PHYSICAL REVIEW A

VOLUME 45, NUMBER 4

Crystal growth at long times: Critical behavior at the crossover from diffusion
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We simulate one-dimensional crystal growth from an undercooled melt using a phase-field model and
find interesting behavior when the liquid is undercooled by L /c, degrees (‘“unit undercooling™). L is the
latent heat and ¢, the specific heat. For smaller undercoolings, the diffusion of latent heat limits growth
and the velocity of the solid-liquid interface decays with time as ¢ ~'/2. For larger undercoolings, non-
equilibrium interface kinetics limits growth, and the interface velocity is constant. At unit undercooling,
there are two scenarios, depending on the ratio of order parameter to thermal diffusivity (p). If p is
small, the front-decay velocity is very well described by a power law ¢ ~*, with v=0.3. If p is large, the
velocity at unit undercooling is finite. The branch of steady-state solutions then extends to smaller un-
dercoolings, where the solid created is superheated. At the end of the branch, the solution jumps to a
t 12 velocity-decay law. Although pure materials have small p’s, impure materials can have large p’s, so
that the two scenarios at unit undercooling should be observable experimentally. Although our simula-
tions apply strictly only to one-dimensional fronts, similar behavior is expected in two and three dimen-
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sions. The presence of the Mullins-Sekerka instability is unlikely to change our conclusions.

PACS number(s): 61.50.Cj, 68.45.—v, 05.70.Fh, 81.30.Fb

I. INTRODUCTION

Theoretical models of crystal growth from the melt
have generally considered two limits. In “order-
parameter models,” an equation is given for a noncon-
served “crystallinity” order parameter [1,2]. The temper-
ature field is assumed to be uniform and constant, mean-
ing that temperature variations due to the release of la-
tent heat produced by freezing are ignored. Order-
parameter models account for various microscopic prop-
erties of the solidification process, such as the finite width
of the solid-liquid interface, the kinetic time scale govern-
ing the dynamics of fluctuations, and the deviations from
thermodynamic equilibrium that drive the interface for-
ward. They typically predict that planar fronts will prop-
agate at a constant velocity v that is proportional to the
undercooling.

By contrast, in “diffusion models,” the basic variable is
the temperature field [3,4]. Although the release and sub-
sequent diffusion of latent heat are both properly ac-
counted for, the various microscopic features of the
order-parameter models are ignored: the interface is as-
sumed to be sharp and in local equilibrium. (A variant of
the diffusion models introduces a phenomenological in-
terface undercooling that varies linearly with the veloci-
ty. See Sec. II B, below.) In contrast with the first kind
of model, steady-state motion is in general impossible.
Indeed, dimensional analysis suggests that the typical
asymptotic state has a front velocity that decays with
time as ¢ 7172

The above models can be generalized by coupling an
order parameter to the temperature field. This “phase-
field” model of Halperin, Hohenberg, and Ma [5,6] (their
“model C”) originally included stochastic terms. Its
deterministic version was studied, around 1985, in the
context of crystal growth by Collins and co-workers [7,8]
and Langer [9)], and by Caginalp [10]. Liu and Golden-
feld used an approximate discretization of the phase-field
equations to study crystal growth at long times [11].
(Their viewpoint is rather different from the one that will
be adopted here.) Recently, the same model was exam-
ined in more detail by Schofield and Oxtoby [12], as well
as the current authors [13,14]. The interest in this more
detailed model is that it describes both diffusion- and
kinetics-limited front motion in a single set of coupled
equations. There are also new effects, not predicted by ei-
ther of the simpler models, that should be experimentally
observable.

The paper is organized as follows. In Sec. IT we define
two versions of the phase-field model and review what is
known about its solutions and how they compare with
the predictions of simpler models. The numerical tech-
niques used to solve the equations of motion are de-
scribed in Sec. III. In Sec. IV we discuss our results for
the long-time behavior of the interface velocity as a func-
tion of liquid undercooling and of materials parameters.
We digress in Sec. V to show how long-range forces and
conserved order-parameter dynamics influence the
motion of fronts. In Sec. VI we discuss the most likely
candidates for observing experimentally the qualitatively
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new phenomena predicted by the phase-field model. Con-
clusions are given in Sec. VII.

II. THE PHASE-FIELD MODEL

A. Basic equations

The phase-field model couples the dynamics of a non-
conserved order parameter to those of a temperature
field. It describes crystal growth into an undercooled
liquid melt and accounts for the release and subsequent
diffusion of latent heat. In this paper we will restrict our-
selves to a one-dimensional, infinite geometry described
by a spatial coordinate z. The order-parameter field
m(z,t) represents, for example, the amplitude of a
Fourier component of the density field describing the
crystalline lattice. It is zero in the liquid and may be
scaled to be one in the solid at the solid-liquid coexistence
temperature Ty. The temperature field T'(z,¢) can also be
scaled to be dimensionless by L /cp, where L is the latent
heat of fusion per mole and c, is the specific heat at con-
stant pressure. The dimensionless-undercooling field,
then, is u(z,t)=c,[T(z,t)—T,]/L. If one considers a
solid front advancing into a liquid held at a temperature
u = —A, the latent heat released is just enough to trans-
form the undercooled liquid into solid at the coexistence
temperature when A=1. If A <1, then excess heat must
be transported away from the interface. If A>1, the
growing solid will be cooler than it would be at coex-
istence with the liquid.

The equation of motion for the dimensionless tempera-
ture field u (z,t) is

ou *u | Im

ot Dy dz? + ar - M
Here, Dy is the thermal diffusivity, assumed to be identi-
cal in both phases and independent of the temperature.
Equation (1) describes the diffusion of heat, with the
om /0t term acting as a source for the heat field.

In the Ginzburg-Landau approach, the equation of
motion for the order-parameter field m (z,¢) is given by

a_m=_F8F[m,u]
ot dm '

Here, F[m,u] is the dimensionless free-energy functional
for the order parameter m at temperature u. The free en-
ergy is scaled by AkpT,A/V, where A is the cross-
sectional area of the interface, V is the system volume,
and A is an energy, in units of k3 T, that may be related
to the solid-liquid surface tension. For u =0, F has two
equal minima at m =0 and m =1. T is an Onsager
coefficient, which sets the microscopic time scale for
order-parameter relaxation and is assumed to be indepen-
dent of m and u. With the above scaling, F is given by

2

()

dm(z,t)

Flmul=[" dz ”

1.
3

+f(m(z,1),u(z1)) (3)

where £, is the microscopic bulk correlation length. The

LOWEN, BECHHOEFER, AND TUCKERMAN 45

local free-energy density f(m,u) is
flm,u)= fo(m)+Loum 4)

where f,(m) is the local free-energy density at coex-
istence and J8um is the first term in a temperature ex-
pansion around T=T,. (The factor } is introduced to be
consistent with the notation used in previous work
[7,12-14].) The coefficient 18, which couples m to u, is
derived by requiring that

L = T()(AS)= TO(Sliq —‘Sso|)

oF
oT

_OF

=To aT

(5)

liq sol

where S is the entropy. Taking into account the scalings
for F and u, we have
s_2_ L _L
A kpTy ¢, Ty

(6)

The local free-energy density f,(m) must have equal
quadratic minima at m =0 and 1. In this paper, we con-
sider two different forms for f,(m) that have this proper-
ty. In the Ginzburg-Landau model, fy(m) is defined by
the quartic polynomial

folm)=m*m —1)*. (7

In the parabolic model, fy(m) is defined by a piecewise-
parabolic function

fo(m)=%min[m2,(m—l)2] . (8)

The two models have the same qualitative behavior: The
Ginzburg-Landau potential is smoother and presumably
somewhat more realistic, while the parabolic model has a
piecewise-linear equation of motion for m that allows a
partial analytic treatment [13].

We next define microscopic order-parameter length
and time scales. The length scale is z,, =V2¢,,. (The V2
is for consistency with the notation used in previous work
[12].) The time scale is 7,, =1/T, leading to velocity and
acceleration scales, v,, =z, /7, and a, =z, /T5,. Re-
scaling Egs. (1) and (2), we have

1

u,=5uu+m, , 9)

o du

m,=im,— am 5 (10)

Materials properties are now described solely by two di-
mensionless parameters, § and p, where

Em/Tm

11
D, 1n

I

p

Note that £2 /7, can be interpreted as an order-
parameter diffusion constant, denoted D,, so that
p=D,, /Dy.

