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The influence matrix method of enforcing incompressibility in pseudospectral simulations of 
lluid dynamics, as described by Kleiser and Schumann for channel flow, is generalized to 
other geometries, A formalism of projection and matrix operators is introduced, in which the 
influence matrix method is shown to be an application of the classic Sherman-Morrison- 
Woodbury formula of numerical linear algebra. Special attention is paid to the tau correction. 
Applications to Cartesian geometries illustrate the concepts and highlight the role of 
symmetry. A coded implementation in a cylindrical geometry, requiring special treatment of 
coordinate singularities, is used to investigate properties of the influence matrix and to provide 
estimates of timings. 0 1989 Academic Press. Inc 

1. INTRODUCTION 

In incompressible flow, the pressure serves as the degree of freedom necessary to 
ensure that the velocity field is divergence-free. It is therefore necessary to derive 
equations and boundary conditions for the pressure which correctly express this 
constraint on the velocity. There has been a great deal of interest in this problem 
for pseudospectral simulations of three-dimensional flows with one or more 
nonperiodic directions. 

Most methods solve a Poisson equation for the pressure; the difficulty then 
centers on deriving appropriate boundary conditions. Among the approaches which 
have been used are: (1) the influence, or capacitance, matrix method which is the 
subject of this article (Kleiser and Schumann [ 11; Marcus [2]; Patera [3]; Sulem, 
Sulem, and Thual [4]; Alziary de Roquefort and Le Quere [S]), (2) iterative 
solution of the pressure (Haldenwang [6], Maday and Patera [7]), and (3) time- 
splitting methods in which boundary conditions on the pressure approximately 
enforce incompressibility (Orszag and Kells [8]; Patera and Orszag [9]; Orszag, 
Deville, and Israeli [lo]; Zang and Hussaini [ 111, and Streett and Hussaini [ 121). 

Other techniques bypass the Poisson equation, either: (4) solving the coupled 
momentum and incompressibility equations for the pressure and velocity together 
(Moin and Kim [ 131, Malik, Zang, and Hussaini [ 14]), (5) using an inherently 
divergence-free basis set for the velocity (Leonard [15]; Leonard and Wray [16]; 
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Moser, Moin, and Leonard [ 17); Spalart [ 183) or (6) using vector potentials 
(Marcus [19], Glatzmaier [20], and Murdock [21]). 

Gresho and Sani [22] have given an excellent and comprehensive treatment of 
the pressure boundary conditions necessary for enforcing incompressibility. The 
purpose of this article is not to compare the different numerical methods of treating 
the pressure (for such a comparison, see Orszag, Israeli, and Deville [lo]; Deville, 
Kleiser, and Montigny-Rannou [23]; Ku, Taylor, and Hirsh [24]), but rather to 
discuss in detail the influence matrix method. 

It is well known that pseudospectral methods are best suited to periodic 
geometries; there, the pressure is easy to treat. Indeed one of the main directions of 
recent effort has been to extend the use of the pseudospectral method to arbitrary 
geometries (Patera [3 J, Maday and Patera [7]). Most of the approaches listed 
above grow increasingly difftcult, if not impossible, as the geometry becomes more 
complicated. Restricting ourselves to regular geometries, the complexities can be of 
two kinds, both of which will be encountered in this article: 

(1) The coordinate system itself can be complicated. A Cartesian system is 
simplest, followed by cylindrical, then by spherical. Cylindrical and spherical 
domains which contain coordinate singularities such as poles, origins, or axes are 
more difficult to treat than those which do not, requiring either special basis func- 
tions (e.g., spherical harmonics) or special treatment of the coordinate singularities. 

(2) Solid boundaries may be present, leading to nonperiodic directions, i.e. 
directions in which there are nonperiodic boundary conditions. Computations 
involving one nonperiodic direction have by now become fairly commonplace. 
Applying the same methods to two or three nonperiodic directions will, however, 
cause nontrivial coupling between the directions. Even a nonperiodic Cartesian 
cube poses formidable problems which have long been resolved for a periodic box. 

TABLE I 

Representative Pseudospectral Calculations in Nonperiodic Geometries 

Nonperiodic 
directions Cartesian Cylindrical Spherical 

One Kleiser & Schumann [ 1 ] Marcus [Z] Marcus [ 191 
Sulem, Sulem & Thual[4] 

Orszag & Kells [8) 
Zang & Hussaini [ 111 

Moin & Kim [13] 

Patera & Orszag [9] * 
Leonard & Wray [ 16]* 

Glatzmaier [20] 

Moser, Moin, & Leonard Cl73 

Two 

Three 

Spalart [ 18 ] 
Lx Quirk & 

Alziary de Roquefort [ 51 
Haldenwang [6] 

Streett & Hussaini [ 121 
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Some of the references have treated relatively complex geometries. We classify 
them according to this scheme in Table I, italicizing those which use the influence 
matrix method. (Asterisks denote cylindrical geometries like ours, which include the 
axis.) 

Green’s functions are a classic tool in the solution of elliptic partial differential 
equations (see, for example, Morse and Feshbach [25]), in particular for imposing 
boundary conditions. Numerical discretization leads to influence, or capacitance, 
matrices. Hackney [26] was among the first to implement this technique numeri- 
cally in order to solve the Poisson equation via finite differences in an irregular 
domain. Buzbee, Dorr, George, and Golub [27] gave a precise exposition of the 
method and of its interpretation in terms of the Sherman-Morrison-Woodbury 
[28-321 formula for matrix inversion. Proskurowski and Widlund [33] and 
O’Leary and Widlund [34] returned to the original elliptic differential equations 
to analyze the numerical Green’s functions as kernels of Fredholm integral 
equations. They were then able to exploit known analytic results about the well- or 
ill-posedness of such integral equations to formulate numerical methods yielding 
well-conditioned influence matrices. 

The use of Green’s functions or influence matrices as a means of imposing incom- 
pressibility in the Stokes or Navier-Stokes equations is, however, a fairly recent 
idea. Canuto and Sacchi-Landriani [35] have proved the mathematical convergence 
of the influence matrix algorithm developed by Kleiser and Schumann [ 11. 
Quartapelle and Napolitano [36] have analyzed the method in terms of integral 
boundary conditions; an analogy can be drawn between their work and [33,34]. 
In this article, we will show that the Kleiser-Schumann influence matrix method of 
enforcing incompressibility can, like [26, 271, also be recast as an application of the 
Sherman-Morrison-Woodbury formula. 

Kleiser and Schumann presented their algorithm as algebraic equations relating 
coefficients, in a geometry with one nonperiodic direction. Our formulation using 
matrix operators facilitates the generalization of their method to other geometries. 
We have applied the method to Rayleigh-Benard convection in a cylindrical 
container with radial and vertical boundaries (i.e., two nonperiodic directions), and 
we present results specific to this geometry. 

We have organized the article in the following way. In the remainder of this 
section, we transform the time-dependent Navier-Stokes equations to the Stokes- 
like problem we will study throughout the paper. In Section 2 we review the 
pseudospectral method for space-discretization and the tau method for imposing 
boundary conditions, with a view towards introducing our notation. 

Sections 3 and 4 form the heart of the paper. Section 3.1 derives the discrete 
Poisson equation for the pressure. Section 3.2 discusses the tau correction, which 
has been overlooked in most other articles. Section 3.3 expresses the fluid-dynami- 
cal problem in matrix form and discusses the Sherman-Morrison-Woodbury 
formula [28-321, which gives the inverse of a matrix in terms of the inverse of a 
related matrix. Section 3.4 sets up the correspondance between the various terms of 
the Sherman-Morrison-Woodbury formula and the fluid-dynamical problem. 
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Section 4 applies the formalism of Section 3 to two Cartesian geometries. The first, 
a rectangle with two nonperiodic directions, has been treated by Le QuCrC and 
Alziary de Roquefort [S]. The second, a channel with two periodic and one 
nonperiodic direction, is the geometry studied by Kleiser and Schumann [l]. 
With these examples we explain how symmetry can be used to reduce the size of 
influence matrices. 

Section 5, an application to cylindrical coordinates, should be of interest to those 
using curvilinear coordinates. It explains the difficulties posed by the coupling of 
the cylindrical coordinates and the coordinate singularity at the axis and shows 
how they can be dealt with, both in elliptic solvers and in the influence matrix. 
Section 6 discusses the singularity of the influence matrix and an easy empirical 
algorithm for rendering it invertible. Timings, condition numbers, and error bounds 
are also presented here. While these results are obtained for the cylindrical case, 
they should be generally applicable. After the conclusion is a glossary listing our 
notation. 

1.1. Time-Discretization 

We begin by discretizing the Navier-Stokes equations in time. We assume the use 
of any implicit time discretization (here, Crank-Nicolson) for the viscous term, and 
of any explicit time-discretization (here, Adams-Bashforth) for nonlinear terms and 
external forces f (e.g., buoyancy). The following system of equations is obtained for 
proceeding from the velocity field ui to u’+‘: 

+~[3(u’x(vxu’)+fi)-(u~-‘x(Vxui-‘)+f’--’)] (lla) 

Bu -0 it1 _ (l.lb) 
i+l_ v.u -0, (I.lc) 

where v, At, and p are the viscosity, time step, and pressure head, respectively. The 
notation Bu means u evaluated at the boundary of the domain, and Vz is the vector 
Laplacian. Defining E = vAt/2, let E = I - sV2 be the elliptic operator appearing 
on the left-hand side of (l.la), and let s be the entire right-hand side of (l.la). 
Dropping the now-superfluous superscripts and setting qh =pAt, we obtain this 
system of equations to be solved for u and 4: 

Eu+Vq5=s (1.2a) 

Bu=O (1.2b) 

v.u=o. (1.2c) 

If E is replaced by V*, this becomes the Stokes problem. Most of this article 
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(except for Sections 6.2-6.3) will pertain to the Stokes problem as well. We assume 
that we have a procedure for inverting E with given boundary conditions. The 
difficulty in solving (1.2) lies in the coupling of u and $ in (1.2a) and between the 
different scalar components of the vector field u in (1.2~). The remainder of the 
article is addressed to the modification and solution of the system (1.2). We will 
first need to be more precise about our means of discretizing operators in space and 
of imposing boundary conditions. 

