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1 Pattern formation

On a domain which is not constrained by horizontal boundary conditions, i.e. which is horizontally

homogeneous, the eigenvectors responsible for pattern formation are necessarily of the form exp(iq ·x)
where we take x = (x, y). The linear instability depends only on the wavenumber q and not on its

direction q. From the simple pitchfork bifurcation normal form Ȧ = µA − A3 we are familiar with

the idea that the nonlinear term determines the magnitude of the final state, e.g. A = ±√
µ for the

pitchfork. In addition, though, when there are multiple bifurcating eigenvectors – corresponding to

different directions of q – the nonlinear terms will determine the pattern via the relative magnitudes of

the eigenvectors with different orientations of q.

The fact that the eigenspace is not merely multi-dimensional but infinite dimensional (all possible orienta-

tions of q) leads to mathematical difficulties that are not yet resolved. The current theoretical framework

calls for restricting the eigenvectors to a finite set by setting the problem on a specified lattice. Thus, we

seek solutions with a fixed pattern – stripes, rectangles, squares, hexagons – and determine the properties

of these solutions, but we do not address the complete problem of determining the pattern.

1.1 Swift-Hohenberg equation

The Swift-Hohenberg (SH) equation was formulated by Swift and Hohenberg in 1977 as a model for

the horizontal structure of convection, but turns out to describe features common to pattern formation

in many kinds of systems. We can begin to motivate this equation as follows. Consider a trivial state

u = 0 which loses stability to perturbations of the form u ∼ eσte±iq·x. If the physical configuration is

isotropic, then the growth rate σ must depend on the magnitude but not the orientation (which includes

the sign) of q. To be differentiable, it must be a function of q2 rather than of |q|. In order for perturbations

with infinitely large wavenumbers to be damped, σ must be negative for large q2, and in order for some

perturbations to grow and patterns to be formed, σ must be positive for some range of q2. Then the

growth rate is of the form:

σ(q) = a0 + a2q
2 − q4 (1)

where we have set a4 = 1 by scaling time. Setting q2c ≡ a2/2 and µ ≡ a0 + q4c , (1) can be rewritten as:

σ(q) = µ− (q2c − q2)2 (2)

The curve σ(q) resembles that in figure 1.

Substituting σ → ∂t and −q2 → ∇2 in (2) leads to the partial differential equation

∂tu = µu− (q2c +∇2)2u (3)

In order to halt the exponential growth due to linear instability, one must also include a nonlinear saturat-

ing term. The nonlinear term chosen for the Swift-Hohenberg equation is usually (but not always) −u3.

Thus, the SH equation is:

∂tu =
[

µ− (q2c +∇2)2
]

u− u3 (4)

When the nonlinearity includes a quadratic term, then hexagons can be obtained; see figure 2. Lifshitz

and Petrich further modified the SH equation by including two different critical wavenumbers and were

able to simulate quasipatterns; see figure 2.
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Figure 1: Growth rate σ as a function of spatial wavenumber q for the equation (4) with parameter values

qc = 1 and µ = 1/2. The trivial u = 0 state is unstable to periodic perturbations with wavenumbers in

an interval surrounding q = qc.

Stripes Hexagons

Zigzag instability Quasicrystals

Figure 2: Patterns produced by Swift-Hohenberg equation and modifications of the SH equation. Simula-

tions from Java applets of M. Cross, Caltech, http://crossgroup.caltech.edu/Patterns.
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1.2 Stripes or Rolls

In the simplest case, we assume that the pattern depends only on one direction, x. Substituting eσt+iqx

into (4) and keeping only linear terms leads to

σ =
[

µ− (q2c − q2)2
]

(5)

There are steady bifurcations (σ = 0) at

µq = (q2c − q2)2 (6)

The marginal stability curve corresponding to (6) is shown in figure 3 (left).