To fix the boundary conditions, we need to know four
values: m, =m(*too,t)and uy =u(too,t). We first re-
quire local equilibrium at z = o, which gives two equa-
tions relating m . and u . :
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dfo 6
Hol _8,. . 12
dm - 2ui ( )

We obtain the other two equations by fixing the tempera-
ture at z==1 o0, so that ¥, = —A. One would then study
the growth of a solid germ that has nucleated at z =0.
We obtain m by solving the algebraic equation (12).
For the parabolic model, (12) is a linear equation; for the
Ginzburg-Landau model, it is a cubic equation, the physi-
cally significant root of which is the one closest to zero.
The temperature of the solid that is created is fixed by the
equations themselves.

For numerical convenience, we also considered
‘“steady-state’ boundary conditions, where a semi-infinite
amount of solid has already been created. We retain
u . =—A but adopt conditions at z=— co that specify
the state of the solid. One can show that for constant-
velocity fronts [12],

Uuy—mi=u_—m_ . (13)

Along with (12), (13) suffices to fix . and m ..
We also considered ‘“coexistence” boundary condi-
tions, where we took, in place of (13),

u_=0, m_=1. (14)

In this case, the solid is created at equilibrium. For a
unique undercooling A, both the steady-state and coex-
istence boundary conditions are identical. For §—0, one
has A, =1.

In the phase-field model, the 8u term implies that the
m value of the minimum of the liquid depends slightly on
the undercooling via (12). In particular, m will be posi-
tive in the metastable liquid phase if the liquid is under-
cooled. This means that A, is slightly smaller than 1 and
is a function of 6. If the order parameter is associated
with crystallinity, this feature of the phase-field model is
artificial, since crystallinity is in fact zero in a liquid, even
when undercooled. The § dependence of A, results from
our simple choices for the free energy f(m,u) and does
not affect qualitatively our conclusions. In addition, one
can define m to be a combination of both crystallinity and
density, in which case the dependence of m and A, on 8
in an undercooled liquid is real. Since for A=A, the
amount of heat generated by freezing is just enough to
heat the liquid back up to the coexistence temperature,
we refer to this as unit undercooling. Explicitly, combin-
ing Egs. (12) and (14), we find for the Ginzburg-Landau
model (7) that

(1—v'1—-28)

A =1——— 22
c 2 (15)

In the parabolic model (8), one finds

1
A = .
REENT, (16)

One can easily understand physically, even at this early
stage, why one expects to see different kinds of freezing
behavior for small undercoolings (A <A,) and for large
undercoolings (A>A,). In the former case, let us start
with an entirely liquid sample. Then imagine that it is all
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converted to solid without the latent heat’s diffusing any-
where. The release of latent heat raises the temperature
by A, (i.e., by approximately L /c, in real units). This
temperature rise, however, exceeds the undercooling that
the liquid originally had. Were the heat truly to stay put
and not diffuse, then the solid created would be su-
perheated. The true equilibrium, in fact, requires that
some of the heat be transported away to infinity and that
the solid be at the coexistence temperature. Since the
transport of heat to infinity is via diffusion, one naively
expects diffusive scalings for the front position, velocity,
etc., and thus it is not surprising that we find that the
front in this case slows down via a power law of the form
v(t)ect 172,

By contrast, if A> A_, the heat is not sufficient to raise
the temperature of the solid back up to coexistence. The
solid is then below its coexistence temperature, a thermo-
dynamically stable situation. Since no heat need be trans-
ported out to infinity, solidification is limited only by the
kinetics of transforming liquid to solid, and fronts travel
at constant velocity.

The case A=A _, where the latent heat is just enough to
reheat the solid back to T, is a special point that divides
the diffusion-limited from the kinetics-limited regimes.
Below, we shall show that the phase-field model predicts
two types of behavior at A, depending on p.

Finally, we must set the initial conditions for m and u.
For the germ, we choose either Gaussian or quasi-sharp-
kink profiles. (See Figs. 12 and 13.) For steady-state and
coexistence boundary conditions, we start from a tanh-
like profile. (See Fig. 3.) We define these profiles in Sec.
III. Apart from the initial transient, the results were in-
dependent of the details of both the initial conditions and
the boundary conditions.

B. Review of previous results and open questions

The original interest in the phase-field model for cry-
stallization came mainly from an inadequacy of the pure-
ly diffusive model, with its sharp interface held at local
equilibrium % =0. This model implies that for A<1,
fronts slow down via a ¢ ~!/? power law [15]. For A>1,
the model has no solution. The latent heat will increase
the temperature of the solid by 1 at most; this is incon-
sistent with the requirement that ¥« =0 at the interface.
At A=1, the front will travel at a constant but indeter-
minate velocity [4]. Although there are three qualitative-
ly different regimes in this model, the model breaks down
when A=A =1. For A <<A_, however, it is perfectly sa-
tisfactory.

The diffusive model may be improved by adding a phe-
nomenological description of kinetics. Instead of assum-
ing that the solid-liquid interface is at T,=T,, one sets
the interface temperature to T;=T,—B 'v, where v is
the interface velocity and B is known as a Kkinetic
coefficient [3,16,17]. In this model, fronts with A < 1 slow
down via a ¢t ~172 power law, as before. For A> 1, fronts
travel at constant velocity v <(A—1). The model thus
gives sensible results for both A<A_ and for A>A_,
where here A, =1 [3].

For A=A, Oswald [18] has recently argued that
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v(t)ect~!/3 We reproduce here his argument: Consider
a germ of radius R and volume proportional to R ¢, where
d is the spatial dimension. The amount of latent heat
released in solidifying out to a radius R is

RL=Rc,(T,—T)]+R* " Dr/v)[c,(T;—T4)]
17)

where T, is the temperature at infinity. In (17), the left-
hand side is proportional to the total latent heat released.
The first term of the right-hand side is proportional to
the amount of heat retained to warm up the solid to coex-
istence. The second term approximates the amount of
heat rejected into the liquid phase. Using
A=(T,—T4)/(L/c,), Eq. (17) may be nondimensional-
ized to read

T,—T, _ Dy

T,—T,
L /e, Rv

1—A
L/cp

(18)
In the diffusion model, the interface is at the coexistence
temperature, and so the term (7;—T,)/(L /c,) is zero;
this is satisfactory as long as A <<1. Setting v=dR /dt
and integrating (18) then gives the usual law R (¢) <t ~!/2

[13]. When A=1, the diffusion model breaks down; the
kinetic correction T;,—T,~B v remains negligible in
the right-hand side of (18) but dominates in the left-hand
side, leading to

v _Dr

B(L/c,) Rv ' 19

Integrating (19), we obtain v < [Dr(L /c,)B]'’t 77, as
claimed. The 1 exponent is an explicit consequence of
the global conservation of the latent heat released during
solidification.

The phase-field model provided another solution to the
velocity-degeneracy problem of the pure diffusion model.
Both Langer [9] and Collins and Levine [7] showed that
the phase-field model has a unique, constant-velocity
solution at unit undercooling that is selected by micro-
scopic order-parameter kinetics. The lack of such micro-
scopic length and time information leads to the velocity
degeneracy in the diffusive model.

The phase-field model reduces to the diffusive model
with linear kinetics when §—0 and p /p.—0, where the
order-parameter profile becomes essentially a step func-
tion and the heat or impurity field obeys the standard
(uncoupled) diffusion equation [9,7,10]. The most
thorough discussion is by Caginalp [19]. The phase-field
model also has numerical advantages in the modeling of
the complex, dendritic patterns that arise during
solidification in two- and three-dimensional geometries
[20].

Schofield and Oxtoby have recently found that the
A=A, steady-state solutions to the phase-field model
discovered by Langer [9] and Collins and Levine [7] exist
only for certain values of the material parameters p and
6. In particular, for p <p.(8), there are no steady-state
solutions. They evaluated p, perturbatively for small § in
the Ginzburg-Landau model and found p.=2/(33).
Lowen, Schofield, and Oxtoby [13] then repeated the cal-

LOWEN, BECHHOEFER, AND TUCKERMAN 45

culations of Schofield and Oxtoby for the parabolic model
(8) and found similar results. In the parabolic model,
various quantities can be calculated analytically. For ex-
ample, p.(8) is exactly 2/(36).

Finally, two of us explored the effect of different values
of A in the parabolic model [14]. For very large cou-
plings 8, we showed that there is a critical point in §-p-A
parameter space, giving rise to different velocity scalings
in A—A,. As A—A,—O, there is a transition from
steady-state growth to the diffusive regime. At A, v
remains nonzero for p >p.. Otherwise, v vanishes as
(A—A,)” with v=1 for p<p,, v=1/2 for p=p,, and
v=1/3for p=p. and §=56,=4%.

