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A class of full or triangular matrices R is described for which there exist banded matrices 
13 such that the product BR is also banded. The banded matrices yield recursion relations for 
solving systems of linear equations. Examples of such matrices (arising from second derivative 
operators acting on orthogonal function expansions) are used to illustrate the main theorem 
and its application. Practical considerations in efficient implementation arc discussed. ‘T 1989 

Academic Press, Inc. 

1. INTRODUCTION 

The numerical solution of most scientific problems requires, at some stage, the 
solution of a system of linear equations. Typically, these equations arise from the 
discretization of differential operators in one or more dimension. In some cases, the 
operators are explicitly designed to have sparse or banded representations (e.g., 
one-dimensional finite difference derivative operators), and the algorithm for solution 
is straightforward. However, there are a number of matrix representations which 
are full (or nearly full) but which have special properties allowing rapid solution of 
their linear equation systems. These include Toeplitz and Vandermonde matrices 
[I], and fast Fourier transforms. 

In this paper, we describe a different class of matrices whose operation count for 
solving the associated linear system can also be reduced. For each matrix R in this 
class, there exists a banded matrix B such that BR is also banded, with the same 
bandwidth as B. The advantages of constructing matrices B and BR are clear. 
Suppose that 

Rf=g, 

where R is an upper triangular N by N matrix (see Fig. 1). Calculating g from f 
(multiplication by R) or vice versa (backsolving with R) both require O(N*) steps. 
Storage of R requires O(N*) words of memory. Suppose we can write instead, 

BRf=Bg, 

where B and BR are upper triangular of bandwidth J+ 1, as in Fig. 1. Then to 
calculate g from f, we act with BR on f and then backsolve to get g. Both computa- 
tions require only O(JN) steps. To compute f from g, we reverse the roles of B and 
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B R = BR 

FIG. 1. The structure of the matrices B, R, and BR for an upper triangular matrix R in the case 
J= 2. 

BR, acting with B on g, then backsolving with BR. The matrices B and BR can be 
stored in O(JN) words. 

Another way of saying this is that there exists a recursion relation between .I+ 1 
terms off and .I+ 1 terms of g. To multiplyf by the upper triangular matrix R, one 
would usually use all values of f(m), m z n, in order to calculate the value g(n). 
With a recursion relation, one would use instead a small number (here J+ 1) of 
values off, together with a small number (here J) of previously calculated values 
of g (J initial conditions must also be specified to begin the recursion). An 
analogous statement can be made for solving, i.e., calculatingffrom g. 

A rigorous statement and proof of our result will be given in Section 2; later, we 
will modify it to treat matrices of other kinds, such as lower triangular, infinite- 
dimensional, and full matrices, and also matrices with additional arbitrarily 
specified rows. Essentially, the requirement on the matrix R is that its off-diagonal 
nonzero elements be of the form 

R(m, n) = S(m) T(n) 

where S and T are N-vectors, or more generally, 

where S and T are N by J, and J by N matrices, respectively. Examples of such 
matrices abound. Here we present three examples arising from second derivative 
operators acting on orthogonal function expansions. For each operator, we also 
state the associated recursion relation, which we will derive in detail in Section 3. 

EXAMPLE 1. The Lapiacian in spherical coordinates contains the operator 

l d sined- -- 
sin e dtl de sin* e 

which, when acting on the sine series C,f(n) sin(&), is represented by the matrix: 

-2m m<n and m+n even 
R(m, n) = -m(m + 1) m=n (1.1) 

0 otherwise. 
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Here J= 1, S(m, 1) = -2m, and T( 1, n) = 1. The recursion relation equivalent to 
Rf = g is [2]: 

(m+ l)[f(m+2)-f(m)] =F-g’,“,:2). 

EXAMPLE 2. The second derivative operator d2/dx2 acting on a series of 
Chebyshev polynomials C,f(n) T,(x) is described by the matrix 

- m2) m<n and m+n even 
otherwise, (1.2) 

where c, = 2 for m = 0, and c, = 1 otherwise. Here J= 2. For j = 1 we have 
S(m, 1) = l/c, and T( 1, n) = n3. For j= 2 we have S(m, 2) = m2/c, and 
T(2, n) = -n. The oft-used recursion relation [3,4] equivalent to Rf = g is 

4m(m2-l)f(m)=(m+1)c,-,g(m-2)-2mg(m)+(m-1)g(m+2). 

