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Abstract. Many physical processes are described by elliptic or parabolic partial dif-
ferential equations. For linear stability problems associated with such equations, the
inverse Laplacian provides a very effective preconditioner. In addition, it is also read-
ily available in most scientific calculations in the form of a Poisson solver or an implicit
diffusive timestep. We incorporate Laplacian preconditioning into the inverse Arnoldi
method, using BiCGSTAB to solve the large linear systems. Two successful implemen-
tations are described: spherical Couette flow described by the Navier-Stokes equations
and Bose-Einstein condensation described by the nonlinear Schrödinger equation.
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1 Introduction

Many physical systems are governed by parabolic evolution equations of the general
form

∂tU= LU+N(U), (1.1)

where L is the Laplacian operator and N represents some combination of nonlinear terms
or a multiplicative potential. Two examples which we will consider are the Navier-Stokes
equations

∂tU=−(U ·∇)U−∇P+ν∇2U, (1.2a)

∇·U=0, (1.2b)

and the nonlinear Schrödinger equation

−i∂tΨ=

[

1

2
∇2+µ−V(x)−a|Ψ|2

]

Ψ. (1.3)
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Steady solutions of (1.1) satisfy

0= LU+N(U) (1.4)

and the Jacobian operator evaluated at U is defined by

A≡ L+NU , (1.5)

where NU is the linearization of N at U. Steady bifurcations from U occur when an
eigenvalue of A crosses zero. For this reason, we are interested in the eigenvalues of
(1.5) which are closest to zero. These eigenvalues can be calculated by the classic in-
verse power method, generalized to the inverse Arnoldi method [1]. The sequence {uk≡
A−(k−1)u1; k=1,···K} is generated by solving

Auk+1=uk . (1.6)

This sequence is orthonormalized by the usual Arnoldi process to yield the basis {vk} for
the Krylov space and the upper Hessenberg matrix

Hjk≡〈vj,A
−1vk〉. (1.7)

H is directly diagonalized, yielding

Hφk =λkφk , (1.8)

with estimated eigenpairs (λ−1
k ,Vφk) for A, where V is the rectangular matrix whose jth

column is vj. A shift s can, as usual, be used to accelerate convergence of the Arnoldi
method to a desired eigenvalue. In this case, we solve

(A−sI)uk+1=uk. (1.9)

Solving the linear systems (1.6) or (1.9) is by far the most time-consuming part of the
algorithm. This means that it is far more difficult to find the smallest eigenvalues of A
than the largest ones, since acting with A is usually far easier than acting with its inverse.
The purpose of this paper is to present a method for quickly formulating and solving the
linear systems (1.6) or (1.9), assuming that we have a time-stepping code for integrating
the time-dependent equation (1.1).

A related scheme has been used to compute steady states via Newton’s method [2–6].
This scheme has been proposed and used as a method for calculating eigenvalues in
[7–10]. Here we provide a study of its convergence.

2 Method

2.1 Laplacian preconditioning

Our method for solving (1.6) is based on the BiCGSTAB variant of the conjugate gradient
method [11]. Since A results from the spatial discretization of a partial differential equa-
tion, its size may be quite large. Denoting by M the number of points or modes necessary
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to represent the variation in each spatial dimension D, we assume that 10≤M≤1000. The
size of A is then 10D≤MD≤ 103D, i.e. 102≤M2≤ 106 for problems with two spatial di-
mensions and 103≤M3≤ 109 for three-dimensional problems. In addition, A is poorly
conditioned, primarily because of the wide range of eigenvalues of the Laplacian L. The
smallest and largest eigenvalues of L can be estimated roughly as −1 and −D M2, yield-
ing a condition number for L of 3×104 for a three-dimensional case with M=100. Thus,
preconditioning by the inverse L−1 of the Laplacian will be very effective. In addition,
multiplication by the inverse Laplacian, i.e. solution of the Poisson equation, is a ubiq-
uitous problem for which a great deal of computational technology has been developed,
for all sorts of spatial discretizations.