The current work, then, was motivated by several
unanswered questions: Does the phase-field model repro-
duce the velocity-decay laws seen in the diffusive models?
What experiments have been or could be done? In the
constant-velocity regime, how are steady-state solutions
approached? Are they stable (at least in one dimension)?
If both steady-state and decaying-velocity solutions exist
at A=A_, when is each to be seen? Is the exponent of
1/3 predicted by Oswald independent of p and 8? We
would also like to explore the jump in velocity just below
A, for p > p, that was discussed in [14]. Finally, what are
the effects of long-range forces? What happens if the or-
der parameter is conserved?

C. Application of the phase-field model to alloys

It has long been realized within the metallurgical com-
munity that the equations of motion describing the freez-
ing of a metal alloy are similar to the ones describing the
freezing of a pure material [21]. In practice, even nomi-
nally pure materials usually contain enough impurities
that mass diffusion—and not that of latent heat—limits
crystal growth. For brevity, we shall refer to the second
component of an alloy as an impurity, whether or not it is
deliberately added. Since impurities are usually segregat-
ed preferentially in the liquid phase, a moving solid-liquid
front is a source of impurities as well as latent heat. If
there are enough impurities, one may neglect the accom-
panying diffusion of latent heat [17]. We shall use this
approximation in our discussion of chemical effects.
Langer showed that by considering the chemical poten-
tial rather than the concentration field, the chemical ver-
sion of the diffusion model can be mapped exactly onto
those for the thermal version [22].

To generalize Langer’s method to the phase-field mod-
el, we define a dimensionless chemical potential of impur-
ities in analogy with the dimensionless temperature field
defined above. Thus

r—T, KMo

= - 20
W) T ™ AC(u/3C) 20

where u, is the chemical potential at which the solid and
liquid coexist. AC is the equilibrium concentration jump
across the interface and is analogous to the latent heat L.
(See Fig. 1.) Thus, AC(3u/9C) sets the natural scale for
variations of the chemical potential, just as L /c, does in
the thermal case. Assuming that the liquidus and solidus
phase boundaries are straight lines, as depicted in Fig. 1,
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FIG. 1. Temperature-impurity phase diagram showing the
equilibrium jump in impurity concentration, AC, across the
solid-liquid interface at a temperature 7. The heavy lines
represent the liquidus and solidus curves, which separate the
liquid and solid regions from the two-phase coexistence region,
respectively.

AC may be evaluated in terms of the liquidus slope
dT /dC and the ratio of liquidus to solidus slopes k. The
ratio k is known as the equilibrium partition coefficient
and is a measure of how much impurities are segregated
into the liquid phase. In Fig. 1, we have k <1. The
strength of the “impurity source” is

ac=2"T 1k 21

d T/dC( ) @b
Note that AC depends on temperature, in contrast to the
latent heat in the thermal model, which is a fixed materi-
als parameter. In the chemical case, AC is varied by
changing the temperature at which one chooses to work.
(Recall that we are assuming that the solidification is iso-
thermal.)

Referring to Fig. 1 once more, we can understand qual-
itatively the effect of changing the solidification process.
Assume that the system is entirely liquid, with an impuri-
ty concentration of C; and a temperature of
Ty—(CodT /dC). In other words, the system is sitting
just on the liquidus line. Now quench the temperature.
If the temperature is quenched to a value somewhere be-
tween the liquidus and solidus (slicing vertically at
C=C)), then in a finite box, the end state will be liquid
and solid in coexistence, with the fraction of liquid deter-
mined by the depth of the quench. If the temperature is
quenched to the solidus temperature T —(C,dT /dC)/k,
then the end state will be a solid at equilibrium (because
the system will be sitting at the solidus). If the tempera-
ture is set below the solidus, the end state will be a stable
solid that is cooled below the solid-liquid coexistence
temperature.

The quench from liquidus to solidus thus defines unit
undercooling, and the temperature scale becomes

L dT 1—k
¢ ~Coac k- @2

Two differences, however, should be noted. In the
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thermal case, one controls the temperature by setting
boundary conditions for u. In the chemical case,
proceeding analogqusly would imply fixing the value of
the chemical potential at infinity. In practice, one fixes
the temperature instead. This will simultaneously change
the scale of u and the values of 8 and p/p.. A second
difference is that in the thermal case, when A <A_, the
entire liquid is solidified, whereas in the chemical case,
the result is a mixture of liquid and solid, with the rela-
tive proportions fixed by the depth of the quench. The
difference stems from the boundary conditions: In the
thermal case, one fixes the temperature, so that energy is
transported out of the system into a surrounding heat
bath. In the chemical case, the sample is usually encased
in a box that is impervious to the diffusion of impurities.
The boundary condition then is that the derivative of u is
zero. If the total amount solidified is much less than the
equilibrium solid fraction at the chosen temperature
quench, then there is no difference between the thermal
and chemical cases. Experimentally, this situation is easy
to realize. All of these subtleties affect the coefficients
and the boundary conditions of the equations of motion,
but they do not change the form of the equations them-
selves.

In order to evaluate § in the chemical model, we write
the analog of Eq. (5), with T—pu and S —C. The jump in
entropy at the solid-liquid interface corresponds to the
impurity jump depicted in Fig. 1. We have then

doF oF () 1
AC=—| —— | =MkpTo=-—io—-. (23
o liqg O | 2 %2 (3u/3C)AC) @3
Noting that
Op _dT L
oC dC T,AC @4
(see [20], footnote 4 on p. 9) and using Eq. (21), we have
_ 2 L T,—T
S_A KTy T (1—k) . (25)

Notice that the temperature dependence of AC implies
that the coupling constant § may be varied by changing
the overall concentration of impurities in the material be-
ing studied. (One could achieve similar effects in the
thermal model by varying the pressure at which the
solidification occurs, since one then expects the latent
heat L to vary.) At unit undercooling,

2 L €CodT/dC 1—k

5= I PR T, % (26)
The other material parameter, p, is given by
= Dm @7
= D,

where D is the impurity mass diffusion constant.

In summary, with the above assignments for u, 8, and
p, the equations of motion are exactly the same as given
in Egs. (9) and (10), above. As discussed below, the
values of 8 and p will be significantly different for
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impurity-driven systems; there is also the attractive possi-
bility of tuning 8.

ITI. NUMERICAL TECHNIQUES

Here, we detail our numerical methods for solving the
Ginzburg-Landau and parabolic versions of the phase-
field model. Because some of the techniques we use are
not straightforward and because they are necessary to fol-
low solutions out to the long times we are interested in,
we present them in some detail; however, readers in-
terested mainly in the behavior of the solutions rather
than in the methods for obtaining them can safely skip
this section.

A. Ginzburg-Landau model

In this section, we describe an adaptive-grid technique
for integrating the coupled system of partial differential
equations:

u,=—21;uzz+%mzz—4m(m —3)m—1)—18u , (28)

=1 —_ —
m,=sm,, —4m(m

Dm —1)—18u . 29)
Direct numerical integration of (28) and (29) over long
times is complicated by two features of the solutions [12].

(1) The solution profiles are steep fronts, whose spatial
variation is extremely localized.

(2) Although the shapes of these fronts vary little over
time, the fronts move at a velocity which is neither
known nor constant: indeed, this is the crux of our inves-

tigation.

The first problem is easily resolved by using an un-
equally spaced grid of points z,
j=—N/2,...,0,...,N/2,such that

tanh(z /z(ma)y=2j /N . (30)

Effectively, this choice of grid is equivalent to mapping
the real line (—o,+ ) to the interval [—1,+1] on
which a uniform grid is used. The two quantities z™2*
and N can be varied independently, to represent fronts of
different expected widths and steepness. The grid spacing
(30) is commonly used in hydrodynamics, for example, in
the study of mixing layers [23].