EXAMPLE 3. The operator 

dd zd2 d 
r;rz=r s+r;i; 

arising in cylindrical coordinates acting on series of Chebyshev polynomials has the 
representation: 

( l/c,)n(n2 - m2) m<n and m+n even 
R(m, n)= 

1 

m2 m=n (1.3) 
0 otherwise. 

J, S and T are the same as for Example 2 and the recursion relation is: 

c,-,(m+ l)(m-2)2f(m-2)-2m(2-m2)f(m)+ (m- l)(m+2)2f(m-2) 

=(m+1)c,~,g(m-2)-2mg(m)+(m-1)g(m+2). 

A recursion relation similar to those of Examples 2 and 3 has also been used to 
treat a spherical shell with a logarithmically transformed radial coordinate [S]. 
Additional examples can be found in [4,6]. In fact, Examples l-3 are all part of 
a general class in which the elements of R are sums of monomials: 

EXAMPLE 4. 

where the aj’s are all distinct. 

S(m, j) = mbJ 

T( j, n) = naJ, 
(1.4) 

Although the use of recursion relations for matrices of this form is widespread 
(e.g., [4, 6, 7]), their existence is often discovered on a case-by-case basis. This 
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leads to. some misconceptions: for instance, it is sometimes stated (e.g., [S, S]) that 
the only linear combinations of derivatives of Chebyshev series that engender recur- 
sion relations are those with constant coefficients, which is contradicted by Exam- 
ple 3. More general arguments, when cited to construct recursion relations, tend to 
rely on properties of orthogonal functions or other analytic properties specific to 
the application. The purely algebraic criterion presented here will illuminate recur- 
sion relations that are already known and provide new ones. 

2. THE THEOREM AND PROOF 

Our main result is: 

THEOREM. Let R be an upper triangular matrix of the form 

i 

Xi”= 1 S(m, j) T(j, n) l<m<n<N 

R(m, n) = R(m, n) l<m=n<N (2.1) 
0 otherwise 

with 1 <J-C N. Define the J by J matrices Sk and the vectors sk of length J by 

Sk(i, j) = S(k + i, j) (2.2a) 

Sk(j) = SK j) (2.2b) 

for 1~ i, j < J and k < N - J and suppose that sk is in the column space of S:. Then 
there exists an invertible banded matrix B, depending only on S, with J nonzero super- 
diagonals, such that BR is also banded with J nonzero super-diagonals. 

The proof of the theorem relies on the reduction from N to J of the number of 
conditions necessary to transform a matrix to banded form. 

Proof. If B is a banded matrix with J nonzero super-diagonals, so that 
B(k, m) = 0 unless k < m <k + J, then BR is written 

min(J, n-k) 

BR(k, n)= 1 B(k, k + i) R(k + i, n). (2.3) 
i=o 

We need to show that BR(k, n) = 0 for 

l<n<k (2.4a) 

and for 

k+J<n<N. (2.4b) 

Clearly for n <k, the sum in (2.3) is zero. 
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Suppose now that k + J < N. If k + J < n d N, then (2.3) becomes 

BR(k, n) = i B(k, k + i) i S(k + i,j) T(j, n). (2.5) 
i=O j= I 

The sum in (2.5) will be zero if the J+ 1 values B(k, k + i) (for k fixed, 0 < i<J) 
can be chosen so as to satisfy the J homogeneous equations: 

i B(k,k+i)S(k+i,j)=O for 1 <j<J. (2.6) 
r=O 

Since B is upper triangular, its eigenvalues lie along the diagonal. Thus B will 
be invertible if B(k, k) # 0. Let us choose B(k, k) = 1 and define the vector b, 
consisting of the J remaining unknown super-diagonals by 

bk(i) E B(k, k + i). (2.7) 

Recalling the definition of the vectors sk and matrices Sk, (2.6) can be rewritten as 

S;Jbk = -sk. (2.8) 

The conditions of the theorem on sk and Sk guarantee the existence of a solution 
bk to (2.8). 