2. BOUNDARY CONDITIONS-PSEUDOSPECTRAL METHOD 

In this section, we describe the collocation and tau methods of imposing bound- 
ary conditions in the pseudospectral method. Although these methods are already 
well known and documented (Gottlieb and Orszag [37]; Voigt, Gottlieb, and 
Hussaini [38]; Canuto, Hussaini, Quateroni, and Zang [39]), we include this 
treatment to make the article relatively self-contained. However, our primary 
purpose here is to introduce our notation of projection operators and matrix 
decompositions in familiar surroundings. This notation is rather elaborate, but 
we hope it will serve to clarify points which have remained vague in the literature, 
sometimes leading to errors in algorithms. It is summarized in a glossary at the 
end of the article. The reader who, with the help of the glossary, understands 
equations (2.1) and (2.2) at the end of Section 2 may wish to skip to Section 3. 

2.1. Grid and Coefficients 

Using the ideas of the pseudospectral method, we can go freely back and forth 
between gridpoints and basis functions. For illustrative purposes we discuss the case 
of a rectangle with a Chebyshev grid and polynomials. We begin by defining the 
Chebyshev polynomials: 

g,(x) z cos(j arc cos(x)) 

and the Chebyshev grid 6 = {(x,, y,): 0 6 j 6 J, 0 < k < K}, where 

(Hats, A , will always be used to refer to physical space quantities.) Each wj is either 
an even or an odd polynomial of degree j. A function on the rectangle 
((x, y): -Xb x < X, - Y < y < Y} can be specified by either its physical space 
representation, i.e., its values on the gridf(xj, yk), or by its spectral space represen- 
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tation, i.e., its Chebyshev coefficients f(j, k), where 
0 Q k d K}. A transformation p= Uf relates the two: 

(j, k) E G E { 0 <j < J, 

We define 9 and @ to be the vector space of all (real-valued) functions defined on 
the grid sets G or G, respectively, so that f~ 93 and f~ $ and U: $9 + $. The 
dimensionality of 9 and of @ is equal to the cardinality of G and of 6, which we 
will denote by ICI or IGI. (Vertical bars around a set or vector space will always 
denote its cardinality or dimensionality.) 

By calculating its effect on the ~Jx), a differential operator can be expressed in 
spectral space as a matrix E: 3 -+ 9 acting on f: Alternatively, it can be expressed 
in physical space as Z?: 9 + 9 acting on j? The two matrices are related by the 
transformation 8= UEU- ‘. In the remainder of the article, all operators, such as 
those used in Eqs. (1.2), will be replaced by spectral space matrices (except when 
coordinate singularities are treated in Section 5.2). 

We now wish to solve an elliptic equation, 

Ef =g, 

imposing homogeneous boundary conditions on the perimeter of the rectangle. 

2.2. Collocation Method 

The two representations, so far equivalent, lead to different methods of imposing 
boundary conditions. In the collocation method the differential equation is not 
imposed at the boundary, but is instead replaced by the boundary conditions. Let 
f,X, fY;, and pXY be the x- and y-boundaries and the corners of the rectangle, i.e., 

f.y= {(x,,yk):j=O or j=J, 1 <k<K- l}, 

TV= ((Xj,Yk): 1 <j<J- 1, k=O or k=K}, 

fxyc {(Xj,Yk):j=O or j=J, k=O or k=K}. 

Then the perimeter of the rectangle is $== fX u fY u pXY. Let 9, $, and yY be sub- 
spaces of $ consisting of all functions which are nonzero only on f, fXi;-, and fY, 
respectively. Let Qbdy and Qint = I- Qbdy be projection operators onto the bound- 
ary and interior subspaces 9 and 9? - 3, respectively. (The notation 4 - 9 here 
means the orthogonal complement of 9 in @. It does not mean “all elements of @ 
which are not elements of @-,” but instead “all elements of $ which contain no 
component of 9,” i.e., the vector space of functions on 6 which are zero on i? 
Thus $#$u(($--y), but rather @=y@(@--y).) 

The collocation method consists of replacing the equation 
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by the pair of equations 

Qint kf= Qint 2 
Q,,,f= 0 

so that the differential equation is no longer satisfied on the boundary. An 
equivalent formulation is to introduce an additional variable Z^E 3, serving as a 
kind of “placeholder” (its value is not significant), 

Qint JY= Qint 2 

Qbdy Z?‘= r^ 

Q,,,f= 0 

or 

If we reorder the points so that all boundary points are located at the end of the 
vectors, we can partition the square matrix Z? as 

In matrix form we have 

Despite containing six blocks, the matrix above is square, as can be seen from the 
dimensions of these blocks, specified to the left and below the matrix. Similarly, it 
can be seen that the vectors on the left-and right-hand sides are both of length 
161 + I ?‘I. A vector or matrix of all zeroes is denoted by 0, and Z is the identity 
matrix of appropriate dimension. Note that unlike 2, f is not projected: Qintj\ and 
Qbdyf are treated on an equal footing. 

2.3. Tau Method 

In the tau method, rather than eliminating the rows evaluating the differential 
equation at the boundary, we eliminate the rows expressing the highest frequency 
modes of the differential equation. Define the sets TX, T,, and TX, by 
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T,~l(j,k):j~~-l,k~~-2}, 

T,.= {(j,k):j<~-2,k>~- I}, 

TX,.= {(j,k):j>J- 1, ,%a~- I}. 

Then the tau set is T-T, u T, u T,,.. Note that the boundary and tau sets are of 
the same size: IT,] = IT,,1 =2(K- l), jT.vl =/FYI =2(5-l), IT.xyI = lfXYl =4, and 
JTJ = If1 = 2(5+ K). As before we will denote by TX, TV, 9&, and 5 the vector 
spaces of functions which are nonzero only on sets T,, T,, .T,,, and T, and we 
define projection operators Qhi and Q,, = I- Qhi onto the spaces F and 9 -F of 
high- and low-frequency functions, respectively. The differential equation with the 
boundary conditions imposed by the tau method is 

Q,oW = Q,og 

QhiEf = T 
Bf=O. 

Equivalent forms are 

and 

EF=Q,,g+T 

Bf=O 

(2.1) 

IGI I Z-1 
The boundary operator B may compute either function values (B = Qbdy U) or 
Chebyshev coefficients along the boundary. We use the latter, for reasons to be 
explained in Section 4. This yields boundary values that are defined on a mixed 
physical-spectral grid, such as 

(Bf)(x,, k) = 1 $:i(xo)f(i kh 

which we will write (without a hat) as b(x,, k). 
We have deliberately emphasized the analogy between the collocation and tau 

methods, but they are not equivalent, as can easily be seen from the fact that f 
depends only on Qint g, while f is determined by QIOg. Nor does the nomenclature 
t and ? imply that ? = Ur. We have introduced the collocation method first because 
it is more intuitive, but since differential operators such as Vz and V. are local in 
spectral space, it will be far more economical to use the tau method, both in solving 
the elliptic equations and in reducing the set F-, as we shall see in Sections 3 and 4. 
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If the functions are vector-valued, they and the spaces to which they belong will 
be denoted by bold letters, and called bi- or tri-directional, so as to avoid confusion 
with the dimensionality of vector spaces. For example, if f = e, f, + ey fl,, we will 
say that d= 2, and that f is bi-directional. Then f, g E Y@$ and t E Y @ Y. 
We then require vector operators 

Generally, for d=l, 2, or 3, we have f,gE’9= @f=‘=,?J and ZEYZ Oy=‘=,S, or 
f,g:G+!R’and r: T+91d, and the corresponding vector operators. Note that the 
grid G and tau set T, pertaining to the domain (which for the rectangular case we 
also call bi-directional), remain unchanged. The d-directional equation with bound- 
ary conditions becomes 

Q-2) 

3. THE INFLUENCE MATRIX METHOD 

3.1. The Poisson Equation 

We now return to the fluid dynamical problem at hand. Using the tau method 
to impose the boundary conditions, and the notation defined in the previous 
section, we express equations (1.2) as 

Eu+V4=Q,,s+z (3.la) 

Bu=O (3.lb) 

v.u=o. (3.lc) 

Recall that the symbols E, V, and V. no longer refer to differential operators, but 
to the corresponding spectrally discretized matrices, as explained in Section 2.1. 

This is a well-posed problem, but all of the unknowns u, t, and 4 are coupled. 
Worse yet, Eq. (3.1~) and the presence of Vd as an unknown in (3.la) couple the 
different scalar components of the vector u. We assume that we have a rapid 
numerical algorithm for solving (3.la)-(3.lb) if 4 were known. Our goal is to 
reduce (3.1) to a form in which we can solve for 4 independently of u. 

The usual starting point is to derive a Poisson equation for the pressure. We 
operate with QloV. on (3.la), obtaining 

QdV . Eu + V’4) = Q,,V . (Qlos + 2). (3.2) 

581/80/2-I1 
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In order to eliminate the term involving u in (3.2), we use the fact that an elliptic 
equation with homogeneous right-hand side and boundary conditions has only the 
null solution; this is true for the discretized equation as well. Defining the scalar 
elliptic operator E z I - aV*, (3.1~) is equivalent to 

Q,, E(V.u)=O (3.3a) 

B(V.u)=O. (3.3b) 

Using V*(V . u) = V. V*u, we obtain the commutation relation 

E(V . u) = (I- &V)(V u) 

=V.(I-&V)U 

=V.Eu, 

allowing us to replace (3.3a) by 

Q,OV. Eu = 0. 