To deal with the second problem, we have used a mov-
ing grid which adapts dynamically to the solution
profiles. To explain the adaptive-grid approach, we con-
sider a general reaction-diffusion equation for a single
field ¢ (z,?):

c,(z,t)=g(c(z,1)) +c,(z,t) . (31)

Introducing a new variable § related to z by the inverse
transformation z=2z({,t), we can formally define
C(&,t)=c(z(&,t),t) and derive from (31) the equation
governing the evolution of C(¢,1):

V4 Zé—é—

1 '
C,=g(C(5,t)+—Cpqt | — Ce. (32)
. =8(C(¢ 22 ¢ z zz ¢

We now specialize to two forms for the change of coor-
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dinates z(§,¢), namely, a translating frame:

z(§, )=+ (1) (33)
and a dilating frame:
z(&,t)=85Y(2) . (34)

Our goal is to choose ¢(¢) or ¥(¢) in such a way that the
fronts remain near the origin of our new coordinate sys-
tem, i.e., near {=0, where the grid points are densely
placed according to (30). We will do this by deriving
differential equations for ¢ and . Initially, the moving
frame will coincide with the stationary (“laboratory”)
frame, i.e., z(£,0)=¢. This is accomplished by specifying
the initial conditions, ¢(0)=0 and ¢(0)=1.

The front position zy(z) can be defined such that
c(zy(t),t)=cC, where T is some specified threshold value
contained in the range of c(z,¢). [If there is more than
one front, define zy(¢) to be the rightmost one.] In terms
of our new coordinate, we define the front position via
C(&y(1),t)=r, and it is easily seen that z,(7)=z(§y(?),1).
Our goal then is to enforce £()=0.

In the translating frame (33), since zp= 1, z,=0, and
z,=¢,, (32) becomes

C,=g(C(&,1))+Cy+Ced (1) . (35)

If ¢(t)=vt, Eq. (35) reduces to the usual transformation
to a frame moving at constant velocity v. More general-
ly, by setting

t ’ ’
$(0= [ zo("dr’ , (36)
we enforce £(1)=~0. The integrand of (36) is determined
dynamically during the course of the integration via the
threshold criterion and the transformation (33).
In the dilating frame (34), we have z§=1/), z§§=0, and
z,={y, and Eq. (32) becomes

1 &Y
c,=g(C(§,t))+:b;cgg+7’cg. (37)
Since definition (34) now implies that
2o()=Go¥+Eo¥ (38)
in order to enforce £,~0, we set
1
= 2ot )dt’ 39
W(1) fo Ey 2ottt (39)

where the integrand of (39) is again determined dynami-
cally.

The transformations leading to (32) can be performed
entirely analogously on the coupled system (28) and (29)
by replacing

1 Zge
d,, ——0,,——2-0 (40)
22 29 3%
Zg Zg
Z,
9, —dt——9; . (41)
Z¢

In the translating two-variable case, the resulting three
coupled differential equations are



45 CRYSTAL GROWTH AT LONG TIMES: CRITICAL BEHAVIOR ...

1 _3
Ui=7, Ut iMg—4MM =M — D)= U+, U,
(42)
M,=%M§§—4M(M—%)(M—l)—%U*‘d’ngv @3)

¢t=z.0 ’ (44)

while in the dilating two-variable case they are

_11
&Y,
2U+ 5 e “3)
. l 1 o) §¢z
M,= 7 Mg —AMM = )M =)= U+ ="M,
(46)
b=z, . @7

0

For the translating case, we use the steady-state and
coexistence boundary conditions. (See Sec. II A.) Note
that formula (30) includes grld Npomts that are actually at
the boundaries, i.e., D= "NVD=—n and
zZN/D=¢N/D =4 » and that these pomts are used in the
computations in both of the adaptive frames. The initial
profile is a smooth, tanh-like interpolation between the
boundary values m _ =m(—oo,t)and m L =m(+ o,t),

_—m +
1+e?/a
and similarly for u, where the width a =0.8. The front is

defined to satisfy m(zy(2),t)=(m . +m_)/2.

For the dilating frame, we use localized-germ bound-
ary conditions. The initial profiles are Gaussians:

m(z,t =0)=m_ + (48)

m(z,t =0)=m , + de /3’ (49)

and similarly for u, with widths of a =1.5 or 2. A4 is tak-
en to be 1 for m and 1.2 for u. The position of the front
in the dilating Gaussian case is defined to be the right-
most point z,, satisfying m(zy(2),t)=1

To integrate system (42)-(44), we use Crank-Nicolson
time stepping to propagate the second derivative
(diffusive) terms U and M, which, as in [12], requires
solving a septadiagonal matrix equation. To propagate
the remaining terms, i.e., the algebraic terms in U and M,
the first derivative terms in U, and M, and the z, term
in (44), we used the Adams-Bashforth approximation to
the time derivative. Spatial derivatives were computed
via second-order-accurate finite difference formulas
which use the spacing (30). Local cubic interpolation at
the m front was necessary to determine the threshold
&olt) to sufficiency accuracy.

The combined semi-implicit scheme is second-order ac-
curate in time. Empirically, we found that the time step
is limited by accuracy rather than by stability, to
At =0.4, and this is the value used for most of our runs.
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The computation time scales approximately linearly with
the number N of grid points. Each time step takes about
2X 10™* CPU sec per grid point on a Sun Sparc Station 1
system and 2X107¢ CPUsec per grid point on a Cray
YMP8-864 system.

The dilating frame equations (45)—(47) were integrated
similarly, except that backwards Euler time stepping was
used for the diffusive terms and forwards Euler for the
remaining terms, resulting in a first-order-accurate semi-
implicit scheme. Since in this case, the diffusive operator
contains the time-varying factor 1/4?, the septadiagonal
matrix must be recomputed (and factored into lower and
upper triangular matrices for inversion) at each step, re-
sulting in considerably greater expense than the translat-
ing frame simulations. The explicitly propagated terms
pose a more stringent stability criterion on the time step
(At =~0.05) than those of the translating frame, leading to
a smaller time step. In addition, the dilating frame fails
to use the grid spacing (30) as efficiently as the translating
frame, for which the grid points are concentrated precise-
ly in the only nonconstant region of the profiles. With
sufficient spatial and temporal resolution, results from the
translating and dilating simulations agree, justifying the
less physically realistic steady-state and coexistence
boundary conditions used with the translating frame.

A fundamental difficulty of the equations is that the u
profile becomes broader over time, whereas the m profile
remains sharp. For the translating frame, the domain
size, measured by 2z'™**) must be large enough to con-
tain the widening u front, whereas the resolution, mea-
sured by the number N of spatial grid points, must be
sufficiently fine to describe the steep m front. In practice,
we imposed the criteria that (1) the width of the u front
be no more than a sixth of the domain size, and that (2)
the m front contain at least seven grid points. The
minimal grid required depends on the properties of the
solution and hence on the values of the parameters p and
A and on the final time . Most of the runs reported here
used z™#*)=1000 and N =2000; this was checked against
simulations using a finer grid of z‘™*)=2000 and
N=8000. (We used z'™*'=200 and N =1500 for the di-
lating frame.) For low values of p, the u front diffuses
slowly and z™*®=300 and N =600 provided sufficient
resolution. For simulations in which the velocity decays
to zero, the u front continues to widen over time, so that
any value of z'™ will eventually prove too small. For
the dilating frame, the same problem presents itself
differently: The domain expands in time so as to contain
the entire germ and not merely the diffusing u front. The
grid points become more widely spaced and eventually
inadequate for describing the m front. This restricted the
dilating frame simulations to much shorter times than the
translating frame. This fundamental property of the
equations implies that the simulations cannot be contin-
ued indefinitely without separate adaptive grid spacings
for u and m.

B. The parabolic model

In the parabolic model, the scaled equations of motion
for u and m are
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u =Lu +m (50)
{ 2p 2z t

1 Su
m,—;mzz—m+6(2+zo(t))—9(z—zo(t))—7 (51
where the step functions ©(z) result from the

differentiation of f(m) with respect to m and represent
the slope discontinuity of the potential at the cusp [see
Eq. (8)]. The interface position z,(#) is defined by

u(z,t) C li—ty | H(K)
—iKz =K 0
m(z,1) \/2,Tf dKe e mK) )"
where the initial profiles enter via
7(K) L‘t(z,to)
(K ‘/%f dze |y |STe 5
and the 2 X2 matrix C g is given by
2 2
K>, 5 K® ..
co=— |7 % 2 (55)
KT 2
5 K
2 2

The consistency requirement (52) then leads to an in-

tegral equation for z,(?):

1 o —iKzy(1)
+—=my=(0,1)—=— dK 0
5 my ( ) ‘/277 f»—gc e
Cpli—ty) #(K)
e m (K)
172
2 1
(56)
where the memory kernel is
([7,)SanZO( t’)
F ()= —_—. 57
k(1) zudt % (57)

Starting from zy(z,), Eq. (56) can be solved numerically
by successive iteration. Once we have solved for z4(¢), we
can differentiate to find the interface velocity

J

i+ fode cosKzo(1)(0,1)-
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2

V2/7C ge C! fi+(2/m)C

m(zy(t),t)=1 (52)

which must be satisfied self-consistently [24,25].