If k + Ja N, then the range for (2.4b), k + J < n < N, is empty. Thus there are no 
conditions to impose and the N - k + 1 values of B(k, k + i) (for 0 < i < N - k G J), 
can be chosen arbitrarily. 1 

For completeness, we write the form of the nonzero entries of BR. For 
k$n<k+J, we have 

n-k 

BR(k,n)= c B(k,k+i)R(m,n) 
i=O 

n-k-l 

= B(k, n) R(n, n) + c B(k, k + i) i S(k + i, j) T(j, n) 
i=O j= I 

which, using (2.6), can also be expressed as 

BR(k, n) = B(k, n) R(n, n) - i E(k, k + i) i S(k + i, j) T(j, n). (2.9) 
r=n-k j=l 

3. DETAILED EXAMPLES 

The proof of the theorem is constructive; it provides an algorithm for construct- 
ing the matrix B via Eq. (2.8). We shall apply this algorithm to derive recursion 
relations associated with each of the examples of Section 1. However, the matrices 
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of Examples (l-3) are not exactly of the form specified in the theorem, because they 
preserve parity: R(m, n) = 0 unless m + n is even. Such a matrix can be separated 
into two matrices, each involving only the odd or even indices, respectively. Effec- 
tively, the theorem is applied separately to each of the two N/2 by N/2 decoupled 
matrices; this, however, requires renaming the new matrices and indices. A simpler 
and equivalent procedure for treating parity-preserving matrices is to substitute 

k + 2i for k + i and k+2Jfor k+J 

(n-k)/2 for n-k and (N- k)/2 for N-k, 

wherever they appear in the theorem and proof. For example, definitions (2.2a) and 
(2.7) are changed to read 

Sk(i, j) z S(k + 2i, j) 

bk( i) = B(k, k + 2i), 

so that the elements of bk and of S,(., j) are all of the same parity as k, while delini- 
tion (2.2b) of sk is unchanged. 

EXAMPLE 1. We recall that 

-2m m<n and m+n even 
R(m, n) = -m(m+ 1) m=n 

0 otherwise, 

so that J= 1, S(m, l)= -2m, and T(1, n)= 1. 
According to the proof of the theorem, we find B by solving Eq. (2.8): 

Since here J= 1, all of these quantities are scalars. In particular, 

Sk=Sk(l, l)=S(k+2, l)= -2(k+2) s,=s,(l)=S(k, l)= -2k 

Equation (2.8) then becomes 

-2(k+2)b,=2k, 

whose solution is 

b,=b,(l)= -& 

Thus B(k, k) = 1, B(k, k + 2) = b, = -k/(k + 2), and all other elements of B are 
zero. 
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We then calculate the product matrix BR: 

BR(R,n)=B(k,k)R(k,n)+B(k,k+2)R(k+2,n) 

= R(k, n) - & R(k + 2, n) 

0 

-k(k+ 1) 

-2k- 
= 

-&-W+W+3)) 

= -2k+k(k+3)=k(k+l) 

-2k- &(-2(k+2))=0 

0 

for n-ck 

for n=k 

for n=k+2 

for n>k+2 

for n + k odd. 

We see that BR indeed has the same banded structure as B. 
The recursion relation equivalent to Rf = g is derived by writing out the 

components of the “banded equation” BRf = Bg: 

; (BR)(k m) f h) = c BW, m) s(m) 
m 

BW, k)f(k) + BR(k, k + 2) f(k + 2) = B(k, k) g(k) + B(k, k + 2) g(k + 2) 

-k(k+ l)f(k)+W+ l)f(k+a)=g(k)-&g(k+2), 

which can be simplified to: 

g(k) g(k + 2) 
W+ l)Cf@+2)-f(k)l =k- tk+2j. 