Figure 3: Swift-Hohenberg equation with qc = 1. Left: Marginal curve. Dots indicate bifurcation points

in periodic domain of width L = 24. Right: Schematic diagram of bifurcating branches for L = 24.

n λn = L
n qn = 2nπ

L µn = (q2c − q2n)
2

4 6.0 1.05 0.01

3 8.0 0.79 0.15

5 4.8 1.31 0.51

2 12.0 0.52 0.53

1 24.0 0.26 0.87

6 4.0 1.57 2.15

7 3.4 1.83 5.56

8 3.0 2.09 11.47

9 2.7 2.36 20.72

n λn = L
n qn = 2nπ

L µn = (q2c − q2n)
2

1 2π 1 (12 − 12)2 = 0
2 π 2 (12 − 22)2 = 9
3 2π/3 3 (12 − 32)2 = 64

Table 1: Bifurcation thresholds for the Swift-Hohenberg equation on a 1D periodic domain with critical

wavenumber qc = 1 (critical wavelength λc = 2π). Left: length L = 24 ≈ 4λc. Right: L = 2π = λc.
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Imposing periodic boundary conditions in x with wavelength L restricts the allowed wavenumbers to the

discrete set of multiples of 2π/L

q =
2π

L
,
4π

L
,
6π

L
, . . . (7)

The bifurcation with lowest µ occurs for the allowed value of q which is closest to qc. In the Rayleigh-

Bénard convection problem, the length scale was chosen as depth; in these units, qc = π/
√
2 = 2.22,

λc =
√
2 = 1.4 for free-slip bounding plates and qc = π = 3.14, λc = 2 for rigid plates. For the

Swift-Hohenberg equation, it is usual to choose a length scale for x such that qc = 1, λc = 2π.

Figure 3 (right) shows the bifurcations and solutions emanating from them. The bifurcations here are

all circle pitchforks, because any phase in x is permitted by the periodic boundary conditions. If the

horizontal boundary conditions were Neumann boundary conditions (∂xu|0,π = 0), the bifurcations

would be ordinary pitchforks, with only two branches.

As q deviates from qc, the bifurcation thresholds µ become larger: stripes with wavenumber qc are

favored and those with wavenumbers very different from qc require more extreme conditions, here µ
very large. In a much smaller container, for example L = λc = 2π, the lowest bifurcation thresholds

permitted after µ = 0 would be µ = 9 for λ = L/2 and µ = 64 for λ = L/3. This limit is useful because

bifurcations other than the first one are far away and can safely be neglected. In very large container, the

bifurcation thresholds are very close together and the discretization is usually neglected.

In what follows we will study domains of varying sizes, ranging from a single critical wavelength through

several wavelengths to an infinite number. In the remainder of this section, we will use the symmetry

approach, rather than the Swift-Hohenberg equation, to study square and hexagonal patterns. Afterwards,

we will study the instabilities of roll pattern by using the Newell-Whitehead-Segur equation, which is

derived from the Swift-Hohenberg equation.

1.3 Square patterns

We now allow the pattern to vary in both horizontal directions, x1 and x2, but impose periodicity length

L = λc = 2π in both of these directions, so that the domain is a periodically repeating square. The

eigenvectors are then e±ix1 and e±ix2 . We write nonlinear solutions as

u(x1, x2, t) = z1(t)e
ix1 + z̄1(t)e

−ix1 + z2(t)e
ix2 + z̄2(t)e

−ix2 (8)

We seek equations that are equivariant with respect to the group generated by rotations by angle π/2 and

reflection in x1 (i.e. the group D4), and also by translations by p = (p1, p2) in x1 and x2 (the two-torus

T 2).

Sπ/2u(x1, x2, t) ≡ u(x2,−x1, t) = z1(t)e
ix2 + z̄1(t)e

−ix2 + z2(t)e
−ix1 + z̄2(t)e

ix1 (9a)

κu(x1, x2, t) ≡ u(−x1, x2, t) = z1(t)e
−ix1 + z̄1(t)e

ix1 + z2(t)e
ix2 + z̄2(t)e

−ix2 (9b)

Pp1,p2u(x1, x2, t) ≡ u(x1 + p1, x2 + p2, t) (9c)

= z1(t)e
i(x1+p1) + z̄1(t)e

−i(x1+p1) + z2(t)e
i(x2+p2) + z̄2(t)e

−i(x2+p2) (9d)

leading us to define the action of these operators on the amplitudes as:

Sπ/2(z1, z2) ≡ (z̄2, z1) (10a)

κ(z1, z2) ≡ (z̄1, z2) (10b)

Pp1,p2(z1, z2) ≡ (eip1z1, e
ip2z2) (10c)
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Equivariance will give us the equations to cubic order. Since under translation Pp1,p2(z1, z2), we have

z1 → eip1z1, we require monomials in the z1 evolution equation to be transformed in the same way.

