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The Eckhaus instability can be analyzed by means of the real GinzbmadplLaequation:
OtA = HA+ OxA — |APA (1)

This equation governs pattern formation in a wide variety of systénisconsidered to be the complex
amplitude of a pattern, via, e.g.:

W(x,t) = A(x, t)€9* + A (x,t)e 19 )

Let us begin by assuming thatis horizontally periodic, with arbitrary periodicity length. One solution
to (1) is the trivial solution, zero, implying the absence of spatial strucAmether set of solutions:

Ao = V/u— Qe for |Q| < qc (3)

describes a pattern of spatial wavenumiper Q. These are created by primary pitchfork bifurcations
from the trivial state at:

Ho = Q? (4)
and exist folu > pg. The bifurcations are supercritical, meaning thayi &sincreased pasly, the trivial
state is destabilized and the pattéis created.

The linear stability of the pattern&qg is governed by the equation which results from repladigy
AQ+eNa(x) in (I) and neglecting terms which are nonlineaain

Aa = pa+ 0y@a— 2|Al%a— A%a* (5)
The solutions td(5) are the eigenpaliis, ax) with eigenvectors:
ak(x) = aye QXL B QWX k>0 (6)

and: .
ag(X) = 0™ 7

with ay, Bk, andag real. Using:
|A‘2ak = (u— QZ) (akei(Q+k)x+ Bkei(Q,k)X>
Aai = (p— Q)X (er—i(Q—s-k)x i Bke—i(Q—k)x)

— (o) (@ o)

1


http://www.pmmh.espci.fr/$\sim $laurette

we find that eigenpairf\, ax) satisfy:

w(f) = (ST e S ) ()

leading to eigenvalues:

M = —(1— Q) — K/ (2QK2 + (- Q)2 ®

Using
APao = (u—Q%)aoe™
Ray = (H—Q)e*aoe ¥ = (- Q*)aoe™
we find that the eigenvalueg are:
Ao=p-Q—2(u-Q%) - (- Q) = —2(u— Q) ©)

Secondary bifurcations, changing the stability?ef, occur whenever one of the eigenvalugsor Ay
crosses zero. We see that< 0 forp> Q?, i.e. wheneveAq is a solution; itis the eigenvalue responsible
for the creation of brancAq from the trivial state. The eigenvalig_ is always negative. Crossings of
zero byAy. are determined by solving:

0 = —(u-Q)—K/(2QK2 + (1 Q)2
(M- +R = +/(2QK2+ (1 Q)2

(M=) +K)? = (2QK)>+ (u—Q%)?
2u— QK +K = (2Qk)?

Q@R = 2

ok = 3P oK (10)

Secondary pitchfork bifurcations from the branch of stagsoccur atpgk. These bifurcations are
subcritical, meaning that, ass increased past successive valugs the solutionq is stabilized against
eigenvectory asAy, decreases through zero. Simultaneously, a mixed-mode state combinimgrdiffe
wavenumbers is created. Since these mixed-mode states are alwayseytiségbare never realized by
the system, but serve dasin boundariesseparating the domains of attraction of the periodic st&tes

The pattern described iy, is stable whemall of its eigenvalues have become negative. For a domain of
infinite length, this criterion yields the classic Eckhaus curve given by:

o = M <3Q2 — §k2> =3Q° (11)
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Now consider a domain of any finite horizontal lengttwith g. andQ given in units of 2t/L. Recalling
(@), the periodic patterndg permitted in the domain must satisfy + Q = n, with n integer. The
potentially unstable eigenvectoag, with k > 0, must also fit in the domain, so thlatmust satisfy
0c +Q+k=n+Kkinteger. Thuk must be a positive integer. The pattéigis stable in the finite domain
if:

> 1oy o 1
<3Q—2k>_3Q 5 (12)

Thus:

1
Hinite = Moo — 5 (13)

independently of the actual size of the domain

Figure[1l shows the finite-domain Eckhaus curpgg of equation|[(ID) along which the patterAg are
stabilized and secondary bifurcations occur. The highest of thesesponding tdk = 1, is the Eckhaus
curve pinite Of equation [(IR) above which the patterg are stable in a finite domain. Also shown
is the marginal stability curveg of equation [(#) along which the trivial state loses stability and the
primary bifurcations to pattern&q take place. The portions of the Eckhaus curvegifer g have no
significance, since, whei, does not exist, it cannot undergo a bifurcation. These curves arersal:
they do not depend on the size of the domain. Specific bifurcation pointsetboa these curves do,
however, depend on the fractional partoef In the figure, we have fixed: — [qc] = —1/4 in order to
indicate the primary and secondary bifurcations by dots. The pattern \ehileh first to be created as

is increased is that whose wavenumgris closest tay. (Q closest to 0). It is stable when it is created.
The pattern which is next created has a wavenur@herhich is second closest tp (Q closest to—1)

and undergoes one restabilizing Eckhaus bifurcation. Those whidhiesteand fourth closestd, and

Qs3) to gc (Q closest to+1 and to—2) undergo two and three restabilizing Eckhaus bifurcations, and so
on.

The classic Eckhaus curyg, of equation [(Il1), which is tangent to the marginal stability curve and
above which pattern8q are stable in a domain of infinite length, is also included in the diagram. This
curve cannot describe the stability of patterns in finite domain since thetts exiange oft over which

the trivial state is unstable to a wavenumlgfitting in the domain, but the resulting pattefy is
below the infinite-domain Eckhaus curve and hence itself unstable. Tkeaa@bsf any stable solution

is inconsistent with variational character for all valuesaff the Ginzburg-Landau equatidd (1), which
implies that any initial condition approaches asymtotically a stable steady state.

For details and justifications of the analysis above, see references.
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Figure 1: Stability curves. The thick parabola shows the marginal stabilityeqiy = Q? along which
the trivial state is destabilized by primary bifurcations to periodic pattdgsThin parabolas show the
finite-domain Eckhaus curvggy = 3Q% —k?/2 for k = 1,2,... along which the periodic patterns are
stabilized by successive secondary bifurcations to unstable mixed-rtaetds.sThe highest of these,
Hsinite = HQ1 = 3Q%— 1/2, is the finite-domain Eckhaus boundary above which patgris stable. The
dotted portions of the Eckhaus curves below the marginal stability cuneerfwsignificance, since states
Aq do not exist in this region. Primary and secondary bifurcations for theifip casey. — [gc] = —1/4
are shown as solid and hollow dots, respectively. The infinite-domainabskturvel., = 3Q? is shown
for contrast as a dashed curve.



Figure 2: Bifurcation diagram. Branches with wavenumi@§sQ1,Q---- are created at successive
primary pitchfork bifurcations (solid dots) asis increased through the valu%,Qz,Qg,---. All but

the first Qo) branch is unstable; each branch is restabilized by successivelseg@&tkhaus bifurcations
(hollow dots) ap= 3Q, — k. For clarity, only the lowesfportions of the mixed-mode branches created
at the Eckhaus bifurcations are shown. Thick curves indicate stalieqmof the trivial and primary

branches.
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