EXAMPLE 2. We recall that 

m<n and m+n even 
otherwise 

(where c, = 2 for m = 0 and c, = 1 otherwise), so that J= 2 and 

j= 1: S(m, l)=$, T(1,n)=n3 
m 

j=2: S(m, 2)=$, T(2, n) = -n. 
m 



BANDED MATRICES 367 

This example is slightly more complicated because here J= 2; so that in Eq. (2.8), 
Sz is a 2 by 2 matrix, while the right-hand side sk and the unknown b, are vectors 
of length 2. In particular, 

1 
Sk(i, l)=S(k+2i, l)=-= 1 

c k + 2i 

sk( i, 2) = &!?(k + 2i, 2) = ~ = (k+W* (k+2i)* 

Ck+2r 

&(l)=S(k, I)=; 

s,(Z)=S(k,2)=$ 

Equation (2.8) becomes 

1 1 
(k+2)2 (k+4)2 

This equation is easily solved by inverting S:: 

bk(l 
bk(2 

Thus, 

B(k, k) = 1 

B(k,k+2)= 
-2(k+2) 
Ck(k+ 3) 

B(k, k+4)= 
k+l 

c,(k + 3)’ 

(3.1) 

We now calculate the product matrix BR: 

BR(k, n) = B(k, k) R(k, n) + B(k, k + 2)R(k + 2, n) + B(k, k + 4) R(k + 4, n). 
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For ndk, 

For n=k+2, 

BR(k, n) = 0. 

BR(k,k+2)=B(k,k)R(k,k+2)=;(k+Z)((k+2)”-k”) 

=;?l(k+2)(k+l). 

For n=k+4, 

BR(k, k + 4) = B(k, k)R(k, k + 4) + B(k, k + 2) R(k + 2, k + 4) 

=$(k+4)((k+4)‘-k2) 

+ -2(k+2) 1 
- (k + 4)((k + 4)2 - (k + 2)2) 

c&+3) ck+2 

=;(k+4)(8k+M)+ -2(k+2)(k+4)(4k+12) 
c/c&+ 3) 

=t [(k+4)(k+2)-(k+2)(k+4)]=0. 

Finally, for n > k + 4, the construction of the theorem guarantees the vanishing of 
BR(k, n): 

BR(k,n)=B(k,k)R(k,n)+B(k,k+2)R(k+2,n) 

+ B(k, k + 4) R(k + 4, n) 

=c 
k 

(k1+3) [(k+3)n(n2-k2)-2(k+2)n(n2-(k+2)2) 

+ (k + l)n(n2 - (k + 4)2)] 

=ck(kn+3)[((k+3-2(k+2)+(k+l))(n2-k2) 

-2(k+2)(-4k-4)+(k+l)(-8k-16)] 

=C 
k 
(kn+3) [8(k+2)(k+l)-8(k+l)(k+2),=0. 

In this example, BR is sparser than B. The diagonal element BR(k, k) vanishes 
because BR(k, k) = R(k, k) = 0 for this matrix. The second super-diagonal 
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B&k, k + 4) vanishes for a more subtle reason. For parity-preserving matrices, 
Eq. (2.9) becomes 

BR(k,n)=B(k,n)R(n,n)- i B(k, k + 2i) i S(k + 2i, j) T(j, n). 
i=(n-k)/2 j=l 

We substitute n = k + 4 to obtain 

BR(k, k+4)= -B(k, k+4) i S(k+4,j)T(j, k+4). 
j=l 

For this particular matrix, it turns out that c;= 1 S(n, j)T(j, n) = 0 for any n, 
because 

S(n, 1) T( 1, n) = n3/c, = - S(n, 2) T(2, n). 

Thus, BR(k, k + 4) = 0 as well. 
The recursion relation equivalent to Rf = g is: 

BR(k, k + 2) f(k + 2) = B(k, k) g(k) + B(k, k + 2) g(k + 2) 

+B(k, k+4) g(k+4) 

$(k+l)(k+2)f(k+2)=g(k)+;;(k:::)g(k+2) 
k 

k+l 
+ 

cdk+ 3) 
g(k + 4). 

By substituting m = k + 2, 

&(m-l)mfh)=g(m-2)+c p2(~+lJdml 
m m 

m-l 
+ 

c,-,(m+ t) g(m+2) 

and, dividing through by the coeffkient of f(m), we recover the more familiar form 
113341: 

f(m)= cm-z 4m(m - 1) g(m-2)-2(m-lt(m+l)g(m) 

1 
+4m(m+ 1) Am + 2) 

or 

4m(m2-l)f(m)=c,-2(m+1)g(m-2)-2m g(m)+(m-l)g(m+2). (3.2) 

581/84/Z-8 
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EXAMPLE 3. For this operator, 

i 

(l/c,)n(n2 - m’) m<n and m+n even 
R(m, n)= m2 m=n 

0 otherwise. 