Equation (3.2) becomes 

Q,J’$ = Q,,V . (QG + 2). (3.4) 

Projecting Eq. (3.la) into the- low- and high-subspaces, and reordering equations 
(3.lb), (3.4), and (3.3b), the full problem now reads 

Q,,(Eu + V4) = Q,os (3Sa) 

Bu=O (3Sb) 

QJ2d = Q~ov. (Q,os + 2) (3.k) 

B(V.u)=O (3Sd) 

Qhi(EU + Vd) = 2. (3.5e) 

The desired decoupling has not yet been accomplished, for two reasons: first, (3Sd) 
continues to couple the different components of u, and second, the unknown t still 
appears in (3.5~). Both types of coupling can be reduced, though not completely 
eliminated, as we shall see in Section 3.2. 

3.2. The Tau Correction 

Before continuing, we briefly discuss a point which has often been overlooked. 
Note that t appears in the Poisson equation (3.5c), causing additional coupling 
with (3.5e): it is for this reason that we explicitly introduced t in Section 2. It might 
be thought that this could be avoided by taking the divergence of the projected 
equation (3.5a) instead of the full equation (3.la). However, V. and the projected 
operator Q,,E do not obey a commutation relation, that is, 

V . QloEu # Qlo E V . u, 
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preventing the elimination of Q10 Eu via (3.3a). This noncommutation has long 
been the bane of incompressible computational fluid dynamics and has often been 
ignored in the interests of expediency. Another possibility might seem to be to take 
the divergence of the original equation (1.2a) before discretization and imposition 
of boundary conditions (1.2b), leading to 

QJ’4 = Q,oV .s (3.5c’) 

instead of (3.5~). The error here is that (1.2a) is not satisfied numerically: the 
discrete Poisson equation should be derived from the discrete momentum 
equation (3. la). 

Our derivation of (3.5~) is very similar to that of Haldenwang [6]; both are 
multi-directional versions of Kleiser and Schumann’s [l] treatment. Kleiser and 
Schumann propose a remedy, called the tau correction, for this coupling; we will 
generalize their tau correction and make it an integral part of our influence matrix 
formalism in Section 3.4. The description by Kleiser and Schumann is very specific 
to their case and has proven to be far more difficult to generalize than the rest of 
their algorithm. It is therefore perhaps not surprising that all of the other articles 
we cite [2-51 as implementing the influence matrix method have solved (3.5~‘) 
instead of (3.5~). 

Without the tau correction, a small error (discussed further in Section 6.2) occurs 
in satisfying V. u = 0 at interior points although BV . u = 0 is enforced. We 
emphasize that this error is not inherent in Kleiser and Schumann’s method, but a 
consequence of its incomplete implementation. A number of authors have success- 
fully used the influence matrix method without tau correction; however, Kleiser has 
found the stability boundary in channel flow calculations to change if the tau 
correction is neglected (see Canuto, Hussaini, Quateroni, and Zang [39]). 

Returning to our transformation of system (3.5), we note that t appears in (3.5~) 
only as Q,,V ‘7, so that the coupling between (3.5~) and (3.5e) occurs only via 
elements of t (high-frequency modes) whose divergence contains low-frequency 
modes, The coupling can then be reduced by further partitioning of $ = @f= 1 F. 
Define s*, of dimension IF.. /, to be the orthogonal complement (in Y) of the null 
space of QloV., so that ~EF-F* implies that QloV. z = 0. Just as we can 
partition the space F, we can decompose Qhi by defining the projection operators 
Q*:%+T* and (Qhi-Q*):s-,~--*. Then the coupling occurs only via 
Q*t, since by definition, 

Q,oV . -c = Q,o V. Q, t. 

We can now decompose (3.5e) into 

Q,(Eu+W=Q,r (3.6a) 

(Qhi-Q*)(EU+V~)=(Qhi-Q*)Z (3.6b) 

Equation (3.6b) serves only to determine (Qhi -Q,) z and can be dropped. 
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Finally, we reduce the coupling by (3Sd) of different components of u by noting 
that the equations 

Bu=O 

BV.u=O 

are not independent. Bu = 0 implies the vanishing at the boundary, not only of II, 
but also of its derivatives tangent to the boundary. The only contribution to BV e u 
comes from the normal derivatives, which we denote by V, . . We can then replace 
(3.5d) by 

BV;u=O. (3.7) 

Assembling Eqs. (3Sa)-(3Sc), (3.7), and (3.6a), we arrive at 

Q,#u + V4) = Q,os 
Bu=O 

QdV*d-V.Q,t)= Q,oV.Q,,s 
B(V;u)=O 

Q,(Eu+V&-Q*z=O. 

(3.8a) 

(3.8b) 

(3.8~) 

(3.8d) 

(3.8e) 

At this point, no further decoupling seems possible, although the terms V, . u and 
Q, r still remain in (3.8dt(3.8e). The influence matrix method calls for arbitrarily 
replacing these last two equations, obtaining 

Q,,(Eu + V4) = Q,,s (3.9a) 

Bu=O (3.9b) 

Q,,(V2~ -V . Q, .c)= Q,oV . Q,os (3.9c) 

B#=b (3.9d) 

-Q.+T= -0. (3.9e) 

This new system of equations is no longer equivalent to (3.8) and contains two 
additional quantities on the right-hand side, b and 0. However, it is now possible 
to solve for C$ and Q,z (which no longer has any relation to the tau error) before 
knowing u. There exist values of b and -ts for which the solutions to (3.8) and (3.9) 
are the same: the task now becomes to determine those values. 

3.3. The Sherman-Morrison- Woodbury Formula 

We can derive some insight about the systems of Eqs. (3.8) and (3.9) by writing 
them in matrix notation. Now that we have derived precise equations, we will shed 
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some of the notation in the interest of increased readability. We will drop Q,,, and 
Q ,,,, assuming that they precede E, V ., s, V2, and V ‘, and we will abbreviate Q, 
by Q, and Q,t by T*. We rewrite the true system (3.8) we have derived above in 
block matrix form: 

d(G-TI 

d ITI 
IG- TI 

I TI 
I-7t.I 

dIGI IGI K*I 

U 

T 

2* 

= 

S 

0 
v.s 

0 
0 

(3.8a) 
(3.8b) 
(3.8~) 

(3.8d) 
(3.8e) 

The lines are drawn to partition the matrix into separate systems for u and 
(4, t*), but we can see that the system is still fully coupled due to the fact that both 
offdiagonal blocks are nonzero. The altered system (3.9) is written 

(3.9a) 
(3.9b) 
(3.9c) 

(3.9d) 
(3.9e) 

dIGI PI l&l 

Here we see clearly the decoupling of the two systems, manifested by the zero 
offdiagonal block on the bottom left. Thus by the criterion and assumptions stated 
previously, (3.9) is numerically soluble. 

We wish to solve (3.8) using only a procedure for solving (3.9). A classic formula, 
first stated by Sherman and Morrison [28,29] and generalized by Woodbury [30] 
(see also [31, 32]), will accomplish this purpose; 

where 

(H+ VW+)-‘=H-‘-H-l VC-’ W+H-‘, (3.10a) 

C= I+ W+H-’ V. (3.10b) 

Here (H + V Wt) is the matrix we wish to invert, and H-’ is a matrix we know 
(or rather, whose action we can compute on a vector, as will be discussed later). 
Any method which directly (rather than iteratively) solves a linear system by 
modification of a related linear system implicitly makes use of the Sherman- 
Morrison-Woodbury formula. For example, the decomposition into homogeneous 
and particular solutions is an application of this formula. Green’s function methods, 
also called influence or capacitance matrix methods, fall into this category and the 
matrix C in (3.10) is in fact what is called the influence or capacitance matrix. 
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The matrices in (3.10) are of different sizes. H and C are square matrices: H is 
JV x Jf and C is H x tin. V is ,V x +Z and Wt is n x Jf (here + means transpose). The 
Sherman-Morrison-Woodbury formula is only advantageous insofar as *E, which 
measures the extent to which H is modified, is less than JV”, the size of the original 
problem. (The limiting case in which PZ = 1, so that C is a scalar and V and Wt are 
column and row vectors, is the original Sherman-Morrison formula.) Note that 
(3.10) can easily be derived via Gaussian elimination on the expanded system: 

(w”+ _“l)(;j=(:). 
While Eqs. (3.1Q) represent a convenient form of the Sherman-Morrison- 

Woodbury procedure, it can also be stated as follows. Given a vector d, if 8 is a 
solution to 

c&=(1+ W+H-IV)&= W+H-‘9 (3.11a) 

and we define 

u=H-‘(o- Vcf), (3.11b) 

then 

(H+ VW+) ti = a. (3.1 lc) 

In this formulation neither of the inverses C-i nor (H + Z’ Wt)-’ appear. Thus we 
stress that this procedure can be used to generate solutions to the problem (3.11~) 
even when the matrices C or (H + VW’) are noninvertible. By construction it can 
be seen that if (3.11a) has a solution for a given 6, then (3.11~) has a solution for 
that t?. The converse is easily shown by replacing definition (3.1 lb) with 

e= w+u. (3.11b’) 

O’Leary and Widlund [34] have in fact proven that C is invertible if and only if 
(H + VW+) is invertible by observing that if 6 is a nontrivial null vector of C, then 
H- ’ V 8 is a nontrivial null vector of (H + V Wt ). 

