, @Sov. Phys. JETP41, 157 ~1986!#; E. Bosch and W.
van der Water, Phys. Rev. Lett.70, 3420~1993!.

@2# T. B. Benjamin and F. Ursell, Proc. R. Soc. London, Ser.
225, 505 ~1954!.

@3# L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon,
New York, 1982!.

@4# S. T. Milner, J. Fluid Mech.225, 81 ~1991!.
@5# B. Christiansen, P. Alstrom, and M. T. Levinsen, J. Flu

Mech.291, 323 ~1995!.
@6# W. S. Edwards and S. Fauve, Phys. Rev. E47, 788 ~1993!; J.

Fluid Mech.278, 123 ~1994!.
@7# J. Bechhoefer, V. Ego, S. Manneville, and B. Johnson, J. F

Mech.288, 325 ~1995!.
,

d

@8# O. Lioubashevski, H. Arbell, and J. Fineberg, Phys. Rev. L
76, 3959~1996!.

@9# K. Kumar and L. S. Tuckerman, J. Fluid Mech.279, 49
~1994!.

@10# J. Beyer and R. Friedrich, Phys. Rev. E51, 1162~1995!.
@11# T. Besson, W. S. Edwards, and L. S. Tuckerman, Phys. Re

54, 507 ~1996!.
@12# Obtained from the Kurt J. Lesker company.
@13# We can make no blanket statement regarding the existenc

hysteresis throughout the entire parameter space. Within
1% resolution inac of typicalmeasurements no hysteresis w
observed. A number of 0.1% resolution measurements w
also performed, which also revealed no hysteretic behavio

@14# M. S. Plesset and C. G. Whipple, Phys. Fluids17, 1 ~1974!.
@15# L. Daudet, V. Ego, S. Manneville, and J. Bechhoefer, Eu

phys. Lett.32, 313~1995!; A. Kudrolli and J. P. Gollub, Phys.
Rev. E54, 1052~1996!.