The problem we solve instead of (1.6) uses as a preconditioner either the Poisson
operator L−1:

L−1(L+NU)uk+1= L−1uk (2.1)

or the Helmholtz operator (I−∆tL)−1∆t:

(I−∆tL)−1∆t(L+NU)uk+1=(I−∆tL)−1∆tuk . (2.2)

Appropriate boundary conditions must be imposed on either equation; this is assumed
to be encompassed in the notation L−1 or (I−∆tL)−1. Use of (2.2) instead of (2.1) is moti-
vated by the utilization of timestepping schemes in which the evolution of the diffusive
terms is calculated implicitly. Implicit timestepping is required because the wide range of
eigenvalues of L leading to poor conditioning in the context of the linear system (1.6) also
leads to stiffness of the evolution equation (1.1). The simplest such timestepping scheme
is the backward-Euler/forward Euler first-order algorithm. For the linearized operator
L+NU , this algorithm reads:

u(t+∆t)=(I−∆tL)−1(I+∆tNU)u(t). (2.3)

For small ∆t, (2.3) necessarily approximates the action on u(t) of the exponential of ∆t(L+
NU). The difference between two consecutive linearized timesteps can be written:

u(t+∆t)−u(t)=(I−∆tL)−1(I+∆tNU)u(t)−u(t)

=(I−∆tL)−1 [(I+∆tNU)−(I−∆tL)]u(t)

=(I−∆tL)−1∆t(NU+L)u(t), (2.4)

which is seen to be the action of the operator on the left hand side of (2.2). In order for
the Helmholtz operator (I−∆tL)−1∆t to be an effective preconditioner, ∆t must be set
to a large value, in contrast to the small value required for timestepping. Varying ∆t
can also provide a way of testing the preconditioning, since ∆t→ 0 is equivalent to no
preconditioning, while ∆t→∞ is equivalent to preconditioning by L−1.

Thus (2.2) is carried out by the equivalent procedure:

[

(I−∆tL)−1(I+∆tNU)− I
]

uk+1=(I−∆tL)−1∆tuk , (2.5)
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where the action of the operator on the left-hand-side is carried out by taking the differ-
ence between two widely spaced linearized timesteps as in (2.4), and the action on the
right-hand-side is the implicit part of the timestepping scheme (2.3).

In the two examples we have implemented, we have used a pseudospectral spatial dis-
cretization [12, 13]. Functions are represented both as series of basis functions, such as
Fourier series or Chebyshev polynomials (spectral representation), and also by their val-
ues on a spatial grid. Actions and inversions of the Laplacian L are carried out in the
spectral representation, while the actions of the multiplicative operator N or NU are car-
ried out on the grid representations; all of these operations scale approximately linearly
in MD, the number of gridpoints or basis functions. Fourier or Chebyshev transforms
are used to pass between the spectral and grid representations in a time proportional to
D MD logM.

2.2 Implementation of the Arnoldi method

Our implementation of the Arnoldi method is as follows. Choosing a small value of K,
typically 2≤K≤6, and an initial random vector u1, we take K Arnoldi steps, generating
the K Krylov vectors {uk}, the K×K matrix H, and the K eigenpair estimates. To continue,
we take one additional Arnoldi step, discard u1, redefine uk← uk+1, and generate an
updated H and eigenpair estimates. The procedure is halted when the residual ||(A−1−
λ−1

k I)Vφk|| or ||(A−λk I)Vφk|| of the eigenpair sought is sufficiently small.