3.4. Applying the Sherman-Morrison- Woodbury Formula 

Applying the Sherman-Morrison-Woodbury formula to our problem (3.8)-( 3.9), 
we set 

H+ VW+= 

E V 0 
B 0 0 
0 v2 -v. H= 

BV; 0 0 
QE QV -1 

EV 0 
BO 0 
0 v= -v. 
OB 0 
0 0 -I 
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Here the horizontal lines are drawn to emphasize the part of the matrix that 
changes. We obtain the matrices V and Wt by 

i BV; QE 0 0 0 QV -B 0 0 0 0 0 0 0 0 

BV; -B 0 

QE QV 0 > 

We see that Wt evaluates the term V, . u - 4 at the boundary, and the com- 
ponents of Eu + VIP which are in Y*. V takes b and - tr, the boundary values of Q 
and the values imposed on -r*, and inserts them into the otherwise homogeneous 
problem (s = 0). The dimension n = 1 TI + 1Y.I is considerably less than 
.N=(d+l)IGl +IF*I as desired (lTl/lGI is on the order of the ratio of surface to 
volume of the domain). The vectors U, &, and tl of (3.11) are, for this case, 

The role of the influence matrix C can be seen as follows. If (u”, @, r”,) is the 
solution to the homogeneous problem for a given b and -tr, i.e., the solution to 
(3.9) with 

s=o 

then 

Bcjh=b 

-Q = --(r * 

Ce=(W+H-‘V+Z) b 

()( 
B(V;uh-dh)+b BV, . uh 

--d = Q(Eu~+V#~)-(~ Q(Eu~+V~~)-~; 

This vector would be zero if all of the conditions which we seek to impose on the 
solution were satisfied, that is, if we had been able to guess the correct b and --d 
in Eqs. (3.9d)-(3.9e) so as to satisfy Eqs. (3.8d)-(38e). As it is, C provides us with 
the error (“influence”) in (3.8d)-(3.8e) arising from any given b and --d in the 
homogeneous problem. C is generated in a preprocessing step by setting b and --(r 
equal to each basis vector in turn, finding the corresponding homogeneous 
solution, and performing the calculation (3.12), which corresponds to Eq. (3.10b). 
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In contrast, the operations symbolized by (3.10a) are to be carried out at each 
time step, with a different s. One first calculates a particular solution, i.e., a solution 
to (3.9) with b =O, -o=O. This corresponds to the first term on the right-hand 
side of (3.10a). The sequence of vectors produced by the second term on the 
right-hand side is shown below, reading right to left. Below each step (+) is the 
matrix which transforms the vector on the right to the vector on the left: 

i 

HP’ V c-’ W’ H-’ (3.13) 

That is, HP’ VC-’ WtHp’ generates the homogeneous solution which has the 
same error in satisfying (3.8d)-(3.8e) as does the particular solution. By subtracting 
the homogeneous from the particular solution, the last step of (3.10a), we arrive at 
the true solution, which has no error. Note that the same operations are used to 
evaluate Wt on particular solutions in (3.13) as to generate the matrix C from 
homogeneous solutions in (3.12). 

The matrix operations in (3.13) should be interpreted as a symbolic shorthand, 
rather than as explicit matrix multiplication. Indeed, as stated in Section 3.3, the 
matrix C need not even be invertible: the multiplication by C’ in (3.13) should be 
treated as notation for finding a solution to (3.1 la) and will be discussed further in 
Section 6. Although H is invertible, multiplication by HP i would require O(Jtr’) 
operations and storage of the full He’ would require JP2 words. This would be 
prohibitively expensive, since & is assumed to be large. However, H, like E and V2, 
has a relatively sparse and highly regular structure which is destroyed by ordinary 
matrix inversion, so we assume that we have instead some procedure (which we call 
a solve) for solving Eq. (3.9). The multiplications by V and Wt are also carried out 
by procedures more economical than matrix multiplication. 

By writing 

H-1 -H-l VC-’ W+H-‘=H-‘(I- VC-’ W+H-‘) (3.14a) 

= (Z-H-’ VC-’ W+) HP’, (3.14b) 

we see that only two solves are actually required per time step. In fact the JI/^ by 
n matrix HP1 I/C-’ may be calculated and stored in the preprocessing stage, 
thereby reducing the number of solves in (3.14b) to only one. Economical in time, 
but costly in storage, this last reduction is possible only if M is sufficiently small; in 
practice, if the domain is unidirectional. H-’ VC-’ contains the Green functions, 
i.e., the set of homogeneous solutions for all possible values of (b, -a). (Since 
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neither the values of 4 nor of t, are required, the effective H-l VC-’ is actually 
smaller: of size dJG[ by +z.) 

A different shortcut is possible when the Green’s functions are not stored and Eq. 
(3.14a) is used. Note that Wt does not use all of the information in II: specifically 
u can be replaced by the normal velocity in the term V, . u - 4. This means that to 
evaluate V, u - 4, we need not calculate the velocity components which are 
tangent to all boundaries. In most cases these velocity components are also not 
used in the term QEu (but not always, as we shall see in Section 5). We define U 
to be that part of u that is relevant to Wt; i.e., U is the projection of u that is 
orthogonal to the kernels both of BV,. and of QE. In calculating particular 
velocities in (3.14a), we need only find ii and not the full u. 

Since some of the operations and storage required in the algorithm are O(+Z~), it 
is highly advantageous to reduce PZ as much as possible. This is one of the reasons 
for having introduced the projection operator Q and the subspace ZF* before 
replacing (3.8e) by (3.9e); we will work further on reducing PZ by symmetry in 
Section 4. 

4. CARTESIAN APPLICATIONS 

4.1. The Rectangle Revisited 

We return to our rectangular example of Section 2 in order to determine the 
composition of the space Y* for a concrete case. Recall that LF - FY is the set of 
all z E F such that QloV. t = 0. We will find the elements of F which have this 
property by listing and examining its basis vectors. Define basis vectors g” by 
g’“(j’, k’) = S(j,j’) 6(k, k’). We then have for the vector space 9 the usual basis set 
{gjk: (LWG), and for 5 the basis set { gjk: (j, k) E T}. T = T, v T, v T,,., where 
the definitions of TX, T,, and T, are recalled in Table II. 

We first consider the case d = 2 (the case d = 1 has only the trivial solution), so 
that we have for F the basis set (e,gjk, eYgik: (j, k) E T}. In Cartesian coordinates, 

v. T = a,r, + d,r,.. 

TABLE II 

Tau Sets for the Rectangle 

T, 

K-2 
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The operation 8, on the Chebyshev polynomial yj(x) generates lower j indices, 

a,q(X) =j 1 $(x)(2 - xi’, O)), 
/‘G/p 1 
/+/‘odd 

but leaves the k index unchanged. We now examine the effect of a, on basis 
elements of 5: 

(1) d,gjK has components of gJ’” for all j’ =j- l,j- 3, etc. Because the k 
index has not been changed from its original value of K, these are all in the 
“high-frequency” set Y-, so Q,,V .e,gJK = 0, and e,gjK E 5 - r.. 

(2) Similarly, eXgJ’KP1’E9-9*. 
(3) d,gJk has components ofgJk forj=J-1, J-3, etc. So, unless k>K-1, 

components in the “low-frequency” set 9 - Y are generated, Q,,V .e,gJk # 0, and 
e ygJk E Jr*. 

(4) Similarly, e,g ‘J-“k~YI unless k>K- 1. 

We can combine (l)-(4) into the statements: 
(5) e,gjkET-F* iff (j, k)E T- T,, iff gjkEY-Yr 
(6) e.,gikeFI iff (j, k)E T,, i.e., iff gjkEFY. 

By reversing the roles of x and y, j and k, we see that 
(7) e,.gike&, i.e., iff (j, k)E T,., i.e., iff g’“ET”-,. 

We combine (6) and (7) to get the final result, 

(8) F*=,Yr@9j;., which is ofdimension 2(J+K-2). 

For d= 3, the set s contains additional components e,t;(j, k), or in the physical 
space representation, eZfz(x, JI). However, the additional term aZrZ in the divergence 
is always zero, since all functions are independent of z. Therefore, e,r, c.7 - & 
for any rZ, and so 9II = 9YX@ Y”-,OO, meaning that t E & has components 
r\- E TX, r.v E TV, and rZ = 0. YI is still of dimension 1 T, u T,. 1 = 2(5+ K - 2). (This 
can be compared with r = Y @ r 0 Y-, which is of dimension d 1 TI = 6(5 + K).) 
The influence matrix, including boundary values b as well as tau values t,, is 
independent of d and is of dimension 

n=ITI+[F..l=2(J+K)+2(J+K-2)=4(J+K-1). 

The Green’s function matrix is probably too large to be stored in this case. Can 
any advantage be gained from calculating only those components of the particular 
velocity ii needed by W +7 It can be verified that . 
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That is, there is no need to calculate the z-component of the particular solution. 
Thus ii differs from u only if d= 3. We defer a more detailed discussion of U to 
Section 4.2. 

4.2. The Channel-Periodicity 

We need to extend these considerations to periodic domains. In the case con- 
sidered by Kleiser and Schumann [ 11, the domain is tri-directional, with periodic 
x- and y-directions, and a nonperiodic z-direction. Functions are represented by 

L/2 MI2 
I = -L,2 m -“,/, k$,f (e, 4 k) e”” elm-” gke,(z) 

Q<x<2n 

fky, Z)’ c 1 I o<y<2n: 
-l<z< +l 

In order for j‘to be real, f( -d, -m, k) must be the complex conjugate off(e, m, k). 
The periodicity of the domain is inherent in these basis functions, and thus no 
boundary conditions are required on u or 4 in either the x- or the y- directions of 
the domain. 