The off-diagonal elements of this matrix are identical to those of Example 2. The 
matrix B is again defined by (3.1) since the construction of B depends only on S. 
The product matrix BR will, however, be different: 

BR(k, k) = k2 

BR(k, k-t 2) = j$+-z:) (k2 + 4k + 2) 

BR(k, k + 4) = 
i*(k+illir4) ’ 

k+l 2 

k 

The recursion relation equivalent to Rf = g is 

k?fW + :;I;; (k* + 4k + 2) f (k + 2) 
k 

+ c ik+i3) (k+4)2f(k+4) 
k 

= g(k) + 
-2(k+2) 
C,(k + 3) 

dk + 2) + ck;;+13) dk + 4). 

Again substituting m = k + 2, and multiplying both sides by c, ~ *(rn + 1 ), we obtain 

c,-2(m+l)(m-2)2f(m-2)+2m(m2-2)f(m)+(m-l)(m+2)2f(m+2) 

=(m+l)c,-,g(m-2)-2m g(m)+(m-l)g(m+2). 

The right-hand side (Bg) of this recursion relation is the same as that of (3.2). 

4. DISCUSSION AND EXTENSIONS 

In this section we will discuss the theorem proved above and modify it to treat 
matrices of other kinds, such as lower triangular, infinite-dimensional, and full 
matrices, and also matrices with additional arbitrarily specified rows. We will 
conclude the article by considering some points related to practical implementation, 
such as the Sherman-Morrison-Woodbury formula, LU decomposition, and 
permutation. 

The matrix R need not be invertible for the theorem to hold, though the inver- 
tibility of BR depends on that of R. The bandwith of BR may be less than J+ 1 (as 
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we have seen in Example 2): in special cases, BR may be the identity, so that 
B= R-l. A complete characterization of matrices whose inverses are banded is 
given in [9]. 

The sum of two matrices of form (2.1) (with J-values J1 and J2) is also of the 
same form. In general, the S and T matrices of the sum will have J = J, + J2. This 
expanded S matrix may not satisfy the hypothesis of the theorem, but it is often 
possible to regroup terms, forming a smaller S with J< J, + J, to which the 
theorem is applicable. 

We briefly discuss the hypothesis of the theorem. Note that sk is in the column 
space of SE if and only if sk is orthogonal to every element (if any) of the null space 
of Sk; this provides an equivalent condition. A different condition on S, which is 
stronger than the hypothesis of the theorem but more easily understood, is to 
simply required that the matrices Sk be invertible for k < N-J; Examples 14 
actually satisfy this stronger condition. For Example 4, this follows from the linear 
independence of the monomials ma, ouer any interval of m: the theorem thus applies 
for any value of J, and any set of distinct exponents aj. 

We now present some variations of the theorem. Many suggest themselves, the 
most obvious being: 

COROLLARY. Let R be a lower triangular matrix of the form: 

Xi=, Sh i) W, n) lbn<m<N 

R(m, n) = R(m, n) l<n=m<N (4.1) 
0 otherwise. 

Define the vectors Sk as before, but the matrices Sk by 

Sk(i, j) s S(k - i, j) 

and suppose again that Sk is in the column space of Sz. Then there exists an inver- 
tible banded matrix B, depending only on S, with J nonzero sub-diagonals, such 
that BR is also banded with J nonzero sub-diagonals. 

The proof of the theorem requires little modification. For k > J+ 1, we must 
solve 

B(k, k)S(k, j) + 1 S(k - i, j) B(k, k - i) = 0 for 1 <j<J. 
i=l 

Again choosing B(k, k) = 1, and defining bk(i) = B(k, k-i), this reduces to 
Eq. (2.8). For k < J+ 1, the values of B(k, k - i), 0 < i d k, can be chosen arbitrarily. 