Inaccuracy in the computed eigenvalues can arise from several sources, any of which
may be so large as to prevent the use of the method. One source, characteristic of all
Arnoldi methods, is the projection of a high-dimensional operator onto a low-dimensional
H. Another source of error is the iterative solution of the linear system (2.5), the precon-
ditioned version of (1.6). The errors incurred correspond to the two roles played by the
procedure (1.6)-(1.7): to generate a Krylov space {uk} via (1.6), and to generate a low-
dimensional projection H to A−1 via (1.7). The usual Arnoldi process combines the two
functions, but they can be decoupled, reducing or eliminating the error incurred in (1.7).
If direct action by A is feasible, inexpensive, and more accurate than action by A−1 via
iterative solution, we can replace (1.7) by

Hjk≡〈vj,Avk〉 (2.6)

to construct a Krylov space representation of A rather than of A−1; the eigenvalues of H
are then estimates of those of A. Action by A is not desirable in generating the Krylov
space (which would then be focused on eigenvectors corresponding to eigenvalues of
largest magnitude). Thus, we continue to generate the Krylov vectors by acting with
A−1 via (1.6), targeting the method to eigenvalues closest to 0 or to s. We then carry
out the additional multiplications by A in (2.6), separately from the Arnoldi procedure,
to generate H. This adds little to the cost, while eliminating an additional source of
inaccuracy.
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If we are following eigenvalues along a branch of steady states which depends on
a parameter such as a Reynolds number, then a very accurate estimate s of the desired
eigenvalue is that obtained for a neighboring parameter value. A shift by s can be incor-
porated into the action of NU , so that Eqs. (2.1) and (2.2) are replaced by

L−1(L+NU−sI)uk+1= L−1uk, (2.7)

(I−∆tL)−1∆t(L+NU−sI)uk+1=(I−∆tL)−1∆tuk . (2.8)

The overall method consists of a sequence of outer Arnoldi iterations, each of which
requires a sequence of inner BiCGSTAB iterations. There exists an inherent conflict be-
tween the outer Arnoldi and inner BiCGSTAB iterations: the Arnoldi method should
converge fastest when the eigenvalues differ most, while BiCGSTAB should converge
fastest when the matrix is well conditioned. We will see in the applications that this
conflict posed no practical difficulty in the case of our spherical Couette flow problem
(Navier-Stokes equations), but may be responsible for problems encountered in the case
of our Bose-Einstein condensation problem (the nonlinear Schrödinger Equation).

3 Application to spherical Couette flow

3.1 Physical description of flow and instabilities

Spherical Couette flow is the flow between two concentric differentially rotating spheres.
When the outer sphere is held fixed, spherical Couette flow is characterized by two di-
mensionless quantities, the Reynolds number Re≡Ω1r2

1/ν and the gap ratio σ≡ (r2−
r1)/r1 where r1,r2 are the inner and outer radii, Ω1 is the angular velocity of the inner
sphere, and ν is the kinematic viscosity. Like the better known cylindrical Couette flow,
spherical Couette flow undergoes an instability as Re is increased, which leads to the for-
mation of vortices. The physical mechanism responsible for the instability is the radial
gradient in angular momentum, which is decreased by the radial mixing of fluid engen-
dered by the vortices. One measure of this gradient is the torque required to rotate the
inner sphere at angular velocity Ω1 or, equivalently for a steady flow, to keep the outer
sphere stationary.

Extensive studies [14–19] of the case σ= 0.18 have led to the following conclusions:
In the range Re < 850, all steady states are axisymmetric, i.e. independent of the angle
about the axis of rotation, and reflection-symmetric about the equator. For brevity, we
describe as symmetric or antisymmetric the steady states and eigenvectors which are
reflection-symmetric or antisymmetric about the equator, as well as the corresponding
eigenvalues. Those which are neither are called asymmetric. There exist three types of
steady states: the zero-vortex state, with no vortices, the one-vortex state, with one vortex
in each hemisphere, and the two-vortex state with two vortices in each hemisphere.

The steady solutions obtained by gradually increasing Re from Re = 0 are located
on what can be termed the basic branch. Along the basic branch, the zero-vortex state
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evolves continuously into the two-vortex state. Since the vortices are infinitesimal at on-
set, it is difficult to define a precise criterion for when this occurs, but it is approximately
Re= 735. The zero- and two- vortex states along the basic branch are unstable over the
range 650<Re< 775. The eigenvalue responsible for this instability is real, and the cor-
responding eigenvector is antisymmetric. The endpoints of this interval correspond to
subcritical pitchfork bifurcations, which means in this case that the asymmetric bifurcat-
ing branches originating at Re= 650 and 775 are unstable and not the final destinations
of the transitions triggered by the instability. Instead, evolution via a sequence of asym-
metric transient states terminates at a steady stable symmetric one-vortex state.