Examining possible linear and quadratic terms, we have:

z1 → eip1z1 z2 → eip2z2
z̄1 → e−ip1 z̄1 z̄2 → e−ip2 z̄2
z1z1 → eip1z1e

ip1z1 z1z̄1 → eip1z1e
−ip1 z̄1 z̄1z̄1 → e−ip1 z̄1e

−ip1 z̄1
z2z2 → eip2z2e

ip2z2 z2z̄2 → eip2z2e
−ip2 z̄2 z̄2z̄2 → e−ip2 z̄2e

−ip2 z̄2
z1z2 → eip1z1e

ip2z2 z̄1z̄2 → e−ip1 z̄1e
−ip2 z̄2

z1z̄2 → eip1z1e
−ip2 z̄2 z̄1z2 → e−ip1 z̄1e

ip2z2

Of all of these expressions, only that for z1 consists of multiplication by eip1 , so it is the only linear or

quadratic term which can appear in the z1 equation and similarly for z2. The only cubic terms that are

equivariant with respect to Pp1,p2(z1, z2) are

z1z̄1z1 and z2z̄2z1 for the z1 equation

z1z̄1z2 and z2z̄2z2 for the z2 equation

Equivariance under reflection κ leads to the requirement that all coefficients are real, while equivari-

ance under rotation Sπ/2 leads to the requirement that coefficients of analogous terms in the z1 and z2
equations be identical. The final result is

ż1 = µz1 − (a1|z1|2 + a2|z2|2)z1 (11a)

ż2 = µz2 − (a2|z1|2 + a1|z2|2)z2 (11b)

These are just the same equations that appear for the Hopf bifurcation with O(2) symmetry, with z1, z2
(rolls in two perpendicular horizontal directions) playing the roles of z+, z− (left and right travelling

waves). The analysis done for the Hopf O(2) case then also applies to this square case. The spatial

phases can be eliminated by shifting the origin, so we can replace the complex z1, z2 by real r1, r2. The

solutions are:

–Rolls in the x1 direction (r1 6= 0, r2 = 0) or in the x2 direction (r1 = 0, r2 6= 0)

–Squares with r1 = r2

Depending on the nonlinear coefficients a1, a2, the rolls and squares can branch in the same direction

or in opposite directions. If they branch in opposite directions, rolls and squares are both unstable.

If they both branch in the direction of increasing eigenvalue µ, either rolls or squares are stable. If

they both branch in the direction of decreasing eigenvalue µ, then neither are stable. More advanced

analysis – involving group representations and fifth-order equations – is needed to address another class

of solutions, called bimodal, with x1 6= x2 6= 0 and we will not discuss these here.

Just as standing waves are considered to be an equal superposition of left and right travelling waves,

squares are an equal superposition of rolls in the x1 and x2 directions. Choosing the origin such that

z1 = z2 = r, equation (8) reduces to

u(x1, x2, t) = z1(t)e
ix1 + z2(t)e

ix2 + z̄1(t)e
−ix1 + z̄2(t)e

−ix2

= r(t)eix1 + r(t)eix2 + r(t)e−ix1 + r(t)e−ix2

= 2r(t)(cos(x1) + cos(x2))

= 4r(t) cos

(

x1 + x2
2

)

cos

(

x1 − x2
2

)

(12)
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We see from (12) that the nodal lines u = 0 are

x1 + x2 = π + 2nπ, x1 − x2 = π + 2nπ (13)

i.e. diagonals with slopes ±1, as in figure 4.

Figure 4: Nodal lines of square pattern.

Aside from phase invariance (shifting of the origin, corresponding to symmetry group T 2) these prop-

erties also hold for patterns in a finite square box (symmetry group D4). An eigenvector consisting of a

pair of rolls can be rotated by π/2 so that the rolls are oriented in the x1 or the x2 direction. Any linear

combination of these eigenvectors is also an eigenvector. However, the nonlinear terms restrict the set of

permitted patterns to four: x1 rolls and x2 rolls, and + and − diagonals. When the featureless state loses

stability to this set of eigenvectors, four branches are necessarily created. The roll solutions are obtained

from one another by rotation symmetry and thus necessarily dynamically equivalent to one another; for

example, both will undergo the same secondary bifurcations. Similarly, the two diagonal solutions are

dynamically equivalent to one another. But the roll and diagonal solutions are not equivalent to one

another and will usually have different secondary bifurcations.

