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INTRODUCTION
Recent experiments on Rayleigh-Benard convection in a cylindrical geometry have yielded a rich
variety of results concerning wavelength selection, breaking of axisymmetry, and phase turbulence [1,2].
Motlvated by these expcrlmeuts we have developed a program which numerically simulates the full three-
dimensional Boussinesq equatxons in a cylinder of large aspect ratio.
‘ In order to study the bifurcations undergone by the system, we have brought to bear the full
arsenai of tools for studying dynamical systems: time-dependent integration, linear stability analysis, and
'steady state continuation. In the past, these tasks have generally been accomplished by using entirely
separate programs. However, in [3,4] it was shown that a titme-dependent code could easily be adapted to
perform linear stability analysis, by iterating the equations linearized about a numerically computed steady
state, thus calculating the most unstable (or least stable) eigenvectors via the power method. Here we will

show that a tlmc-dependent code can be given the additional capablhty for direct calculation of stable and
unstabic steady states via Newton's method.

Our steady-state solver relies on a fast and implicit method for solvin g the linear Stokes problem,
1c for inverting the elliptic operators arising from time-stepping of the viscous terms, enforcing
incompressibility, and imposing boundary conditions. The need for a fast implicit Stokes solver is not
limnited to the steady-state code: it is well known that, when integrating the incompressible Navier-Stokes
or Boussinesq equations, the linear terins present the most stringent time-stepping criterion, and should
therefore be treated implicitly. In the next section, we will present a general result conéerning the existence
of recursion relations for elliptic operators, and we will demonstrate its application to the solution of
Pcnssan s equation in a cylindrical geometry. The third section will describe the steady-state solver.

We use a pseudospectral method [5 6,7], in which functions are represented by:
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where Ty, T, are Chebyshev polynomials, and parity restrictions are imposed on k+m. Numerical spectral
methods, like analytic methods, are difficult to adapt to nonperiodic geometries. Here rigid boundaries at
the top, bottom, and sidewalls must be added to the complication of curvilinear coordinates and coordinate



singularities. A further challenge arises from the large aspect ratio of the cylinder: the algorithm must be
economical in the number K of gridpoints or functions in the radial direction, a direction which is neither
periodic (like 8) nor Cartesian (like z).

At the core of our algorithm is a fast solver for elliptic equations such as:
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A well known recursion relation [5,7] can be used to reduce the upper triangular matrix corresponding to
the (Cartesian) second derivative acting on a Chebyshev series to a tridiagonal diagonally-dominant matrix,
Only one spatial direction can be reduced in this way: when two directions are nonperiodic, a Haidvogel-
Zang decomposition [7,8] is indicated, in which the (Cartesian-like) z direction is reduced to tridiagonal
form and the r direction treated by eigenvector-eigenvalue decomposition, leading to an operation count of
O(KMN) + OQK2MN). However, since K >> N, what is needed is a recursion relation for the radial
direction instead.

We have shown in [9] that the standard recursion relation is only one instance of a much larger
class of matrices which can be reduced to banded form. The relevant result is:
THEOREM: Let R be an upper triangular matrix of the form:
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with J < K. Suppose that the J by J matrices Sk defined by Sk(i,j) = S(k+i,j) for 1<i, j£J are
invertible for all k < K—J Then there exists an invertible banded matrix B, depending only on S, with J
nonzero super-diagonals, such that BR is also banded with J nonzero super-diagonals.

Matrices that differentiate polynomial expansions, or which multiply derivatives by powers of the
independent variable (e.g. r) are all of form (3) (see the Appendix of [5]), as are sums of such operators.
In these cases S (and T) are monomials, i.e. S(kj) = k%, for integers aj, with o #o if i #j. Since the
monomials &% are linearly ihdependent over any range of k, the conditions of the theorem are satisfied. In
the tau method, the last rows of the matrix of form (3) are replaced by full rows corresponding to
boundary conditions. If only one row is changed (as he:rc) then the bandwidth of BR remains J+1 except
tor the last row. The proofs of these assertions are straightforward [9].

Let us now apply the theorem to the cylindrical Laplacian acting on (1). We define the operators:

Rs=r dr r dr, which is of form (3) and can be reduced by the banded matrix B,

Dgg = 0gg, which is diagonal with elements —m? , and

Z=0;;=V"1D,, V, where Dy, is diagonal with elements g, .
R,B,Dgg,Z,D,;, V, énd V-1 can either be considered to be matrices of order K, M, or N, or extended to
order (KMN) via, e.g., R{k,m,n; k'm',n") =R(k,k") &m,m"y Kn,n").

Equation (2) is then written as: :

(rR +r’Dgg+7Z ) f=3
We first diagonalize in z:
(FR +rDge+ D, Wf=Vg
and then multiply through by the matrices B and r2: "
AVf= (BR+BDgg+BriD,yVf=BriVyg )]



For cach @ Fourier mode and z eigenfunction, i.e. for each m and a, this can be written as:

Amn Vhmn= (BR = Bm? +Br2 6,) (Vfdmn =Br? (Vg)mn
All boundary conditions are imposed via the tau method: those in z are built into the matrix Z (i.e.into V,
V_‘l, and D;,) while radial boundary conditions are inserted into the matrices Amn. Since B, BR, and r?
are all tridiagonal and diagonally dominant, the K x K matrices A, are pentadiagonal, with an extra full

boundary row, and can be inverted via LU decomposition. The requirements of the algorithm are
summarized in the following table.