Fig. 1 shows up to four leading eigenvalues of the basic flow, calculated using the
inverse Arnoldi method. The eigenvalue which is positive over the range 650<Re<775
is that responsible for the subcritical pitchfork bifurcations initiating transition to the one-
vortex state described above. This is the leading eigenvalue and it is antisymmetric. For
Re<744, the next leading eigenvalues are a symmetric complex conjugate pair whose real
and imaginary parts are both shown in Fig. 1. At Re= 744, these coalesce and become
two real eigenvalues, the lower of which decreases so rapidly with Re that it is no longer
visible on Fig. 1 for Re> 755. The last eigenvalue shown on Fig. 1 belongs to a second
antisymmetric eigenvector.

Figure 1: Four leading eigenvalues for spherical Couette flow. Two eigenvectors are antisymmetric and their
corresponding eigenvalues are shown as solid red and hollow blue circles. One of these eigenvalues (solid red
circles) is positive over the range 650 < Re< 775. Two eigenvectors are symmetric. Their eigenvalues form
a complex conjugate pair for Re< 744; their real part is shown as solid green squares and the imaginary part
as hollow black squares. For Re> 744, the corresponding eigenvalues are both real and shown as solid green
squares. The cross at (Re=750,λ=−0.152) shows the eigenvalue which we target for our test case.

The leading eigenvalue attains a maximum at Re= 735, precisely at the value where
the torque is minimum and very near the value at which the basic flow evolves from a
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zero-vortex to a two-vortex flow. All of the other leading eigenvalues (or, in the case of
the complex conjugate pair, their real part) also have maxima near, though not exactly at,
this Reynolds number. This reflects the fact that the angular momentum gradient respon-
sible for the instability has been alleviated by the radial fluid mixing of the vortices. In
evolving from a zero-vortex to a two-vortex flow, the basic branch becomes less unstable
and the eigenvalues decrease.

3.2 Numerical results

We now describe the results of eigenvalue computations for this case of spherical Couette
flow. Approximately 50 lines were added to an existing time-stepping program [18] to
implement the method. This program uses a tensor-product basis set (Chebyshev poly-
nomials in radius multiplied by trigonometric functions of meridional angle) to represent
fields. This leads to a Laplacian which is highly structured (although not sparse) and
thus to rapid action with (I−∆tL)−1. The azimuthal velocity and the meridional stream-
function are used to represent the axisymmetric fields and incompressibility is imposed
to machine accuracy via the influence matrix technique. The program was previously
adapted to calculate the leading eigenpair via the simple power method [19] or Arnoldi’s
method [3] on the approximate exponential (2.3), and also to calculate steady states by
Newton’s method with Laplacian preconditioning [3] (called Stokes preconditioning in
this context). The numerical resolution usually used is 16×128 which, with two fields,
leads to matrices of size 4096×4096. Our non-dimensionalization is such that the rotation
period of the inner sphere is 70 and the timestep used for time-integration in this regime
is ∆t=1.

We focus on the calculation of the eigenvalue of smallest magnitude at Reynolds num-
ber 750, whose value is λ̄=−0.15181122. Krylov spaces of dimension K=2 are used for
the Arnoldi iterations. To solve the linear systems, BiCGSTAB is given a stopping crite-
rion of

||Auk+1−uk||/||uk ||≤10−7, (3.1)