In the following, we define #(z,t)=u(z,t)—u, and
m(z,t)=m(z,t)—m,, where uy=—1/(14+6/2) and
my=—38/2. The equations of motion for # and m are
the same as (50) and (51). They are linear equations with
inhomogeneous terms involving z. For a given initial
profile u(z,t,), m(z,t,), Egs. (50) and (51) can be solved
by Fourier transformation:

1/2

d, C - sinKzo(t') |1]

K 1

v=dz,/dt =zy(t). The profiles of the order-parameter
and temperature fields are obtained by inserting z,(¢) into
(53).

The initial field configurations are taken to be a
differentiable combination of constant and parabolic
functions that describe a quasi sharp kink. (See Figs. 12
and 13, below.)

1, z=<L
1—Hz—L), L<z=<L+I1
u(z,ty)= L (58)
0T 14872 |Mz—L—2)*, L+1<z<L+2
0, z>L+2,
m(z,t9)=ii(z,t,) , (59)
1—2m, |'”
L=4, zy(ty))=L+2— (60)
|uo|

To iterate Eq. (56), the matrix F
each iteration step. Explicitly,

x(t) must be updated

sinKz(¢,)
CrE (==
(1—1.) SInKzy(ty)
4 SkU "’)——}E(i‘*‘MK(’o) (61)
where
t , QK(I—I') "y ’
t0)=ft dt'e cosKzy(t')z,(t') . (62)
0

The starting configuration is zy(t)=zy(z,), Zy(t')=0,

M (t,)=0. The updated variables are

kE k(1) |4 ] l
(63)

zo(t+At)=

fO”dKK sinKz,(£)(0,1)-

M (t+AD=M (e ¥+ At cosKzo(1)zo(1) ,

\/meg’(lf,(

+(2/m)E (1)

(64)
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zo(t +Ar)=zy(t)+Atzy(t +At) .

In (63), fi is given by (54). After waiting approximately
one time unit, the profiles were calculated. These served
as the input for the next iteration, for which M  was
again set to zero to avoid an accumulation of errors in
M K(t)-

The K integration was carried out on a grid of
N=~1000 equally spaced points K <K, =100. This
corresponds to a finite system of length L =350, so that
zo(t) << L for the times considered. The time step At is
typically 0.00001 to 0.0001, which is much smaller than
that permitted by the adaptive-grid technique. However,
because this integral-equation method is formulated in
Fourier space, it can be easily generalized.

IV. RESULTS FOR THE LONG-TIME BEHAVIOR
OF CRYSTAL-GROWTH VELOCITY

Figure 2 summarizes our main results: If the under-
cooling obeys A <A_, then the velocity of the front de-
cays via a t ~!/2 power law. For A> A, fronts propagate
at a constant velocity. At A=A_, there are two cases.
For p <p,, the front velocity decays, with very nearly a
power-law form ¢ ~* where the value of v depends weakly
on p and 8 and for small § is approximately 0.3. For
p > p,, the front propagates at a constant velocity at and
even slightly below A, (see below).

Figure 3 shows typical non-steady-state profiles. Those

decaying steady state
velocity :
Ey
P=pPc
P<P,

A¢

undercooling A

FIG. 2. Summary of the asymptotic behavior of the phase-
field model. For undercooling A <A, fronts slow down with an
asymptotic behavior v(t)= A4t~ '/?, whereas for A>A_, fronts
approach a  steady-state velocity v  exponentially:
v(t)=v+ Ae W". In the steady-state regime, there are three
cases. If p <p., then near unit undercooling, the steady-state
velocity is given by v=A4A(A—A.). If p=p. then
v=A(A—A.)'""2. For p>p,., the steady-state velocity is finite
at A.: v=vo+ A(A—A.). At A, and p <p,, the velocity decay
is significantly slower than a ¢~ '/? power law and is well ap-
proximated by v(t)= At~ ", with v=0.3. Finally, for p >p.,
there are steady-state solutions even for A <A, which are
shown as a heavy dashed line. In the above, the constants A are
different in each of the cases and depend on the material param-
eters p and 6.
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(65)

-

shown are at A=A_, but the profiles for A <A, are simi-
lar. Our numerical techniques allow us to follow accu-
rately the fronts out to times as large as 10° units. (Such
runs consumed two CPU hours apiece on the Cray YMP
computer.) Note that the order-parameter front width
remains sharp, while the temperature field widens as the
front slows down. By 109, the fronts closely resemble the
shapes assumed in the diffusion models: a step function
for m and an exponential-like decay for u with a kink at
the interface position. What appear to be kinks in u in
the figure are in fact smooth shapes at the microscopic
length scale z,, and are well resolved by our grid. As can
be seen clearly, the evolution of ¥ from an initial sharp
profile to an exponential-like decay involves a long tran-
sient. During the initial decay, the true long-time behav-
ior is obscured. The slight bump on the m profiles results
from the release of latent heat at the interface and corre-
sponding change in the liquid order parameter. This

1.0
(a)
= 0.5
y: # t/t, =
E 0, 100, 1000
- 0.0
8
5 .0.5
-1.0 T T T T T — T T
.40 -20 0 20 40 60 80 100
position z/ z,
1.0
= 0.5
N
E
- 0.0 _
:'N: t/t, =
= 0.5 10* 10° 10°
-1.0- T g T T T
(] 2000 4000 6000

position z/ z,

FIG. 3. Evolution of the order parameter m(z,t) and heat
field u(z,¢t). The material parameters are p/p.=0.1 and
6=0.1. The undercooling A=A.. In both (a) and (b), the upper
curves denote m and the lower ones u. The horizontal positions
of the different curves show the overall displacement of the
front at times ¢ /7,, =0, 100, and 1000 in (a) and ¢ /7,, = 10*, 10°,
and 10° in (b). The z axis is scaled by z,,, the microscopic
order-parameter length scale and the time by 7,,, the micro-
scopic order-parameter time scale.
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effect can also be seen in steady-state solutions [12,13].

Typical velocity-time plots are shown for the three
cases in Fig. 4. The log-log plot shows that the steady-
state solution for A>A_ is approached quickly. The
different slopes for A=A, and A <A_, corresponding to
0.3- and 0.5-power laws are apparent, as well. The curva-
ture for short times is due to the long initial transient.
This curvature means that one must be careful in measur-
ing the slope of the decays. We found it best to plot in-
stead the derivative of the log-log plot, giving a time-
dependent exponent. (See Fig. 5.) Specifically, we define
v(t) to be

_ d logqv (1) _ ta(1)

Vo) d logot v(t)

(66)

where a (t)=dv /dt is the interface acceleration. Figure 5
shows local-exponent plots for undercoolings above,
below, and at A, for p <p.. The topmost curve shows a
convergence to a ¢t * power law with v=1/2 for A<A,.
Other runs, with smaller values of A, give even faster
convergence to v=1/2. The next three lower curves
show that as A_ is approached from below, the time for
the transient to decay to v=1/2 diverges. At A, (the
dashed line), there is a long plateau at v=0.306. Howev-
er, there is a slight upward curvature for very long times,
which is not due to insufficient resolution. Nevertheless,
a power law is a good description over at least three de-
cades, even if it is not exact. We also found that for
smaller values of p, this transient becomes longer, so that
the time interval in which a power law accurately de-
scribes the decay will be correspondingly longer, as well.
Last, for A>A_, the decay to a steady-state solution
(v=0) is clearly much faster and sharper than the ap-

0.1+
8]
64
ol
E 24
>
> 0.014
> 81
¥ 6
3 ]
[ 44
> -
2-
A<Ac
0.001 P/pc= 0.9
8]
10' 10° 10° 10* 10° 10°
time t /1,

FIG. 4. Evolution of the front velocity with time for three
typical cases. The curves are shown on a log-log plot. (1)
A/A.=0.92. The front velocity decays as a power law, accord-
ing to t '/2. (2) A=A.. The data fall on a straight line with
slope —v=—0.306. (3) A/A,=1.03. The velocity approaches
a constant, steady-state value. The material parameters are
p/p.=0.9and 6=0.1.
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0.5
0.4 p/p, = 0.9

0.3

0.2

exponent v

0.1

0.0

T Ty ML | MR | MR |
10° 10° 10° 10° 10°
time t/t,

FIG. 5. The evolution of the decay exponent v for different
undercoolings. From top to bottom, the undercoolings are
A/A.=0.9240, 0.9753, 0.9959, 0.9994, 1.000, 1.027. The heavy

dashed line is the A=A, curve. The material parameters are
the same as in Fig. 3.

proach to the v=1/2 solution for A <A_,. The initial rise
to v=0.3 reflects the behavior at A=A_.