The operators V2, V2, V, V ., E, and E, which contain the operators a, and a,, act 
differently on modes with different values of e and m, but without coupling them. 
If we define the boundary operator B so that it calculates boundary values for the 
pressure and for the divergence as Fourier coefficients, then it, too, does not couple 
the different (C, m) modes. Then the matrices H, V, Wt, and C are decoupled, since 
they are comprised of decoupled operators. The net result is that, although the 
velocity remains tri-directional (d = 3), the domain can be considered to be 
effectively uni-directional: the z direction is the only direction in which boundary 
conditions are imposed and for which tau coeflicients exist. We may apply all of the 
nomenclature and operations of the preceding sections to each of the modes 
independently. We define the uni-directional grid G’” = {k: 0 < k < K} and tau sets 
Tern = {K- 1, K}. We then define operators and functions particular to each (e, m) 
mode. For example, EC” acts on fTrn by 

(Ef)(f, m, k) = 1 c.1 E(d, m, k; f’, m’, k’)f(e’, m’, k’) 
/’ m’ k’ 

= 5: z z Et&, m, k &, m, k’) s(e, tf’) 6(m, m’)f(f, m’, k’) 

= c E(L, m, k; f, m, k’) f (t, m, k’) 
k’ 

= 1 E’“(k, k’)f’“(k’) 
k’ 

= (EP”f’“)(k). 
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(Note that the superscripts here do not signify basis vectors as they did in 
Section 4.1.) 

To determine the set YL”‘, we need to consider the action of QlOV. on 
zEY= @:=, J . G--*~ The operations 8, on u, and o?,, on u-, leave the k index 
unchanged, but by operating with 8, on uZ we can lower the k-index and exit the 
tau set. We therefore have 

The dimensionality of Ctrn is thus 

n fm=Irm( + IF-‘*“/ =212+ =4. 

Storing the Green’s function matrices (H’“) ml V’” C’” is still possible for this case, 
since each requires dlTi”J IGfrnl = 3 x 4 x (K+ 1) words, giving a total storage 
count of 12x (L+ l)(M+ l)(K+ 1). 

If (as in Kleiser and Schumann [ 11) the Green’s function matrices are not stored, 
it becomes of interest to calculate only reduced particular solutions ii. Recall that 
ii is the projection of u which is used by Wt (it is orthogonal to the kernels of BV; 
and of Q,E). Clearly, the projection of u used by the operator BV; is the velocity 
normal to the boundaries, i.e., the z-velocity: II, =e,u_. On the other hand, the 
operator Q*E cannot use any component other than the z-velocity. This is because 
(4.1) shows that Q, projects onto the (high-frequency) z-component of the velocity, 
and E does not mix z- with x- or y-velocities: 

Q,Eu = ez(e_ . Qhi Eu) 

Therefore ii = eZuZ is the only component of the particular velocity that need be 
calculated. 

4.3. Reflection Symmetry 

The problem can be further reduced, since the domain is reflection-symmetric in 
z. This symmetry is manifested in the spectral representation by the fact that odd 
and even Chebyshev polynomials are decoupled. Operators which are (K+ 1) by 
(K+ 1) matrices, such as E’“, can be replaced by two matrices E”mP, for symmetric 
(p = s) and antisymmetric (p = a) functions, each (K + 1)/2 by (K+ 1)/2. (Here 
and throughout the rest of the article, the order of the highest Chebyshev 
polynomial-here K-will be odd, so that the total number of polynomials 
or gridpoints-here K+ l-is even. This simplifies the discussion since the number 
of even and odd polynomials is the same.) Presumably the inversion procedures 
chosen for H, i.e., for E and V’, already take advantage of reflection symmetry. This 
is accomplished merely by decoupling the even polynomials from the odd, and so 
requires little additional throught. Here we consider how reflection-symmetry is 
manifested in the full three-directional problem. 
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Solution 

TABLE III 

Parity and Symmetry of Vectors and Operators 

V W+ p=S p=Cl 

4 b 

u, t -0 

w;u-4) 

QJEu +Vd) 

Even Odd 

e,. Even Odd 

I 

e, Even Odd 
ez Odd Even 

The intricacy comes from the fact that d,Y and a,, are parity preserving operators, 
but that a2 reverses parity, changing even Chebyshev polynomials to odd and vice 
versa. The requirement that V. u = 0 means that the even (odd) Chebyshev polyno- 
mials in u,~ and uv are coupled to the odd (even) Chebyshev polynomials in u;, as 
shown in Table III. The role of V4 in the equations tells us that 4 has the same 
parity as u,, uY (opposite to that of u=). The boundary conditions b behave like 4; 
t and o behave like u. The same conclusions can be drawn by considering that the 
z reflection operator, defined by, 

commutes with all the operators in the problem. Therefore the full space of solutions 
(u, 4) can be decomposed into symmetric and antisymmetric invariant subspaces. 

Decoupled influence matrices CPmp require that the procedures represented by V 
and Wt take parity into account as shown by Table III. In addition, to classify 
boundary conditions as symmetric or antisymmetric, the boundary operator B must 
not couple odd and even Chebyshev polynomials. That is, instead of the natural 
boundary conditions, 

fj’“(z= +l)=p(m+ 

/$‘“(z= -1)=/p-, 

we should specify that 

,J$~~(~= +l)+dem(Z= -l)=bCm.P=’ (4.la) 

f”(z= +I)-q$““(z= -l)=bem~J’=U, (4.lb) 

This requirement is analogous to-but less obvious than-the requirement in the 
periodic case that B calculate Fourier coefficients. 

Note that classification of a tau set as symmetric or antisymmetric will depend 
on the variable (u,, u,, u=, or 4) with which it is associated. To avoid ambiguity, 
we must unfortunately introduce yet another superscript on the tau sets T and Y 
in order to indicate the variable. For instance, Tr”” is the tau set along the z 
boundary for 4ems (th e subscript refers to a part of the domain, and the first super- 
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script to a component or function). But in the interest of legibility, all superscripts 
(including those referring to symmetry) will be implied rather than written out 
wherever possible. We introduce two conventions: 

(1) T without superscripts will refer to the tau sets for 4 (here $‘“‘p; other 
symmetry superscripts will be implied later). For example, T= T@‘mp and 
T. E T!‘“P _ _. 

(2) K without superscripts will denote Y:-the space of functions defined on 
T:, the z-directional tau set of uZ. The same convention applies to x- and y-, or 
r- and O-directions, and again the symmetry superscripts such as (e, m, p) are 
implied. 

The rectangle is also reflection-symmetric, in both x and y. Just as the physical 
grid 6 can be divided into four identical quarters, the spectral grid G can be 
partitioned into four pieces: (s, S) functions symmetric both in x and in y, (s, a) 
functions symmetric in x but antisymmetric in y, and (a, S) and (a, a) functions 
defined analogously. The original problem of size IG/ = (J+ l)(K+ 1) is decom- 
posed into four entirely decoupled problems, each defined on a domain of size 
(J + 1 )(K+ 1)/4. Table IV is similar to Table III: for example, the set (p = s, p’ = s) 
contains functions U, which are odd polynomials in x (j odd) and even polynomials 
in y (k even). 

The dimensionality of the influence matrices CPP’ is 

a= ITI + l&l = ITbpp’l + IS$p’I =2 v+~)+v+~-2)=J+K-1 
2 

Periodicity is a manifestation of the absence of boundaries-all locations are 
equivalent, indistinguishable by their distance from a boundary-whereas reflection 
symmetry occurs in the presence of boundaries whose geometry is such as to make 
certain set of points equivalent. Tables III and IV, and especially boundary condi- 
tions (4.1) show that reflection symmetry is more elusive than periodicity. As a 
result, none of the articles we have cited that implemented the influence matrix 
method used reflection symmetry to reduce the size H of their influence matrices. 
Recall that reduction of n is particularly desirable because C is multiplied and 

TABLE IV 

Parity and Symmetry for the Rectangle 

j k 

p=S 

Even 
Odd 
Even 

p=a 

Odd 
Even 
Odd 

p’=s 

Even 
Even 
Odd 

p’ = a 

Odd 
Odd 
Even 
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stored as a full matrix, taking time and space proportional to +Y~. The savings due 
to symmetry are not significant in channel flow simulations (one nonperiodic direc- 
tion, e.g., Kleiser and Schumann [ 11): there, multiplication by C takes a very small 
portion of the calculation time whether or not +Z is reduced from 4 to 2. However, 
sacrificing symmetry becomes more wasteful as we increase the number of non- 
periodic directions (because multiplication by and storage of C represents a larger 
proportion of the total calculation), or symmetric directions (because PZ can be 
reduced by a larger factor). Rectangular symmetry leads to a 16-fold reduction in 
ti2. For Le QuCre and Alziary de Roquefort [S], whose finest grids used J= K = 64, 
the reduction would be substantial, reducing PZ from ~512 to % 128. (They have 
PZ z 256, but this is because they did not include the tau correction.) 

5. CYLINDRICAL COORDINATES 

The cylindrical coordinates for which we developed this formalism involve 
aspects from both of the cases discussed in Section 4. The velocity is tri-directional. 
Scalar functions, as well as uZ, are represented by 

Since f(j, -m, k) is the complex conjugate of f(j, m, k), only m >, 0 are required. 
For the functions U, and uo, the representation is the same except that j + m odd is 
required. Corresponding to these parity restrictions is the fact that r/R ranges over 
the half interval [0, l] rather than [ - 1, 11. 

The r direction has peculiar properties: sometimes it has one boundary point at 
r = R, and sometimes a second “boundary point” at the axis r = 0. Because the 8 
direction is periodic, the different m-modes are decoupled, as in Section 4.2. The 
z direction is effectively Cartesian, with two boundary points at z = f 1, and the 
symmetric and antisymmetric modes are decoupled. Thus the domain is made effec- 
tively bi-directional, and we have operators Emp, Cmp, and so on. Determination of 
the sets TmP and 9zp is complicated but can be done systematically, by accounting 
carefully for each boundary condition imposed. This is what we will do in this 
section. 