with a maximum number of iterations of 2000. We measure CPU time by the number
of matrix-vector multiplications, each approximately equivalent to a timestep. We re-
call that for this pseudospectral code, the cost of such a multiplication increases only
slightly faster than linearly in the number of gridpoints of basis functions. Fig. 2 shows
the convergence of the error |λ−λ̄| as a function of the number n of matrix-vector mul-
tiplications. Each point corresponds to a single Arnoldi iteration, i.e. a single solution
of (2.2), and thus to a sequence of BiCGSTAB iterations. The timestep ∆t, which deter-
mines the efficiency of the Helmholtz preconditioning (I−∆tL)−1, is varied from 0.01
to 100. Very fast convergence is seen for ∆t = 10. Six-digit accuracy is obtained after 7
Arnoldi steps, requiring n= 754 matrix-vector multiplies. Further increase of ∆t has lit-
tle effect, as shown by the similar values corresponding to ∆t= 100; this shows that the
preconditioning operator is essentially the inverse Laplacian L−1. As ∆t is decreased,
the preconditioning also decreases drastically. For ∆t = 1, the number of matrix-vector
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Figure 2: Left: Convergence of error |λ−λ̄| as a function of the number of matrix-vector multiplications for
different values of ∆t. For ∆t = 100 (solid red circles) or ∆t = 10 (hollow black circles), inverse Laplacian
preconditioning is achieved and convergence is rapid. As ∆t is decreased through 1 (solid green triangles)
and 0.1 (hollow blue triangles), convergence decreases dramatically. For ∆t = 0.01 (solid purple squares),
the preconditioner has become so ineffective that BiCGSTAB does not converge to the requested precision
in the maximum number of iterations allowed. Right: Same data in log-log representation indicates that
|λ−λ̄|(n,∆t)∼ (n∆tα)−β with α≈1/4 and β≈14.

multiplications required by BiCGSTAB to converge to the same accuracy increases from
100 to 300, while for ∆t= 0.1, this number is on the order of 600. For ∆t= 0.01, conver-
gence would require more than the maximum number of iterations we have allowed for
BiCGSTAB.

We quantify the dependence of convergence on ∆t further by plotting the same data
logarithmically in the number of matrix-vector multiplications. Each sequence |λ−λ̄|(n)
has approximately the same slope. The sequences are displaced rightwards by the same
interval as ∆t is decreased by factors of 10 from 10 to 1 to 0.1. This implies that

|λ−λ̄|(n,∆t)∼ (n∆tα)−β (3.2)

and Fig. 2 yields the estimated dependence

|λ−λ̄|(n,∆t)∼ (n∆t1/4)−14 . (3.3)

Fig. 3 shows the convergence of |λ−λ̄| as shifts progressively closer to λ̄ are em-
ployed, more specifically s = 0, s =−0.1, s =−0.15, and s =−0.152. Two unexpected
conclusions can be drawn from Fig. 3. The first is that as s approaches λ̄, convergence
continues to improve, despite the fact that the matrix must become less well conditioned
as s→λ̄. The second is that convergence does not improve monotonically as s approaches
λ̄; convergence for s=−0.1 is slower than that for s= 0. In seeking to understand this,
we notice that BiCGSTAB requires fewer matrix-vector multiplications for each Arnoldi
iteration for the case s=−0.1 than for the case s= 0. We therefore forced BiCGSTAB to
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Figure 3: Left: Convergence of error |λ−λ̄| as a function of the number of matrix-vector multiplications for

different values of shift s, with ∆t fixed at 100 and BiCGSTAB stopping criterion fixed at 10−7. As the shift
approaches λ̄=−0.15181122 from s=0 (solid red circles), through s=−0.1 (solid blue triangles) s=−0.15 (solid
green squares), to s=−0.152 (hollow black triangles), convergence greatly accelerates except for s=−0.1. Right:
Convergence of error |λ−λ̄| for s= 0 (circles) and s=−0.1 (triangles) and for BiCGSTAB stopping criterion

10−7 (solid) and 10−9 (hollow). Reducing the stopping criterion improves convergence for s=−0.1 but has
little effect for s=0.

increase the number of matrix-vector multiplications by reducing its stopping criterion
from 10−7 to the more stringent value of 10−9. Fig. 3 shows that this change greatly im-
proves the convergence of the s =−0.1 case but has little effect on the s = 0 case. This
suggests that the outer Arnoldi and inner BiCGSTAB iterations are intermeshed in a way
which is more complicated to capture than by the simple value of the stopping criterion.
We have not explored the effect of varying s from one Arnoldi iteration to the next.