Investigating the approach to steady-state solutions,
we plot in Fig. 6 the magnitude of the interface accelera-
tion a(t) versus time ¢t on a semilogarithmic plot. The
dashed and dotted curves are for parameters close to the
transition to decaying motion. The solid line is at the
transition (A=A_, p=p.). When the front velocity ap-
proaches a steady-state solution, the acceleration decays
exponentially, giving a straight line on the semiloga-
rithmic plot. At the transition, the decay in acceleration
follows a power law and is thus curved on this plot. In
the steady-state regime, we fit the decay to the form

acceleration a/a
-
on
Il

-
O‘
1|

-
-
E——
em————"
IO
’
,
g
s
’
»
’

102 ,

T T
00 02 04 06 0.8 1.0
t/10°t,,

FIG. 6. Decay to steady-state solutions. Acceleration vs time
on a semilogarithmic plot. The dotted line is for p /p, =0.9 and
A/A,.=1.03. The dashed line is p/p.=1.1 and A=A.. Both
parameters are close to the transition to decaying motion. The
solid line is for p=p, and A=A, (just at the transition point).
In all cases, §=0.1.
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v()=v+de "0 (67)
For the dashed curve, $=0.1, p/p.=1.1, and A/A. =1,
and we find v=1.0X10"2, 4=1.7X10"3, and
t,=1.06X10°. For the dotted curve, §=0.1, p /p,=0.9,
and A/A.,=1.03, and we find v=1.9X10"72
A=3.8X1077, and ¢t,=6.8 X 10°. The long decay times
ty indicate that we are close to the transition. Far away
from the transition, ¢, is of order unity (r,,). Comparing
the dotted and dashed curves, we note that the steady-
state velocity v and the amplitude A vary by roughly a
factor of 2, while the decay time varies by a factor of
about 16. We thus expect that the decay time diverges as
the transition is reached.

In the steady-state regime, the u profiles are qualita-
tively different from those of the decaying regime, as il-
lustrated in Fig. 7. First of all, the u profiles have con-
stant width and do not spread out. Also, away from the
transition, the temperature decays over microscopic
lengths. The front propagation is thus akin to a tempera-
ture shock wave in the kinetics-limited regime. In Fig. 7,
we have chosen coexistence boundary conditions, even
though A> A, so that the heat generated at the interface
is not enough to heat the liquid back up to coexistence.
The boundary conditions thus induce an artificial second
front, which becomes broader over time. The width of
this second front spreads diffusively via a ¢!/ power law
and the position is fixed near z =0, whereas the true front
has constant width and travels at constant velocity. Al-
though the boundary conditions are incompatible with
steady-state motion, the main front nonetheless moves at
constant velocity and contrives to meet the artificial
boundary conditions imposed at z=— . This strongly
suggests that for arbitrary initial conditions, the front
travels at constant velocity for long times. In particular,
this is the case for a growing germ. In effect, the system
picks the correct steady-state boundary conditions
dynamically, regardless of the initial conditions.

At A=A_, the behavior depends on p /p.. As shown in
Fig. 8, for p <p_, the velocity decays via a p-dependent

1.0

0.5

m(z,t)

0.0+

t / t,=0, 100, 1000, 1400
-0.5+

u(z,t)

-1.0

-1.5

T T T T T T
-50 0 50 100 150 200
position z/ z,

FIG. 7. Same as Fig. 2: Time evolution of m (z,¢) and u(z,1)
in the steady-state regime A/A.=1.54. The material parame-
ters are p/p.=0.5 and §=0.1. Although the boundary condi-
tions force m _ =1.0 and u_ =0, the leading edges of the u and
m profiles evolve at constant velocity.
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vy,

velocity

0.001 T T T T T

time t /1,

FIG. 8. Velocity-time plot for A=A, and §=0.1 and for
different p /p,, as indicated.

power law. For p>p,., it converges to a steady state.
Note that we used the perturbative value of p.=2/38 in
calculating p /p,. (We used §=0.1, a value well within
the range of validity of the perturbation expansion for p,;
see [10].) The velocity-decay exponents v, obtained from
least-squares fits, are shown in Fig. 9 for six different
values of p /p.. The dashed line represents the transition
to steady-state motion at p.. Note that v does not go to 0
at p.. For small values of p /p., v varies little. Our mea-
surements of v are to be compared with the prediction of
Oswald for the diffusive model with linear Kkinetics:
v=1/3. Although the two values are compatible in the
limit p /p, —0, we find that v depends slightly on p and 8.
Either this dependence implies that v is nonuniversal, or
we are not yet in the asymptotic regime. If the latter is
true, the initial transients are extremely long lived, and

0.54

0.4+

0.3

exponent v

0.1+

0.0

o eemccceccccccccereccnnana

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 9. Fitted decay exponents v vs p/p. for A=A, and
8=0.1. The lines are guides for the eye. The dashed line
represents the transition from power-law decay to steady-state
motion that occurs for p > p,.
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FIG. 10. Velocity-time plot for two different initial condi-
tions showing convergence to same decay exponent. The solid
line represents a tanh-like initial profile, while the dashed line
represents a Gaussian germ. The material parameters are
p/p.=0.9 and §=0.2. The undercooling is A=A,.

real experiments may not attain the asymptotic regime,
either.

We checked that the decay exponent v is the same for
tanh and germ initial conditions. See Fig. 10. Again, this
strongly suggests that decay exponents are independent
of initial conditions.
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FIG. 11. Log-log plot of the interface velocity vs time in the
parabolic model. The initial profile was a quasi sharp kink.
The solid line shows, for reference, the case of the nonconserved
order parameter with short-range forces, the focus of our paper.
The material parameters and undercooling are given on the
figure. The dotted line shows, for the same parameters, the
effects of long-range forces. The parameters for the long-range
potential are a=0.25 and £=4. The dashed line shows the
effect of having a conserved order parameter.
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Finally, when p > p_, stable steady-state solutions exist
over a small range A, <A <A_, consistent with [14]. This
is interesting because the steady-state, A <A, solution
implies that the solid created dynamically is superheated:
Ordinarily, the solid created is at either coexistence or at
a lower temperature. We have checked that even if we
impose coexistence or germ boundary conditions, we get
a superheated solid. For A=A _, the solution jumps from
a finite-velocity, steady state to a ¢~ !/2 solution. The an-
alytic form of these superheated, constant-velocity solu-
tions and the scaling of v near A, were derived for the
parabolic model in [14].

These simulations of the Ginzburg-Landau model were
compared with velocity-decay laws of the parabolic mod-
el, obtained by the method described in Sec. III B. A typ-
ical example is shown as the solid curve in Fig. 11. Al-
though we could not follow solutions as far as we did in
the Ginzburg-Landau case, we nonetheless found similar
results. In the next section, we shall discuss
modifications of the parabolic model to include long-
range forces and conserved order-parameter dynamics.

V. INFLUENCE OF LONG-RANGE FORCES
AND CONSERVED ORDER-PARAMETER DYNAMICS

A. Long-range forces

We now discuss the influence that long-range forces ex-
ert on the dynamics of the parabolic model. Long-range
forces such as van der Waals interactions are convenient-
ly described by adding [26]

F,= —%f:cdz fjxdz’w(lz—z'l M m(z,t)—m(z',t)]?
(68)

to the free-energy functional (3). If m represents the den-
sity, w (z) is the parallel-integrated, long-range tail of the
microscopie interparticle potential [23]. Since the extra
term in Eq. (68) is diagonal in Fourier space, we can easi-
ly incorporate long-range interactions into our formalism
for the parabolic model. To proceed, we note that the
only change in the equations given in Sec. III B is in the
matrix C g [see Eq. (55)], which is replaced by

K?*/2p+18

Ck=— 18

1K+ 1+ W(K)

1K+ 1+ W(K) 69
where W (K)=[w(K)—w(0)]V27 and w(K) is the
Fourier transform of w(z), as defined in Eq. (54). For
concreteness, we choose the attractive inverse-power po-
tential

- 228 1
z) et T (z—>w) . (70)
The coupling parameter for the long-range potential is
chosen to be rather large so that effects stemming from
long-range potentials are clearly visible. We note that for
our phase-diffusion model, much less is known analytical-
ly about the effect of long-range forces than is known
about short-range forces. For example, for A=A, we
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FIG. 12. Time evolution of interface profiles when long-
range forces are included. The parameters are listed in Fig. 10.

cannot calculate p,(8) analytically. In Fig. 11, the inter-
face velocity is enhanced considerably compared to the
short-range case and tends to a finite steady-state veloci-
ty. This shows that p, is reduced when attractive, long-
range forces are present.