The result can easily be extended to infinite dimensional arrays. The arrays can 
be either singly or doubly infinite, e.g., [l, co] or [-cc, cc]. The only change is 
the absence of the arbitrary rows N-J< k (for the upper triangular case), when 
there is an infinite upper bound, and k < J+ 1 (for the lower triangular case), when 
there is an infinite lower bound. These rows B(k, .) are then specified, like the other 
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rows, as a nontrivial (J+ 1)-dimensional solution of a J-dimensional homogeneous 
system of equations. 

Other modifications of the matrix R yield matrices which are banded on all but 
a few rows. Let us try to follow the proof of the theorem for a matrix R which is 
neither upper nor lower triangular: 

R(m, n) = CJ”= 1 W6 A W, n) m#n 
Rb, n) m = n. (4.2) 

Since R is neither upper nor lower triangular, we will let B be a general banded 
matrix with J, nonzero sub-diagonals and J2 nonzero super-diagonals, where 
J1 + Jz = J. Then, 

min(k + 52. N) 

BR(k, n)= 2 BP, m)Rh n). (4.3) 
m=max(k-J,,l) 

We would like BR(k, n) to vanish for 

l<n<k-J, (4.4a) 

and for 

k+J,<ndN. (4.4b) 

Consider first k such that 1 Q k - J, and k + J2 6 N. Then if n is in either range 
(4.4a) or range (4.4b), it is outside the limits of the sum in (4.3). Equation (4.3) 
becomes 

k + Jz 

BR(k, n) = c B(k, m) f- S(m, j)T(j, n) 
m=kpJ, j=l 

which will be zero if 

kfJ2 

1 B(k,m)S(m,j)=O for l<j,<J. 
m=k-J, 

(4.5) 

To solve (4.5) for B(k, . ), the vectors sk must again be orthogonal to all null vectors 
of certain J by J matrices. (Care must be taken to ensure that B is invertible). 

Now consider k such that N < k + J2. We get, instead, 

BR(k, n) = 2 B(k, m)R(m, n). (4.6) 
m=k-J, 

The range (4.4b) is empty, but the range (4.4a) is not. The number of unknown 
elements B(k, .) is insufficient to make (4.6) vanish, and therefore BR(k, n) # 0 for 

l<n<k-J, and N<k+ J,. (4.7a) 
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For k - Ji -C 1, by a similar argument, BR(k, n) # 0 for 

k-J,<1 and k+J,<n<N. (4.7b) 

Thus there are JI + J2 = J rows for which the matrix BR cannot be made banded. 
If we choose B to be upper triangular, i.e, J, = 0, as in Fig. 2a, then range (4.7b) 
does not exist, and BR is banded except for the J bottommost rows. If B is made 
lower triangular, range (4.7a) is empty and the nonzero rows are all located at the 
top, as in Fig. 2b. 

However, the offending ranges disappear when R is an infinite-dimensional array. 
If R has an infinite upper bound, range (4.7a) does not exist, so an upper triangular 
B makes BR banded for all rows. Similarly, if R has an infinite lower bound and 
B is taken to be lower triangular, then BR has bandwith J+ 1 everywhere. 

The remaining nonzero entries of BR (i.e., for 1 <k-J, <n <k $ J2 <N) are 

k + Jz 

Wk, n) = B(k, n)R(n, n) + 1 W, ml i S(m, j) W, n) 

m=k-J, j= 1 

- W, n) i 0, j) T(j, n) 

j=l 

= B(k, n) R(n, n) - i S(n, j)T(j, n) . 
( j=l ) 

Another method is also available for inverting matrices (or solving linear 
systems) when R is of form (4.2). The Sherman-Morrison-Woodbury formula 
[ 10, 11, l] provides a simple and powerful procedure for computing the inverse of 
a matrix from the inverse of a closely related matrix. Note that R is the sum of the 
diagonal matrix D defined by 

D(n, n) = R(n, n) - i S(n, j) T(j, n) 
j= 1 

and of the rank-J matrix ST: 

(ST)(w n) = i S(m, i) W, n). 
j= 1 

(a) (b) 

FIG. 2. The structure of the matrix BR for a full matrix R of form (4.2). (a) B has been chosen to 
be upper triangular (J, = 0 and J, = J = 2); (b) B is lower triangular (.I2 = 0 and J, = J = 2). 