Fig. 4 shows that convergence is almost unaffected by an increase in the size of the
Krylov space from K=2 to K=4. We also increased the spatial resolution from 2×16×128
to 2×32×256. This increases the size of the matrix by a factor of 4 and the cost of each
matrix-vector multiplication by slightly more than a factor of 4, and changes the value of
the eigenvalue of the spatially discretized problem to λ̄=−0.15197992. We see, however,
that the dependence of |λ−λ̄| on the number of matrix-vector multiplications is almost
unaffected. This demonstrates our claim that the cost of this method is approximately
linear in the number of gridpoints or modes, i.e. in the size of the matrix.

4 Bose-Einstein condensation

The nonlinear Schrödinger equation (1.3), also called the Gross-Pitaevskii equation [20,
21], has been used to described the behavior of a Bose-Einstein condensate [22–26], in
which atoms are cooled so drastically that they populate the same quantum-mechanical
state.
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Figure 4: Convergence of error |λ−λ̄| as a function of Krylov space dimension and spatial resolution. Solid
red circles: K=2 and spatial resolution 16×128. Hollow green triangles: K=4 and spatial resolution 16×128.
Hollow blue squares: K=2 and 32×256.

The steady states are a stable (elliptic) and unstable (hyperbolic/elliptic) pair which
meet at a Hamiltonian saddle-node bifurcation [5,27,28] described as follows. The eigen-
values occur in pairs ±λ or ±iλ. Along the elliptic branch, all are imaginary. As this
branch is followed towards the Hamiltonian saddle-node bifurcation, one imaginary
eigenvalue pair ±iλ approaches zero, becoming zero at the saddle-node bifurcation. As
we leave the bifurcation along the unstable hyperbolic branch, the eigenvalue pair ±λ
is real, with absolute value increasing along the branch. The rate at which the critical
eigenvalue |λ| approaches and recedes from zero determines the rate at which the Bose-
Einstein condensate decays [5, 28].

The low temperature needed for Bose-Einstein condensation is modeled by a con-
fining harmonic potential 1

2 |ω ·x|
2. Two types of calculations of the steady states and

eigenvalues have previously been carried out. First, a variational technique which ap-
proximates steady states as Gaussians yields analytic estimates of the critical eigenval-
ues [5, 10, 27, 28]. Second, if the potential is isotropic (spherically symmetric), and this
assumption is made throughout, then the problem has effectively only one spatial di-
mension and the stability matrix is small enough to be directly diagonalized [5]. We
describe an implementation of the inverse Arnoldi method with Laplacian precondition-
ing which calculates the eigenvalues in a general geometry and present results for the
two cylindrically symmetric potentials, termed a cigar and a pancake [10, 29, 30].

We write the nonlinear Schrödinger equation in the abbreviated form:

−i∂tΨ= LΨ+W(Ψ), (4.1)
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Figure 5: Stationary solutions of the GP equation as a function of particle number N for two non-isotropic
potentials with ωz=ωr/5 (cigar, left) and ωr=ωz/5 (pancake, right). Top: value of the energy functional E+
on the unstable (hyperbolic) branch and E− on the stable (elliptic) branch. Bottom: square of the bifurcating

eigenvalue (λ2
±); |λ−| is the energy of small excitations around the stable branch. Solid lines: exact solution of

the GP equation. Dashed lines: Gaussian approximation.

where

LΨ≡
1

2
∇2Ψ, (4.2)

W(Ψ)≡

[

µ−
1

2
|ω·x|2−a|Ψ|2

]

Ψ, (4.3)

|ω ·x|2 =ωrr
2+ωzz2 . (4.4)