The acceleration of interface growth in the presence of
long-range, attractive forces is analogous to that observed
in the width of liquid layers in simple models of surface
melting [27].

For p <p. and A=A_, in Fig. 12, we show the evolu-
tion of the order-parameter and temperature profiles un-
der the same conditions as in Fig. 11. The long-range
forces modify the shapes of the tails of the interface
profiles: they are now power laws, with a slower decay
than the exponentials one finds in the short-range case.

B. Conserved order-parameter dynamics

We have heretofore assumed that the order parameter
distinguished the two phases was not conserved. If, how-
ever, it is conserved, then the equation of motion Eq. (2)
is replaced by [1]

om 9’ |= OF
—_— — — F_
Y P o (71)
This means that Eq. (55) must be modified to read
K?/2p+1K? KX1K?>+1)
Ck= (72)

= 1K% KX 1K?+1)
The natural time units must also be changed accordingly,
to 7,, =12 /(AT'). Finally, the term sinKz,(¢')/K in Eq.
(53) becomes K sinKz,(t’). Interfacial profiles are shown
in Fig. 13. Because m is conserved, interface motion im-
plies that quantities of m must diffuse from the liquid to
the solid, hindering growth. The dashed line in Fig. 11
shows the interface-velocity decay in the conserved case.
The growth velocity of the ordered phase slows much

position z/z

FIG. 13. Time evolution of interface profiles for noncon-
served order-parameter dynamics. The parameters are listed in
Fig. 10.

more quickly than for the nonconserved case (shown as a
solid line), where the same values of §, p, and A were
used. Indeed, if the spatial domain of the solid that is
studied is finite (as it is in our simulations), the global
conservation of m implies that only a finite fraction of the
domain can crystallize, even after the temperature field u
has decayed to a uniform value. If one interprets the
conserved m, for example, as a concentration of impuri-
ties, then this situation merely restates the well-known
fact that impure materials have a finite temperature range
over which solid and liquid phases coexist.

Since both m and u are conserved and governed by
diffusionlike equations, interesting dynamics will result
only if the effective diffusion constants for the two quanti-
ties are of comparable magnitude. Otherwise, the dy-
namics of the more rapidly diffusing field will be slaved
adiabatically to the dynamics of the more slowly diffusing
field, and the interface motion will be correspondingly
simpler.

VI. EXPERIMENTAL CONSEQUENCES

The two qualitatively new features arising from our
simulations are the approximate, p- and 8-dependent 0.3-
power-law decay at A=A, and the jump from a nonzero
velocity steady-state solution to a diffusive solution when
p>p.. Both occur, as suggested in Sec. II A, near A,
where the diffusive, ¢ ~!/? regime crosses over to a kinet-
ic, steady-state regime.

A. Estimates of typical materials parameters

For concreteness, we look at a representative metal, an
organic solid, and a liquid crystal for both the thermal
model (pure material) and the chemical model (impurities
added deliberately). In Table I, we collect data for pure
nickel, a nickel-copper alloy, pure succinonitrile, succi-
nonitrile plus acetone, the pure liquid crystal 4,4'-n-
octylcyanobiphenyl (8CB) (nematic-isotropic transition),
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TABLE 1. Material parameters for six different systems, representing typical pure and impure metals, dendrite-forming organic
solids, and liquid-crystalline mesophases. SCN denotes succinonitrile, AC denotes acetone, 8CB denotes 4,4'-n-octylcyanobiphenyl,
and Hex. denotes hexachloroethane. The molecular weight given for the alloy systems is that of the added impurity. The diffusivity
D is the heat and mass diffusivity for the thermal and chemical cases, respectively. For pure materials, the “unit A” is L /c,. For al-
loys, it is given by (dT /dC)C,(1—k)/k. In the alloy case, 8 is evaluated at unit undercooling.

Ni Ni,Cuy SCN SCN+AC 8CB 8CB-+ Hex.
References [34] [34] [35] [36] [37] [37]
M, (g/mol) 58.7 63.5 80.092 58.08 291.2 236.74
Piq (8/cm’) 7.8 1.0 0.979
T, (K) 1726 331.24 313.5
L (10° erg/mol) 172 136 37 6.12
¢, (10° erg/mol K) 0.43 1.6 7.3
o (erg/cm?) 464 8.94 0.0094
z,, (107* cm) 2.3 5.1 100
oM, /p,L (10 ¥cm) 2.0 1.94 0.0046
f (cm/sec K) 160 20 0.01
D (10 ° cm?/sec) 6500 6 1150 1.27 60 0.038
dT /dc (K/mol %) 4.38 3.86 1.35
k 0.81 0.1 0.85
¢y (mol %) 70 0.1-10 0.1—10
unit A (K) 397 7 23.1 2.55252 0.84 0.024—2.4
5 0.088 0.016 0.062 0.0067—0.67 1.96 0.31—31
p/p, 0.012 2.3 0.015 0.145—14.5 7.3X10°° 0.00013—0.013

and 8CB doped with hexachloroethane. The parameters
6 and p, defined for the thermal case in Egs. (6) and (11)
and for the chemical case in Egs. (25)-(27), require some
care to estimate since A and I are hard to measure direct-
ly. The trick is to relate them to the surface tension and
the kinetic coefficient (8), which are more easily mea-
sured. The equilibrium surface tension ¢ is obtained by
solving Eq. (3) at u=0 and evaluating [ (m,)’dz. We
find, in real units,

UMW _ }"gm
poks Ty 6

(73)

where p, is the density at coexistence and My, is the
molecular weight. (We are assuming both phases have
equal density.) From o, we can estimate 8. We find, fol-
lowing roughly the calculation given already in Schofield
and Oxtoby [12], that

z, L/cp

5=~
3 oMy /pol T,

(74)

To estimate I', we calculate the kinetic undercooling
developed by constant-velocity fronts:
— T,—T
v=—V208u En = §—m8 0 .
T T L/c,

(75)

This is to be compared with the standard definition of the
kinetic coefficient v=B(T,—T) [28]. One finds for T,
then,

A BTy kpTy

V2 z, L

(76)

The estimate of I' then leads to an estimate of p via the
definition in Sec. IT A.

The above estimates are for the thermal model. To cal-
culate the corresponding coefficients in the chemical case,
we note that L /c,—(dT /dC)Cy(1/k—1) and Dy —Dc.
As mentioned earlier, since one can set C easily, one can
effectively tune 8. Thus in the table the ranges of values
shown reflect the range of C, that one may easily have
(0.1-10 mol %). Also, the large values of p reflect the
fact that D /D=~ 100-1000, typically.

Although the estimates in Table I were done carefully,
the actual values should be used with caution since 3 and
z,, are poorly measured or can only be estimated. The
latter can be measured accurately should the need exist.
The former is hard to measure experimentally. (A useful
method to measure B in metals has recently been
developed by Rodway and Hunt [29].)

Scanning the values of & and p /p, for different materi-
als, a number of conclusions emerge. First of all, metals
and organic crystals have rather similar parameter
values, whereas the liquid-crystal values are quite
different. We conclude that the scale of 8 and p /p, is set
mainly by the strength of the first-order transition. True
solid-liquid transitions will have comparable p’s and &’s,
while weak mesophase transitions have very small p’s be-
cause the microscopic length and time scales are begin-
ning to become large. We have also estimated the param-
eter values of lead, xenon, and a discotic-liquid meso-
phase transition and find p’s and §’s in accordance with
the above discussion.

B. Suggestions for observing the anomalous exponent
and velocity jump

For the typical pure solid-liquid transition, the cou-
pling & is small, as is p /p.. Thus one can observe the 0.3
exponent but not the jump in such materials. The chemi-
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cal version of the solid-liquid transition allows one to
tune § and p /p, so that one might indeed be able to cross
from p <p, to p > p. in a single system merely by varying
the concentration of impurity. Referring to (26), we note
that 2/A)L /kgT,) is a number of order unity. Thus in
the chemical model §=AT /T, where AT is the melting
range (liquidus minus solidus) at the sample concentra-
tion Cy. A small AT implies a large undercooling A. Ob-
serving the 0.3 exponent should then be easier in the
chemical case than it is in the thermal case. On the other
hand, since p,=~2/(38)=2/(3AT /T,), a large AT may
be needed to have p >p.. But if AT is large, then it will
be difficult to undercool the liquid to A=1 without spon-
taneous nucleation occurring throughout the liquid. For
the ordinary liquid-solid transitions examined in Table I,
the case p >p. may be challenging to observe, although
the values for succinonitrile-acetone do not rule out see-
ing the velocity jump.