374 LAURETTE S. TUCKERMAN 

Then the inverse of R can be obtained from the inverses of D and of the J by J 
matrix, 

C= -(I+ TD-‘S) 

by the Sherman-Morrison-Woodbury formula: 

R-‘=(D+ST)p’=D-‘+D-lSC-‘TDp’. 

Unlike the full matrix, the upper and lower triangular matrices (2.1) and (4.1) 
cannot be expressed as sums of diagonal and rank-J matrices. 

The last matrix we treat is upper triangular except for the last A4 rows which are 
full: 

C,f= 1 S(m, A T(i n) men and m<N-A4 
m=n 
N-M-cm 
otherwise, 

(4.8) 

as shown in Fig. 3. Such matrices arise when boundary conditions are imposed on 
differential equations. Multiplying R by an upper triangular matrix B of bandwidth 
J+ 1 and adapting the proof of the theorem, we find that the matrix BR has 
bandwidth J+ 1 for rows 1~ k d N - M-J. It has at most J+ A4 nonzero entries 
in rows N-M-J<k<N--M, and Nentries in the last rows N-M<k<N, as 
in Fig. 3. If only one row is changed (M= l), then the bandwidth of BR remains 
J+ 1 except for the last unavoidably full row. 

The consequences of adding M+ N full rows to an otherwise banded matrix BR 
need not be catastrophic. To take advantage of its sparse structure, we act with 
(BR)-’ by backsolving if BR is triangular, and by LU or UL decomposition if it 
is not. In an otherwise banded matrix, sparseness is preserved by: 

(1) LU decomposition when there are full rows at the bottom and/or 
columns on the right; 

(2) UL decomposition when there are full rows at the top and/or columns on 
the left. 

N-M+1 

B R = BR 

FIG. 3. The structure of the matrices B, K, and ffIH for a matrix R of form (4.8). R is upper 
triangular except for the M bottommost rows which are full. Here M = J= 2. BR has bandwidth J+ 1 
in rows 1 through N - M-J, bandwidth J + M in rows N - M-J + 1 through N - IU, and bandwidth 
N in rows N - M + 1 through N. 
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In order to invert BR while taking advantage of its sparseness, it is necessary for 
BR to be diagonally dominant. Otherwise pivoting (which destroys sparseness) is 
necessary for numerical stability. It is often possible to make BR diagonally domi- 
nant by permuting its rows (partial pivoting), which may perturb its triangularity 
and may slightly increase the number of non-banded rows. Consider the second 
derivative matrix of Example 3, operating on Chebyshev polynomials of either odd 
or even parity, whose last row has been replaced by a full row corresponding to 
boundary conditions. (The standard case [4, 61 is the sum of the matrix of Exam- 
ple 2 and a multiple of the identity.) The banded matrix BR resulting from direct 
application of the theorem is upper triangular with an extra full row at the bottom, 
as shown in Fig. 4a, and is not diagonally dominant. However, a cyclic permutation 
of rows leads to a diagonally dominant matrix which is tridiagonal except for one 
full row at the top, as in Fig. 4b. 

If full rows occur at both the top and bottom of the matrix, neither LU nor UL 
decomposition preserves sparseness. The Sherman-Morrison-Woodbury formula 
again suggests itself, since a matrix which is banded except on J arbitrarily dis- 
tributed rows can be written as the sum of a banded matrix and of a rank-J matrix. 
However, the inverse of even a perfectly banded matrix is generally full and so 
should not be directly computed. The Sherman-Morrison-Woodbury formula can 
instead be used, in conjunction with the LU (or UL) decomposition of the perfectly 
banded matrix, to formulate a Greens function-like procedure [ 12, l] for acting 
with (BR)-’ on a vector. 

Finally, a matrix R of any of the forms discussed above can be used as an 
economical preconditioner for the iterative solution of more general linear systems. 

(b) 

FIG. 4. The structure of the matrices B, R, and BR for an upper triangular matrix R with one full 
row at the bottom. The thick lines in B and BR indicate the maximum element of each row. In (b) the 
rows of B (and BR) have been permuted to yield diagonally dominant matrices. 
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