5.1. Axisymmetric Case 

The axisymmetric case m = 0 is relatively simple and analogous to our rectangle 
example. One boundary condition is applied in the r direction at r = R, and the tau 
set for dop is 

T= T,u T;v T,,, 
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where 

T,=((j,m,k):j=2J,m=O,Odk~K-2,k+peven}isofsize(K-1)/2, 

T,={(j,m,k):Objd2J-2,jeven,m=O,k=K-1 orK,k+peven]isofsizeJ, 

and 

T,Z={(j,m,k):j=2J,m=0,k=K-1 orK,k+peven}isofsizel. 

Since ~3, multiplies axisymmetric functions by zero, the set F.* is 

where F = SF is the set of vectors defined on , 

T~={(j,m,k):j=25+1,m=0,0~k~K-2,k+peven}, ofsize (K-1)/2 

and z = S-Tp is the set of vectors defined on 

T-_“P={(j,m,k):O<j<25-2,jeven, m=O,k=K-1 or K, k+podd}, ofsize J 

(where k +p is odd because of parity reversal of T, by reflection in z). Adding the 
sizes of all these sets, we see that the dimensionality of the influence matrix for each 
z-parity is 

n=K+2J. 

5.2. Nonaxisymmetric Case 

Before embarking on this section, we should point out that the complications to 
be encountered are not due to the influence matrix method, but to the cylindrical 
coordinate system. These difficulties-axis conditions, decoupling of the Laplacian 
-reflect those which arise in developing an algorithm for inverting the elliptic 
operators E and V2. This section will show that the inversion algorithm and the 
influence matrix must be formulated together. 

It might seem that, with no boundary condition in 0 (and thus no set T,), 9.* 
should contain no element of the form e,z,. But in fact, since 

the operation VB = (l/r) 13~ lowers the order of r-polynomials. Thus if T@ E% and 
m 2 1, then eeze E &. In order to say more about the nonaxisymmetric case we 
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must recall the form of the Laplacian (and the operator E =1-&V*) in cylindrical 
coordinates. It is not diagonal in that e, . V2 and e, . V* both depend on U, and ue: 

+ eZV2u,. 

(Note that U, and u0 are uncoupled in the axisymmetric case.) The Laplacian can 
be diagonalized (Patera and Orszag [9]) by the transformation 

U+ = u, + iu, 

up = u, - iu,, 

so that 

V*u=e + ((vi-f)+$+, 

+e- ((Vi-f)-:a,)u 

+ eZ V* uz. 

The independent variables are not affected by this transformation: ti, and li- are 
still functions of r and 8. 

The functions u, and u- are also the appropriate ones on which to impose 
regularity conditions at the axis, necessitated by the coordinate singularity at 
r = 0. To explain what is meant by regularity conditions, we introduce another 
(equivalent) basis set, consisting of monomials in r and z instead of Chebyshev 
polynomials, i.e., rieime k z instead of ‘%;(r/R) e”e’lFk(z). Coefficients in the monomial 
basis are denoted by zi(j, m, k). 

U I; 1 =j<kir I; 1 (j,m,k)rjei”‘zk (5.1) 

with the same parity rules as before. (The notation of (5.1) allows us to compress 
expansions for each of u+ , u- , and uZ into one formula.) 

581/80/2-12 
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Consider the form of the vector Laplacian in this basis: 

1. (5.2) 

Equation (5.2) shows that the operator V2 can produce negative powers of r, 
whereas negative powers of z are all preceded by a coefficient of zero. The represen- 
tation (5.1) cannot, of course, include singular functions; however, it can include 
functions whose derivatives have singularities which are projected out by the 
numerical differentiation operators. In Cartesian coordinates, any function of the 
form $ymzk (j, m, k 2 0) is analytic, i.e., infinitely differentiable, and can serve as a 
scalar component of a vector field. But in cylindrical coordinates, a velocity field u, 
in order to be analytic, must have components with series expansions of the forms 

ti+(r, 0, z) = 1 l?+(j, m, k) r’ eim*zk 
jam+1 
/+modd 

ti,(r, 8, z) = 1 iiZ( j, m, k) r’ eimezk 
/>??I 

j+WlW.3 

L(r, 8, z) = 1 L(j, m, k) ri eimOzk 
/>lrn-II 
/+modd 

or, generally, 

+ 
ti 

1 1 

+ 
z (r,O,z)= 1’ ii 

1 I 
f (j, m, k) ri eimOzk. (5.3) 

- m+l 
i- 

1 I ,m” I, 
even 

The prime means that, in addition to the parity rule, the sum is to be restricted to 

mfl 
j2 

1 I irnrnll ’ 
(5.4) 

where the three possibilities in brackets refer to h: : . Following Orszag [39] we I I - 
require only the weaker and more easily implemented condition that V2u (the 
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TABLE V 

Axis Conditions Imposed On u 

111 0 1 2 3 4 5 

+ .i>l i22 i23 j>2 j33 j22 

z .i>O i>l j22 .i>3 j22 j>3 

j>l j>O jB1 i22 j23 j22 

highest derivative of u appearing in the equations) be nonsingular, i.e., contain no 
negative powers of r. We make the sum in (5.3) less restrictive, replacing (5.4) by 

(5.5) 

Inequality (5.5), shown in Table V, can be considered to specify boundary condi- 
tions at the axis. In the table, a line delimits the functions and m-values which 
require a condition at the axis. We see that for m = 0 there are no axis conditions, 
for m = 1 there is a condition on u + only, for m = 2 there are conditions on both 
u, and u,, and for m 2 3 there are axis conditions on all three, U, , u,, and u _ . 
Scalar functions such as 4 are treated like u;. 

For computation, the axis conditions are expressed as conditions on the 
Chebyshev coefficients of 4 and u 1: 1 for j = 0 or 1, using the fact that the coefficient - 
of r” in %Yzj(r) is (- l)‘, and the coefficient of r1 in vzj+ 1(r) is j( - 1)‘. For the scalar 
function 4, we can define the axis operator A and express the axis condition as: 

for m even 

= 0. 

for m odd 

We can express the axis conditions on u in a similar way. We use the tau method 
to impose an axis condition by replacing the equation corresponding to the 
j= 25- 2 or 25- 1 Chebyshev component (depending on whether j is required to 
be even or odd), since we have already dropped the 2J or 2J+ 1 equation in favor 
of the boundary condition at r = R. We define tau sets Tr* = T,?mP for U, and U- , 
enlarged by the inclusion of the axis conditions: 

T,?~((j,m,k):j>2Jifm+_1<2,j>25-2ifmf132, 

j-km odd, k<K-2, k+p even}. 
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For m 2 1, the tau terms r + and z _ will belong to S,+ and Y-, , leading to 

The definition implied by (5.6) for the projection operator Q, onto & shows 
that Q,E, and thus W +, acts on UN components of u (although ug is tangent to all 
boundaries). Therefore the particular solution requires the full velocity u. 

How do the axis conditions affect the boundary conditions on #? Replacing 
Eq. (3.8d), we now have the two equations, 

BV.u=O (5.7a) 

Aq5=0. (5.7b) 

Equation (5.7b) does not involve any coupling of 4 or of different u components; 
it can be imposed as it stands. Equation (5.7a) is replaced, as before, by 

Bcj=b. 

There is one component of b for each of the boundary conditions, but not the axis 
conditions. We say that b is jB1-, rather than 1 T)-, dimensional. The total size and 
composition of the influence matrices for all values of m is given in Table VI. 

Use of (5.5) rather than (5.4) leads to a subtle difficulty, which can be traced 
back to the derivation of Eqs. (3.5) from Eqs. (3.1). When the numerical operator 
E projects out singularities, Eqs. (3.3) are no longer sufficient to insure that 
V.u=O; we must also impose 

(V.ii)(j=l,m,k)=(3+m)fi+(2,m,k)+(3-m)L(2,m,k) 

=o for m >, 3 and odd. (5.8) 

TABLE VI 

Size of Influence Matrices for Cylindrical Coordinates 

m PI Total 

0 
K-l 

J 
K-l 

2 
2+J+1 K+2J 

m 19: I II; I IZI IBI Total 

K-l 
172 K-l 

K-l 
2 

J 2+J+l 2K+2J-1 

J 
K-l 

33 K-l J-l 2+J+ 1 5 
K-l 
-+2J+ 

2 
1 
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Another point of view is that all of the terms of Eq. (3.la) must be sufliciently 
differentiable to allow their divergence to be taken. When 4 satisfies the conditions 
of Table V, Vtj poses no problem. But Eu, s, and r may have singular divergences. 
For example, the monomial representation 

V.s=C C(U+ l)S,(j, m, k) + imS,( j, m, k)) rip ’ eim6 zk 

+ k s”,( j, m, k) ri eimezk- ‘1 

shows that V. (s + z) may have an r-’ singularity unless 

(1+m)(~++~+)(j=0,m,k)+(1-m)(~~+~~)~=O,m,k)=O for m odd. 

(5.9) 

(Although z contains only high order Chebyshev polynomials, these contain terms 
in r’.) 

To enforce (5.9), we change the j=O component of (s+z)+ (for m odd, m B 3). 
This alters the j = 0 component of (S + ?) + while preserving all other components, 
and leads to no additional coupling since V. (s+ z) is not affected. After solving 
(3.8), we find that (5.8) is satisfied. Lest changing the j= 0 component seem like a 
drastic alteration of the differential equation, note that both (5.8) and (5.9) are 
themselves axis conditions. Thus if s and u were analytic vector fields, the 
conditions would be satisfied automatically. In fact, in the time-dependent iterations 
of Eqs. (l.l), thej=O terms in s”, may be considered to arise from the insufficient 
constraints of analyticity on previous iterations of u. 