This is illustrated in a simulation of Marangoni convection in a 3D box with equal dimensions in x and

y, shown in figures 5 and 6. Like Rayleigh-Bénard convection, Marangoni convection consists of fluid

motion arising from thermal gradients, but in Marangoni convection, it is the temperature dependence

of the surface tension at a free surface which is reponsible, rather than the temperature dependence of

the density. The pitchfork bifurcation P1 from the trivial state creates four branches of convective states.

Although the straight and diagonal states have different stability properties and so undergo different sec-

ondary bifurcations, they all disappear simultaneously for the same reason that they are created simul-

taneously. Other bifurcations occur to eigenvectors with different symmetries. In particular, bifurcation

T1, to an eigenvector with full D4 symmetry, is a transcritical bifurcation.
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Figure 5: From Bergeon, Henry, Knobloch, Three-dimensional Marangoni-Bénard flows in square and

nearly square containers, Physics of Fluids 13, 92 (2001).
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Figure 6: Simulation of Marangoni convection in a container with square horizontal cross section. From

Bergeon, Henry, Knobloch, Three-dimensional Marangoni-Bénard flows in square and nearly square

containers, Physics of Fluids 13, 92 (2001).
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1.4 Hexagons

We now consider a hexagonal lattice. We define three wavevectors kj = (cos 2π(j − 1)/3, sin 2π(j −
1)/3) oriented at angles of 120◦ to one another, as in figure 7. We write solutions

u(x, y, t) = z1(t)e
ik1·x + z2(t)e

ik2·x + z3(t)e
ik3·x + c.c. (14)

and seek equations of evolution for (z1, z2, z3) that are equivariant under the group generated by rotation

by 2π/3 and reflections (i.e. the group D6), as well as by translations by p (the group T 2).

Calculations similar to those for the case of the square lattice lead us to define the action of these operators

on the amplitudes as:

S2π/3(z1, z2, z3) ≡ (z3, z1, z2) (15)

κ(z1, z2, z3) ≡ (z̄1, z̄2, z̄3) (16)

Pp(z1, z2, z3) ≡ (eik1·pz1, e
ik2·pz2, e

ik3·pz3) (17)

Contrary to the square case, the hexagonal case allows quadratic terms, since k1 + k2 + k3 = 0. Thus,

translation by p of (z1, z2, z3) transforms the term z̄2z̄3 as follows:

z̄2z̄3 → e−ik2·pz̄2e
−ik3·pz̄3 = e−i(k2+k3)·pz̄2z̄3 = eik1·pz̄2z̄3 (18)

Since this is the same way in which translation by p transforms z1, the term z̄2z̄3 can appear in the

evolution equation for z1.

The resulting equivariant equations to cubic order are:

ż1 =
(

µ− b|z1|2 − c(|z2|2 + |z3|2)
)

z1 + az̄2z̄3 (19)

and similarly for z2, z3, with real coefficients.

Hexagons are an equal superposition of three sets of rolls of equal amplitudes. Writing zj = rje
iφj ,

hexagonal solutions have r1 = r2 = r3 = r. The evolution equation (19) for z1 becomes

ż1 =
(

ṙ + riφ̇1

)

eiφ1 = (µ− (b+ 2c)r2)reiφ1 + ar2e−i(φ2+φ3) (20)

and similarly for z2, z3. Dividing (20) by eiφ1

(

ṙ + riφ̇1

)

= (µ− (b+ 2c)r2)r + ar2e−i(φ1+φ2+φ3) (21)

and separating into real and imaginary parts leads to:

ṙ = (µ− (b+ 2c)r2)r + ar2 cos(φ1 + φ2 + φ3) (22a)

rφ̇1 = −ar2 sin(φ1 + φ2 + φ3) (22b)

and similarly for φ2, φ3.

Thus, steady states obey

Φ ≡ φ1 + φ2 + φ3 = 0, π =⇒ cos(Φ) = ±1 (23a)

0 = µ− (b+ 2c)r2 ± ar =⇒ r =







1
b+2c

[

−a±
√

a2 + 4µ(b+ 2c)
]

1
b+2c

[

+a±
√

a2 + 4µ(b+ 2c)
] (23b)
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The meaning of Φ = φ1 + φ2 + φ3 is as follows. Each of the three sets of rolls has a spatial phase φj .

Two of these phases can be set to zero by shifting the origin. But the third phase relative to the other

two cannot. The two possible values for Φ lead to hexagonal patterns that are not equivalent, called

up-hexagons and down-hexagons, shown schematically in figure 8.