Operator Storage Time, for multiplication by operator
Vand V-1 | 2N2 _ 2KMN?
Br? 5K " SKMN
AL 6KMN. 6KMN.

Form > 2, regularity conditions at r = 0 must be imposed [6,10]. We do this by setting f = 72 &

and defining: ' _

' R'=r'9,ro,P=rir

which is also of form (3). Diagonalizing (2) in z and multiplying by the same matrix B, we obtain:
A'Vh= (BR+BDgg+Br’D,,)Vh=BVg

which is solved in the same way as (4).

The algorithm for solution of the Stokes problem is built around this Poisson solver. The
cylindrical vector Laplacian is decoupled into three scalar elliptic operators {6]. The technique outlined
above is used to invert operators such as [ - £V?2, as well as V2, Finally, the velocity field is made
divergence-free by the influence matrix method [7,11] with full tau correction, generalized to a cylindrical
- geometry with two nonperiodic directions [10]. |
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A steady-state solver presents several advantages over a time-dependent code. The first is speed:
root-finding algorithms such as Newton's method converge quadratically, while time-stepping necessarily
follows the dynamics, converging linearly to steady states. The second advantage is more fundamental; a
steady-state solver can compute unstable steady states, which a time-dependent code cannot (except for the
case in which the instability arises via a symmetry-breaking bifurcation [3,4]). In addition, the steady-
state solver may be coupled to standard continuation methods for tracking bifurcations in parameter space,
and is exempt from critical slowing down.

'To describe our steady-state solver, we represent the differential equation by:

dgit = Lu+ Nu o
Here L represents the terms (usually linear) in the equation that are to be integrated by an implicit method,
and N represents the terms (usually nonlinear) to be integrated explicitly. We wish to solve:
- Lu+Nu=0 (5)

Our time-dependent pfogram uses backwards Euler time-stepping for L and forwards Euler time-

stepping for N (higher-order time discretizations could also be used):
untl — yn = At (Lun+1 + Nyn)
wttl = (I — At L)1 ([ + At Ny uh
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The crucial observation is that:

Epa = E‘—;({— AtLY [ +AtN) - (- AtL) ]

= ~AL)yV(N+L)
so that, as long as [ ~ At L is invertible, _
' Epu=0 : ¢}
has the same solutions as (5) for any Az. The limit At — 0 yields equation-(5), but (7) is numencally more -
tractable if much larger values of Az are used, as we shall see below.

We see from (6) that we can act with Ea, on a vector by using the time-stepping program. In order -
to ‘So_lve_ (7) by Newton's method, we shall also need the Jacobian DEa(U) of Ea;at U, ie. the
linearization of Ea, about U, If L is linear and; '

| Nu=@w V)u
then: DNODYu=U-Vyu+w VYU
and DEx, (U) is obtained by substituting DN(U) for N in (6). 'The time-stepping code already computes
- Nu; with slight modifications it can compute DN(U)u as well. (Indeed, the substitution N — DN{U) is
also precisely that required to perform linear stability analysis [3,4]).
One step of Newton's method consists of solving: _
DEpum) (un+l —yny = — Ep unt : 8y
for un+l — yn, The matrix DEa(u") is large and full, necessitating iterative solution of equation' (8).
However, we can act rapidly with DEs,(u™) on a vector: the pseudospéctral method provides a fast way to
multiply by DN(U) in gridspace via Fourier transforms [5,7], while our Poisson/Stokes solver efficiently
operates with (/ — Ar L)1, Tterative techniques are able to fully exploit this advantage.

Because DEa,(1?) is neither siymmetric nor definite, iterative solution of (8) is problematic [7,12].
Despite the lack of guarantees, we have experimented with Lanczos and Orthomin methods implemented in
the NSPCG (Nonsymmetrid Preconditioned Conjugate Gradient) software package [12]. We obtain
extremely good results from the biconjugate gradient squared (BCGS) algorithm, a Lanczos-type method.

In the figure below, we compare the time needed to solve (7) for different values of At on a Cray
X-MP/24, The parameters of the problem are: aspect ratio I'= 5, resolution (K,M,N) = (49,0,15), and
reduced Rayleigh number £= (Ra-Ra,)/Ra. = 1.3 The initial condition for Newton's method is a steady
state at £= 1.2 (other parameters the same). For details see [13].

Solving (7) to a prescribed level of accuracy usually requires four Newton steps, independent of
At. However, the number of conjugate gradient iterations per Newton step may vary greatly. For
At > 101, about 35 iterations per Newton step are required, leading to a total CPU time of 4 seconds. For
At < 1072, the number of conjugate gradient iterations begins to climb steeply, until, for At = 7x10-5, as
many as 780 iterations are required for one Newton step. For At < 7x10-3 (and also for At > 105) the
method breaks down. _

Effectively, (I — At .L)—1 acts as a preconditioner for the poorly conditioned matrices L +DN(u").
For At -3 0, the preconditioning becomes weaker as (I - At L)1 — I, while for At — o, we have
(—AtL)yl— (- At Ly L
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For purposes of comparison, we note that the 140 7
time-stepping code, limited by the Courant condition 120
to At < 2x1073, will converge within the same
accuracy to the steady state in 130 CPU seconds,

CPU seconds
]

shqwn as the asterisk in the figure. The combination jg :
of quadratic convergence, preconditioning, and 20 -
biconjugate gradient squared iteration has brought - 0

about a drastic reduction in computation time, with -5

almost no additional coding effort.
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