6. PROPERTIES OF THE INFLUENCE MATRIX 

6.1. Null Vectors and Znoertibility 

The influence matrix C, as defined in Sections 3 through 5, is singular. We recall 
from Section 3.3 that C is singular if and only if the full matrix (H+ VWt) is 
singular [34]. The singularity of (H+ VWt) can be anticipated from the structure 
of the original problem. (Haldenwang [6] gives a thorough discussion of this.) For 
example, since 4 appears only as V#, it is determined only up to a constant; this 
shows the existence of a nontrivial null vector for (H+ VWt). Another source of 
noninvertibility is the operator BV, .u appearing in the matrix (H+ VWt) (see 
Eq. (3.8d)). As defined in Section 3.2, V, . is the derivative normal to the boundary 
(of the velocity normal to the boundary). At a corner, there is no direction normal 
to the boundary, a criterion which coincides with the definition introduced in 
Section 2.2. Therefore BV, . u is always zero at a corner: this shows that the range 
of (H+ VWt) is deficient. The problem (3.8) remains soluble because the 
right-hand side of Eq. (3.8d) is also always zero. In the cylindrical geometry, the 
“corners” lie on the two circles Tr;, = {(r, 6, z): r = R, 0 < 8 G 274 z = + 1). 

We shall analyze a few of the null vectors of C in order to provide insight into 
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the Poisson equation and boundary conditions, as well as to demonstrate the 
concepts and notation we have introduced. For m = 0 and p = S, there are two null 
vectors, both with (r = 0. Recalling that p =s means symmetric in z and that 
boundary values are given on a mixed physical-spectral grid, the first null vector is 

b(r = R, n) = 6(k, 0) 

b(j, z = f 1) = S(j, O), 

which signifies the pressure boundary conditions 

cj(r = R, z) =%&b(z) = 1 

&r,z= 1)+&z= -l)=‘%b(r/R)= 1 

&r,z=l)-&,z= -l)=O. 

The solution to the homogeneous problem with these boundary conditions is the 
zero velocity, constant pressure solution 

fib = 0 

&(r, z) = %$(r/R) %&o(z) = 1. 

This solution has, of course, neither divergence nor tau error, and therefore 
definition (3.12) shows that C acting on this (b, -a) is zero. A cure for this 
singularity is to specify the arbitrary value of &j = 0, k = 0). 

The second null vector has the pressure boundary conditions 

$(r = R, z) = 0 

&r,z=l)+&,z= -l)=G&(r/R) 

&r,z= I)-&r,z= -l)=O. 

These boundary conditions generate the solution 

Qh = 0 

6”(r, z) = ‘G.AdR) gK- 1(z). 

Although here Vdh is non-zero, it contains only high-frequency modes, SO that 
Q10 Vd” = 0, allowing uh to be zero. 

For m = 0, there are also two antisymmetric (p = a) null vectors, 

I( r = R, z) = 0 

&r, z = 1) + &, z = -1) = 0 

&r, z = 1) - $( r, z = - 1) = G&( r/R) 

a=0 
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and 

c&r = R, z) = K%K~2(z) 

&r,z= 1)+&z= -l)=O 

$(r, z= 1)--&r, Z= -1)=2$,(r/R) 

a(j, k) = e= 4K(K- 2) S(j, 0) 6(/c, K- 1). 

The noninvertibility of C does not pose a fundamental problem, since, as stated 
in Section 3.3, we need only find one solution to Eq. (3.11a), which is possible 
whenever the original problem (3.11~) has a solution. However, we still need 
a method of solving (3.11a), which cannot be accomplished by straightforward 
multiplication of both sides of (3.11a) by C-‘. 

In their implementations of the influence matrix method for solving scalar elliptic 
equations in an irregular region, Proskurowski, Widlund, and others [33, 34, 40, 
411 used the iterative conjugate gradient method to solve their version of 
Eq. (3.11a). In addition to being feasible when the influence matrix is large and 
direct solution impossible, this procedure also yields a solution when the matrix is 
singular. 

Our implementation of the Kleiser-Schumann method for enforcing incom- 
pressibility generates influence matrices whose size ti is small enough that direct 
inversion is the most economical method of solving (3.1 la). This still leaves 
unresolved the problem of the noninvertibility of C. This difficulty has previously 
been circumvented on a case-by-case basis, by identifying the null vectors and then 
modifying the fluid-dynamical equations or boundary conditions. For example, 
Le QuCre and Alziary de Roquefort [S] believed that the “corner deficiency” of the 
range of (H-t+ VWt) implied the mathematical necessity of additional constraints on 
the problem. They derived such conditions from the Poisson equation for 4, 
effectively evaluating the unprojected version of Eq. (3.3a) at the corners instead of 
Eq. (3.3b). This procedure is unnecessary, although in no way incorrect. In our 
nonaxisymmetric cylindrical case, analysis of the null vectors for all m grows 
increasingly complex, if not impossible, as axis conditions come into play. Some 
null vectors still have an obvious meaning but others are complicated combinations 
of all of the various taus and boundary values. 

Armed with the formulation (3.11ak(3.1 lc), we know that any solution to 
(3.11a) will suffice. The procedure we have chosen is to form a closely related, but 
invertible, matrix C’ in the following way: because C is singular, a certain number 
of its eigenvalues are zero. We first diagonalize C (its eigenvectors and eigenvalues 
are complex) by a similarity transformation, then replace the zero eigenvalues by 
any nonzero value (we use the value one), and transform back. The resulting inver- 
tible matrix C’ acts like C except on its null space, on which it acts like the identity. 
We have verified that use of (C’))’ in Eq. (3.13) yields the desired result: a solution 
to (3.8). Understanding the relationship between our regularization procedure and 
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the filtering of spurious pressure modes discussed in Bernardi, Maday, and Metivet 
[42] would be of interest. 

6.2. Eigenvalues and Condition Number 

Since the numerical results we will discuss depend upon the details of our 
program and parameters, we will briefly describe them here. We have implemented 
the influence matrix method as part of a computer program for solving the time- 
dependent Boussinesq equations (the Navier-Stokes equations supplemented by an 
equation for the temperature). We have run the program on a Cray X-MP/24 to 
study departures from axisymmetry in convection in a cylindrical container of large 
aspect ratio R/2. The geometry has influenced our choice of algorithm: J, the 
number of radial points or modes, is assumed large, while M and K, the number 
of modes in 8 and z, are assumed small. All parts of the program have been written 
to scale linearly with J, the number of radial points--except the unavoidable multi- 
plication by (C’)-‘-and to vectorize over J wherever possible. We have used 
resolutions of up to J+ 1 = 200, 2M + 2 = 20, and K + 1 = 48, and we shall shortly 
list timings obtained. In the Boussinesq equations, the Prandtl number Pr is 
substituted for v, while in the Navier-Stokes equations, v should be considered to 
represent l/Re. We have investigated various Prandtl numbers ranging from 1 to 
500, and generally used At/2 z 10p3. 

We return to the implementation of the regularization procedure of Section 6.1 
for forming C’. Finite precision will cause some eigenvalues which should be zero 
(for analytic reasons like those in Section 6.1) to actually have small nonzero 
values. When C’ is generated automatically, we must therefore apply a threshold for 
the absolute value of the eigenvalues, below which an eigenvalue is considered to 
be zero and is replaced by an arbitrary finite value. If the threshold is too large, 
eigenvectors which are necessary to the proper performance of the method are 
eliminated, and if the threshold is too small, small eigenvalues are retained which 
greatly magnify error; in either case, the divergence will be nonzero and large. By 
numberical experimentation we have found that, in our case, an appropriate 
threshold is 11.1 > 10-7. 

There is no truncation error in this method: IV. ul is not proportional to At, l/J, 
or l/K. The only error is due to round-off: the finite precision of numerical 
matrix inversion and multiplication causes the magnitude of the divergence to be 
proportional to the magnitude of the right-hand side Js( (not to IV.s(). On the 
Cray X-MP/24, with 14 decimal digits of accuracy, we have found that 

IV. UI - lo-lo ISI 

If the tau correction is not included (see Section 3.2), *Z will be reduced by about 
a factor of two. However, for an s with an arbitrary functional form (as, for exam- 
ple, in debugging a program) IV .uI may then be very large. The authors who have 
made this approximation have implicitly relied on the fact that s is not arbitrary. 
The error made depends on l&,V. ~1, as stated by Haldenwang [6], and should 
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decrease as the resolution increases. Kleiser and Schumann [ 11 calculate the error 
in the (1, m) mode to be proportional to maxkZKp r, K (k/s) u(e, m, k) in their 
one-directional geometry. 

The relevant measure for accuracy of matrix inversion is the condition number, 
the ratio of the largest eigenvalue 1 A[,,, to the smallest lAlmin (here the smallest 
eigenvalue retained). The eigenvalues depend on m and p (Fourier mode in 8 and 
symmetry in z), on J and K (resolution in r and z), and on E = vAt/2. We find that 
VI”,, depends mainly on E, with 0.6/s 5 13% I max 2 l/e. 1 ;*I min is nearly independent of 
E, but varies a great deal with m and p, ranging from 10e4 to 0.6, with the lowest 
values for p = a. The condition number then varies between 104/& and l/s, so that 
in our case, the influence matrix can be reliably inverted (i.e., without suffering 
severe loss of accuracy) for E > 10-4. Using v 2 1 and At/2 z 10 m3, the accuracy is 
quite sufficient. Further analysis shows that the eigenvalues of C fall into two sets. 
The first set is associated with the boundary values of 4 and the replacement of 
Eq. (3.8d) by (3.9d), and these eigenvalues fall between 1 and l/s. The second set 
is associated with the tau correction, i.e., with I& 1 and Eqs. (3.8et(3.9e). These 
eigenvalues do not depend on E and range from 1 to 10-4. (The condition number 
of C is improved when the tau correction is not included). The two classes merge 
as & increases. 