We begin by presenting our results for two geometries, a cigar (ωz=ωr/5), and a pancake
(ωr =ωz/5) [10, 29, 30] in Fig. 5. The particle numberN and energy E are defined by:

N =
∫

d3x|Ψ|2, (4.5)

E=
∫

d3x

[

1

2
|∇Ψ|2+

1

2
|ω·x|2|Ψ|2+

a

2
|Ψ|4

]

. (4.6)

The control parameter is the particle number, which is conserved by the nonlinear
Schrödinger equation. (The solutions can also be indexed by µ.) When the particle num-
ber is below Nc, there exist two solutions, one stable (elliptic) and the other unstable
(hyperbolic). The Hamiltonian saddle-node bifurcation takes place at Nc, and for a par-
ticle number exceedingNc, no Bose-Einstein condensate exists.

The operators L and W defined in (4.2) and (4.3) are spatially discretized using the
pseudospectral method. We assume a three-dimensional periodic Cartesian domain, on
which Ψ and |ω·x|2 are expanded as three-dimensional trigonometric (Fourier) series. In
this representation, solution to the Poisson equation is trivial, since each Fourier compo-
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nent is merely divided by the square of its wavenumber:

∇2 ∑
lx ,ly,lz

flx ,ly,lz
exp(ilxx+ilyy+ilzz)

=− ∑
lx,ly,lz

|l|2 flx ,ly,lz
exp(ilxx+ilyy+ilzz). (4.7)

(The |l|=0 component is determined by the boundary conditions in solving the Poisson
equation and can be treated arbitrarily when L−1 is used merely as a preconditioner.)
The resolution M in each direction is 50 or 100, so the total number of gridpoints or
trigonometric functions is as high as 106. The time required for action by L or L−1 is
again proportional to the number of gridpoints or modes, while action by W includes
a Fourier transform and so takes a time proportional to M3 logM. Stable and unstable
steady states were previously obtained [5] by adapting a time-stepping code to carry out
Newton’s method, using Laplacian preconditioning and BiCGSTAB to solve the resulting
linear systems.

In order to correctly formulate the linear stability problem, it is necessary to decom-
pose the eigenvector ψ=ψR+iψI . We have

WΨψ=WR
Ψ ψR+iW I

ΨψI , (4.8)

where

WR
Ψ≡µ−

1

2
|ω ·x|2−3aΨ2, (4.9a)

W I
Ψ≡µ−

1

2
|ω·x|2−aΨ2 . (4.9b)

The equation governing the eigenmodes of (4.1) is

λ

(

ψR

ψI

)

=

[

0 −(L+W I
Ψ)

L+WR
Ψ 0

](

ψR

ψI

)

, (4.10)

but it is more convenient to work with the square of the matrix in (4.10):

λ2

(

ψR

ψI

)

=

[

−(L+W I
Ψ)(L+WR

Ψ) 0
0 −(L+WR

Ψ)(L+W I
Ψ)

](

ψR

ψI

)

(4.11)

and to calculate λ2. Because (4.11) is block diagonal, it can be separated into the two
problems:

λ2ψR =−(L+W I
Ψ)(L+WR

Ψ)ψ
R, (4.12a)

λ2ψI =−(L+WR
Ψ)(L+W I

Ψ)ψ
I . (4.12b)

Problems (4.12a) and (4.12b) are closely related, since if ψR is an eigenvector of (4.12a)
with eigenvalue λ, then (L+WR

Ψ)ψ
R is an eigenvector of (4.12b) with the same eigenvalue.
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Thus, we solve only (4.12a). As the critical eigenvalue pair ±λ makes the transition from
imaginary to real, λ2 passes from negative to positive.