We note that the mesophase example requires further
thought. The values of & in both the thermal and espe-
cially the chemical case are very large. The simple form
we took in Eq. (4) above implicitly assumed a small 8,
since the (§/2)um term is the first term of an expansion.
Thus, although the liquid-crystal case is interesting, more
work needs to be done to understand the implications of
the phase-field model in this case.

To observe the anomalous 0.3 exponent, we must
determine the width of the crossover near A=A_.. In
principle, one could investigate the behavior as A—A,
from above or from below. When A—A, from below,
one observes a crossover from a 0.3-power law to a 0.5-
power law. Since the difference in the exponents is small
and the crossover time 7* long, this is hard to observe nu-
merically and would also be hard to observe experimen-
tally. By contrast, when one approaches A, from above,
the velocity decays exponentially to the steady-state
value. A log-log plot then shows a clear, sharp crossover
time, as illustrated in Fig. 4. Thus it should be easier to
prove the existence of the anomalous exponent by look-
ing at transients to steady-state fronts.

The crossover times may be estimated by extrapolating
numerical results for the power-law part of the decay to
meet the line tangent to the steady-state part of the
velocity-time log-log curve. In practice, even our long-
time simulations correspond to very short experimental
times. Typically, 7, ~107'2-1071° sec, so that in order
to compare simulation times to experimental times, we
would need to continue the simulations to times of order
10'°7,,. On the other hand, most of our interesting re-
sults at A, were shown for p /p,=0.9. The apparent 7*
in Fig. 5 (of order t =5 X 10*) will be greatly enhanced for
smaller values of p /p,. Our simulations cannot show the
steady-state velocity crossover for smaller values of p /p,
because that time rapidly becomes longer than the max-
imum time we can run our program. We can nonetheless
estimate this time by observing the power-law-decay
transient for small p /p, at A=A.. For A=~A_, this decay
does not change very much, and we shall use the value at
A.. We then extrapolate the velocity-decay curve to the
known steady-state velocity corresponding to the value of
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A> A, in which we are interested. This defines 7*. The
steady-state velocity is known exactly in the parabolic
model and approximately in the Ginzburg-Landau mod-
el. In the parabolic model, the relation is
v=V28(A—A.)/(1—p/p,) [14]. As an example, for
p/p.=0.1,8=0.1, and A—A_ =0.001 (the experimenta
limit achievable for pure succinonitrile, for example)
7*~10'", in units of 7, For succinonitrile, this corre
sponds to a few seconds.

C. The Mullins-Sekerka instability

Our calculation is limited to one dimension, while most
experiments have two- or three-dimensional geometries.
Ii. higher dimensions, line or surface tension will be
present, but their effects will be small once the germ’s ra-
dius is much bigger than z,,. A more serious worry is
whether the Mullins-Sekerka instability [30] will desta-
blize the interface and obscure the solutions we have been
studying. In the diffusive regime, the instability will cer-
tainly be present, and a germ will evolve into dendrites
whose tips move at constant velocity. At the large under-
coolings considered in this paper, calculations based
strictly on the diffusive model with linear kinetics imply
that for A<A;=1+D¢L /BT 0 [where the front veloci-
ty vps=DrL?/(c,Ty0)], a flat interface ripples via the
Mullins-Sekerka mechanism [16,17]. The experimental
scenario is that a crystal initially freezes fairly rapidly
and then slows down. If its asymptotic velocity is greater
than vyg, the front will be stable. If not, the Mullins-
Sekerka instability will set in once the front slows down
belOW Ums-

Our calculations would seem to be valid for circular or
spherical germs only until the front destabilizes. Howev-
er, if instead of measuring the interface position as a
function of time, we measure the total amount of solid
created (the area in d =2, the volume d =3), then the
effect of the Mullins-Sekerka instability is less clear. First
of all, when the amplitude of the instability is small com-
pared to the germ radius, there will likely be little change
to the area or volume measurement compared to the un-
stabilized germ. The reason is that for short times, only a
few discrete modes will grow. Since the shape is a sum of
growing sine waves, the area or volume will be unaffected
for sufficiently small amplitudes of the instability. Even
when the amplitude is large, the overall area or velocity
scaling may be unchanged. In the diffusion-limited re-
gime, the complicated dendritic patterns are transient,
the final state being a system that has been converted
from liquid to solid. Since heat (or impurities) diffuse out
to infinity, we expect that the area or volume time scal-
ings will remain diffusive.

Experimentally, it would thus be interesting to measure
the evolution of area or volume versus time in both the
dendritic and steady-state regimes. If the time scaling
changes in the dendritic regime, then the Mullins-
Sekerka instability would act as a kind of hyperdiffusive
mechanism that transports heat out to infinity qualita-
tively faster than via diffusion alone. The point has not
yet been studied in detail, but measurements on liquid
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crystals by Oswald, Malthéte, and Pelcé [31] suggest that
the area of two-dimensional germs does grow linearly
with time, even when their shape is highly dendritic.

Should crystal growth in the presence of the dendrites
obey diffusive scalings, then the classification of long-time
solutions to the equations of crystal growth discussed in
this paper would be expected to hold independently of
the existence of the Mullins-Sekerka instability. Should,
by contrast, there be qualitative changes in the area-time
or volume-time plots within the diffusive regime, that
would still be an interesting and perhaps fruitful way of
characterizing solidification process that would comple-
ment measurements of dendrite tip velocities, which here-
tofore have been the focus of much of the theoretical and
experimental work on solidification. In any case, the
measurement is straightforward with modern image-
processing techniques, and there clearly must be some
kind of transition, since in the kinetics-dominated regime,
the shape will be circular (area proportional to t?) or
spherical (volume proportional to °).

To conclude on an even more speculative note, an out-
standing problem of crystallization and diffusion-limited
growth processes in general is the existence of so-called
dense-branched morphologies [32]. Is the dense-
branched regime merely the destablized version of the
constant-velocity solution? Qualitatively, the argument is
plausible. Again, the most extensive observations are by
Oswald, Malthéte, and Pelcé [31], who examined the
growth of an impure liquid crystal (discotic phase grow-
ing into liquid phase). For A <0.6, they observe petal-
shaped and dendritic regimes, where the area grows
linearly with time. For A>0.6, they observe a dense-
branched regime. They do not give measurements of the
area versus time in this regime, but the photographs
shown in their article suggest that the area grows faster
than linearly with time. If the area grows quadratically
with time, then one would be tempted to conclude that
the germ is already in the kinetic regime, although it was
still unstable to the Mullins-Sekerka mechanism.

Finally, recent work by Geminard and Oswald [33] on
purer samples suggests a ¢ /% solution for A $0.3 and a
constant-velocity solution for AZ0.5. As the experi-
ments are still preliminary, we note only that three-
dimensional effects (the curvature of the meniscus that
occurs when a sample is enclosed in a narrow space be-
tween two glass plates) may be important.
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VII. CONCLUSIONS

We have extensively studied numerically the one-
dimensional phase-field model as a function of material
parameters and undercooling and have found, in addition
to the known diffusive and kinetic regimes, two new
effects. At unit undercooling, the front velocity decay is
very well approximated by a p- and 8-dependent power
law ¢t %, with v=0.3. For 6—0 and p/p.—0, our re-
sults are compatible with the v=1/3 exponent from
Oswald’s impurity-conservation argument. For other p’s
and &’s, we may conclude either that v depends weakly
on p and & or that we have not yet reached the true
asymptotic regime; however, the long transients imply
that experiments may not reach the regime, either. For
small diffusivities (most likely mass diffusivities), we pre-
dict a jump from finite-velocity solutions to diffusive solu-
tions. Estimates of material parameters show that both
of these new effects should be observable in experiments.

Although our calculations are for one-dimensional sys-
tems, our classification of asymptotic behavior may apply
to two- and three-dimensional geometries, even in the
presence of the Mullins-Sekerka instability. We have also
speculated that the transition from dendritic to dense-
branched morphology reflects the transition from
diffusive to kinetic growth. As always, the key point is
whether heat or impurities can remain where they are
released or whether they must be transported out to
infinity.
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