6.3. Timing 

We now discuss the time required to execute the program on the Cray X-MP/24. 
Table VII shows the time taken by various steps in the program for different 
resolutions. Except for the last column, all times are given in units of 6.5 x lo-* s, 
which is the time required for the linear step for the smallest resolution (first line) 
in the table. 

The resolution for each case is given in terms of J+ 1, 2M+ 2, and K + 1, the 
number of gridpoints or modes in each direction (their product is the total number 
of gridpoints or modes). The next column gives the maximum size n of the influence 
matrices for the resolution. Recall from Section 5 that the problem decouples: it is 
most efficient to treat C (and (C’) - ’ ) not as a single matrix, but as a collection of 
2M+ 2 decoupled influence matrices Cmp. Their sizes ti are functions of J and K 
which depend on m according to Table VI, with the maximum given by 
+Z = 5( (K - 1)/2) + 2J + 1. The next column gives the time required for computing C 
and (C’) - ‘. These computations are extremely time-consuming, taking as long as 
130 s for the largest resolution shown. However, since this is a preprocessing step, 
this time becomes negligible as a percentage of the total in a typical run with many 
thousands of timesteps; (C’) ~ ’ can also be stored for use in later runs with the 
same parameters. The time for computing C and (C’) - ’ should scale asymptotically 
like JMKPz and M+z3, respectively, but the dependence of the timings on the 
resolution is less than that predicted by the operation count, due to the economy 
of scale of vectorization. 

The next three columns give the time required for multiplications by (C’) ~ ’ and 
H- ’ and for the entire linear step. Multiplication by (C’)) ’ is actually very fast, 
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and always requires less than 9% of the total linear step. While the time obeys the 
predicted quadratic dependence on fl (and linear dependence on 2M + 2), it has a 
small prefactor (for which the optimized Cray assembly language routine for matrix 
multiplication is partly responsible). We see that the linear step therefore consists 
primarily of two solves, each of which requires approximately 40% of the time of 
the total linear step; operating with V and multiplying by Wt are responsible for 
most of the remainder. The first solve is, of course, a necessary step for any method, 
and the second is necessitated by the influence matrix method when the Green’s 
functions cannot be stored. 

The next column gives the time required to calculate the nonlinear terms, i.e., 
the right-hand side s of Eq. (3.9a). (These computations include Fourier and 
Chebyshev transforms and have not been discussed in this article.) The nonlinear 
portion of the iteration requires between 1.2 and 1.8 of the time required for the 
linear step. The additional calculations necessitated by the influence matrix method 
(i.e., one multiplication by each of (C’)) ‘, Wt, and H- ‘), while taking 5862% of 
the linear step time, actually take only 22-26% of the total iteration time: while 
certainly not negligible, they do not dominate the calculation. We also see that, as 
expected, the time for both the linear and nonlinear steps scale approximately like 
the number of gridpoints or modes. Finally, the last column gives the linear step 
time in actual CPU seconds divided by the number of modes. The values, ranging 
from 5 x 10e6 to 9 x 10e6 s per mode, are typical for a program of this kind. 

7. CONCLUSION 

We have developed a formalism for describing the influence matrix method in a 
general (but regular) geometry. The Sherman-Morrison-Woodbury [28-321 
formula offers an elegant notation for generalizing the one-directional treatment of 
Kleiser and Schumann [l]. This formalism has permitted us to apply the method 
to cylindrical coordinates, complicated by boundaries in two directions and by the 
coordinate singularity at the axis. It also provides a framework for discussing ques- 
tions that remain open, such as the compatibility of different pressure boundary 
conditions and initial conditions [6,22], the necessity for the tau correction [ 1, 35, 
391, and the filtering of spurious pressure modes [6,42]. 

A very crucial question that remains is that of applicability to geometries with 
three nonperiodic dimensions. One promising approach is a hybrid method, using 
conjugate gradient or other iteration procedures [6, 7, 431. We hope that descrip- 
tions of other methods of enforcing boundary conditions and incompressibility can 
be facilitated by the concepts introduced in this article. 

Our timings using a realistic resolution confirm the feasibility of the influence 
matrix method for calculating tri-directional flows in a geometry with two non- 
periodic directions. The results pertaining to Rayleigh-Btnard convection which we 
have obtained with our program will be described in future publications. 
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H 

j, J 

k K 

f, L 
m, M 

n 

A’ 

P 

APPENDIX: GLOSSARY 

axis operator 
antisymmetric parity 
vector of imposed boundary values (in mixed physical-spectral space) 
extended vector 6 = (b, - u)+ of length n 
boundary operator for scalar or vector-valued functions 
jth Chebyshev polynomial 
influence, or capacitance, matrix 
“regularized” (invertible) influence matrix 
“directionality”: velocity field u values in 91d; d can equal 1, 2, or 3; used to avoid 
confusion with dimensionality of vectors or vector spaces; bold face used to 
denote multi-directional functions, operators, and vector spaces 
Kronecker d.elta function 
size of time step 
VA t/2 
scalar and vector elliptic operators I-sV* and I -sV* 
decoupled operator E acting on (e, m), (f, m,P), or (p,p’) modes 
unit vectors for Cartesian and cylindrical geometries 
unit vectors in cylindrical geometry which diagonalize the vector Laplacian: 
e, = $(e,- ieo), e_ = :(e,+ ieo) 
functions on spectral grid 
functions on physical grid 
spectral grid: set of Chebyshev coefftcients 
physical grid: grid of Chebyshev points on the domain 
vector space of real-valued functions on G, and on G 
cardinality (size) of G and of 6, also equal to the dimensionality of 9 and of @ 
vector space of vector-valued functions on G; 4e 5 Q :‘=, 9 
basis vector for 9 (rectangular case), defined by gJk(j’, k’) = 6( j, j’) 6(k, k’) 
superscript used for homogeneous solution 
soluble (decoupled) fluid-mechanical problem or matrix 

(1) time step, (2) &i 
index of x-mode in rectangular geometry, or of r mode in cylindrical geometry, 
and highest such mode 
index of y-mode in rectangular geometry, or of z-mode in channel or cylindrical 
geometry, and highest such mode 
periodic index of x-mode in channel geometry, and highest such mode 
periodic index of y-mode in channel geometry, or of O-mode in cylindrical 
geometry, and highest such mode 
dimensionality of influence matrix C 
dimensionality of full fluid-mechanical problem, e.g., of matrix H 
(1) pressure head, (2) superscript for particular solution, (3) parity (symmetric, 
s, or antisymmetric, a) 
pressure head multiplied by time interval: 4 =pAf 
decoupled (e, m), (e, m, P). or (p. p’) modes of 4 
projection operators onto boundary, or interior of physical grid 
projection operator onto low-frequency modes of spectral grid, for scalar or 
vector-valued functions 
projection operator onto high-frequency (tau) modes, for scalar or vector-valued 
functions 
projection operator onto those high-frequency modes whose divergence contains 
low-frequency modes 
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r, R 
s 

s 
u 
8 
T 

f 

F-, 9- 
I TI 

W’ 

x3 Y 
x, y 
(X,’ Yt) 

radial coordinate, and radius of cylindrical container 
right-hand side (explicit part) in semi-implicit scheme for solving Stokes or 
Navier-Stokes equations 
extended vector 9 = (s, 0, V .s, 0, 0)’ of length .Af 
symmetric parity 
vector of imposed tau values 
angular coordinate in cylindrical geometry 
tau set: in the tau method, set of indices of high-frequency components of 
differential equation discarded in favor of boundary conditions. Superscripts, if 
any, refer to functions (4, u,, etc.) and to symmetry (e, m, p, etc.). Subscripts 
refer to parts of the domain. 
boundary set, e.g., perimeter of rectangular grid: in the collocation method, 
differential equation evaluated on these points are discarded in favor of 
boundary conditions 
vector space of real-valued functions on T, and on f 
cardinality (size) of T (and of i), also equal to the dimensionality of 9 (and 
of&) 
vector space of vector-valued functions on T, 5 = @:‘=, 7 
orthogonal complement in 9 of null space of Q,,V 
dimensionality of F+ 
elements of I 3 and F 9 , 
components of t in Cartesian and cylindrical coordinates 
components of T in cylindrical geometry in e + , e_ basis 
element of &; T* 3 Q*r 
x-, y-, z-, and r- boundaries: points which are on the boundary by virtue of their 
X, y, z, or r coordinates only 
x-, y-, z-, and r- tau sets: points which are in the tau set by virtue of their X, y, 
z, or r coefhcients only 
vector spaces of real-valued functions on TX, T,, T,, and T,, respectively 
set of corners in physical grid, for rectangular and cylindrical geometry 
set of “corners” in spectral grid, for rectangular and cylindrical geometry: points 
bolh of whose coordinates are high-frequency (tau) components 
velocity field on spectral (Chebyshev polynomial) grid 
velocity components in Cartesian and cylindrical geometries 
velocity components in cylindrical geometry which diagonalize the vector 
Laplacian: u +=u,+iu,,u-=u,-iu, 
velocity field on physical grid 
velocity field on spectral (monomial) grid 
projection of velocity operated on by W’ 
extended vector u = (u, 4, r,)’ of length M 
operator relating physical and spectral representation 
viscosity 
matrix in Sherman-Morrison-Woodbury formula. In the influence matrix 
method, V inserts values of (b, -a) into a homogeneous right-hand-side. 
matrix in Sherman-Morrison-Woodbury formula. In the influence matrix 
method, Wt acts on (II, 4, r*). 
coordinates in Cartesian geometry 
half-length and half-width of rectangle 
points in physical grid in rectangular geometry 
coordinate in Cartesian or cylindrical geometry 
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