To generate the Krylov space, we shift the operator in (4.12a) and precondition with
the square of the inverse Laplacian:

L−2[−(L+W I
Ψ)(L+WR

Ψ)−sI]ψk+1= L−2ψk . (4.13)

For this problem, we find that it is better to construct H as an approximation to A via (2.6)
rather than as an approximation to A−1 via (1.7). The inverse Arnoldi method usually
converges in 3 to 10 iterations, each of which requires several hundred BiCGSTAB iter-
ations (matrix-vector multiplications) in order to solve its associated linear system. We
adjust s empirically, both to target the critical eigenvalue and also to improve BiCGSTAB
convergence. For some cases, we find that these goals are incompatible: with the shift re-
quired for the desired eigenvalue, BiCGSTAB becomes unable to converge as the Arnoldi
iteration progresses, even when allowed a very large number of matrix-vector multiplies.
This is the reason that the branch of eigenvalues calculated for the cigar case terminates
prematurely in Fig. 5.

5 Towards a complex shift

The method described in Section 2 can calculate complex conjugate pairs of eigenvalues,
since these may appear in (1.8) when the matrix H is diagonalized. However, if complex
eigenvalues have a substantial imaginary part, then their inverses are not close to the
origin, and the inverse power method will locate other eigenvalues instead. Complex
eigenvalues with zero real part are important, regardless of the size of their imaginary
part, since they are associated with Hopf bifurcations.

Complex eigenvalues cannot be shifted to the origin with a real shift as in (1.9); in-
stead, an imaginary or complex shift must be used. The goal of the techniques described
here is to use an existing timestepping code and its data structures to calculate leading
eigenvalues, including those with large imaginary parts, so it is desirable to avoid com-
plex arithmetic. We now describe a technique for carrying out what is effectively an
imaginary shift without resorting to complex arithmetic. If A has a pair of imaginary
eigenvalues ±iλI and eigenvectors uR±iuI , then

AuR=−λIuI

AuI =λIuR

}

↔ A2uR=−λ2
I uR. (5.1)

(We recall that the real and imaginary parts of a complex eigenvector have no intrinsic
significance, since these parts will be transformed by multiplying uR±iuI by any complex
number.) The application of a negative real shift −s2

I to A2 leads to

(A2+s2
I )uR=(−λ2

I +s2
I )uR. (5.2)



14 L. S. Tuckerman / Commun. Comput. Phys., 18 (2015), pp. 1-16

If sI is chosen to be near λI , then uR is an eigenvector of (A2+s2
I ) with eigenvalue near

zero, and should be obtained by acting repeatedly with (A2+s2
I )
−1. This inverse action

can be carried out by solving the pair of equations

Aũ+s2
I uk+1=uk, (5.3a)

−ũ+Auk+1=0, (5.3b)

for the doubled solution vector (uk+1,ũ), since then

(A2+s2
I )u

k+1=Aũ+s2
I uk+1=uk. (5.4)

This calculation can be generalized to eigenvalues and shifts which contain real parts as
well as imaginary ones. The possibility of solving system (5.3) by methods similar to
those in Section 2 is presently under investigation.

6 Conclusion

Methods based on inverse iteration are recognized as the fastest way to extract eigen-
vectors close to zero or any desired value. In problems arising from stability analyses
of partial differential equations, the corresponding matrices are too large to be inverted.
Instead, action by the inverse must be carried out by matrix-free iterative solution of the
linear system, such as BICGSTAB, whose rate of convergence is governed by the condi-
tion number of the matrix.

Time-stepping codes necessarily approximate the exponential for a small timestep.
We have shown that the action of an implicit-explicit time-stepping code can be modified
to carry out a preconditioned version of the Jacobian if the timestep is taken to be very
large. Based on this, we have proposed a method for converting a time-stepping code
to rapidly compute small eigenvalues of large systems via the inverse power method.
We have tested this method for spherical Couette flow and for the nonlinear Schrödinger
equation. By varying the timestep, the preconditioner can be tuned between the identity
and the inverse Laplacian, which are the least and most effective preconditioners, respec-
tively, as demonstrated in Fig. 2. The crucial point, demonstrated by Fig. 4, is that the
number of matrix-vector multiplications required by BICGSTAB is independent of the
spatial resolution, which demonstrates the optimality of the preconditioning.
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