Equation (23b) would seem to represent four solutions, i.e. two parabolas, one symmetric about r = −a
and the other about r = a. However, requiring r ≥ 0 reduces the four solutions to two. These solutions

both bifurcate transcritically from the trivial state at µ = 0. The turning point (saddle-node bifurcation)

is at µ = −a2/(4(b+ 2c)), where r = a.

A number of non-trivial solution types exist in addition to hexagons: rolls, rectangles and triangles. The

rolls are created in a pitchfork bifurcation and the rectangles in a secondary bifurcation from the roll

branch. The trivial solution and up-hexagons are both stable over a range of µ, and the rolls and up-

hexagons are also both stable over a different µ-interval. These are shown in the bifurcation diagram on

the right portion of figure 7

Figure 7: Left: wavevectors for hexagonal lattice. Right: Bifurcation diagram showing rolls (R), up-

hexagons (Hup) and down-hexagons (Hdown).

Exercise

For a lattice with hexagonal symmetry, the governing equations are

ż1 =
(

µ− b|z1|2 − c(|z2|2 + |z3|2)
)

z1 + az̄2z̄3

ż2 =
(

µ− b|z2|2 − c(|z3|2 + |z1|2)
)

z2 + az̄3z̄1

ż3 =
(

µ− b|z3|2 − c(|z1|2 + |z2|2)
)

z3 + az̄1z̄2

a. Calculate solutions (called rectangles) such that Re(z2) = Re(z3) 6= Re(z1) and Im(z2) =
Im(z3) = Im(z1) = 0. Determine over which parameter range in µ these exist.

b. Discuss the stability of the rectangles, including the number of stable or unstable eigenvalues.
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Figure 8: Hexagonal patterns. Left: up hexagons. Right: down hexagons.

1.5 Squares and hexagons in simulation of Faraday experiment

Figure 9: Boxes supporting the periodic patterns in the square and hexagonal cases. In black, the borders

of the box. Bright lines, pattern contained by each box. λ = 2π/kc.
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Hexagonal pattern: instantaneous position of interface and velocity fields
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Hexagonal pattern in Faraday experiment
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Hexagonal pattern in Faraday experiment
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2 Instabilities of roll patterns

The Swift-Hohenberg equation reproduces many of the well-known instabilities of striped (roll) patterns:

– the Eckhaus (E) instability: change in wavelength

– the zigzag (Z) instability: sinusoidal in-phase oscillations along roll axes

– the skew-varicose (SV) instability: sinusoidal out-of-phase oscillations along roll axes

– the cross-roll (CR) instability: appearance of perpendicular rolls

– the oscillatory (OS) instability: time-dependent oscillations along roll axes

These were discovered numerically and explored extensively in a series of papers by Friedrich Busse and

R. Clever in the 1970s on Rayleigh-Bénard convection. The occurrence of these instabilities depends on

three parameters: Rayleigh number Ra, Prandtl number Pr and wavenumber α (also denoted by k) of

the underlying striped (roll) pattern. The volume in (wavenumber, Rayleigh, Prandtl) space within which

straight roll patterns are stable to these instabilities is called the Busse balloon, shown in figure 10

The fact that these patterns and instabilities also occur in the Swift-Hohenberg equation shows that they

are not particular to Rayleigh-Bénard convection. Figures 11 and 12 shows the manifestation of some of

these in experiments and simulations of a granular layer subjected to vertical oscillation, together with

an adaptation of the Busse balloon to this case; the amplitude Γ of the vibrations acts analogously to the

Rayleigh number.

Prandtl

Rayleigh

wavenumber

zig-zag

skew-varicose

cross-roll

knot

oscillatory

Figure 10: Busse balloon. Region in (wavenumber, Rayleigh, Prandtl) parameter space in which straight

rolls are stable is delimited by various instabilities. From F.H. Busse, Transition to turbulence in

Rayleigh-Bénard convection, in Hydrodynamic Instabilities and the Transition to Turbulence, ed. by

H.L. Swinney and J.P. Gollub, Springer, 1981.
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Figure 11: Squares, stripes, hexagons in a granular layer. From C. Bizon, M.D. Shattuck, J.B. Swift,

W.D. McCormick & H.L. Swinney, Patterns in 3D vertically oscillated granular layers: simulation and

experiment, Phys. Rev. Lett. 80, 57 (1998).

Figure 12: Instabilities of a striped pattern in a vertically-vibrated granular layer. Left top: skew-varicose

instability. Left bottom: cross-roll instability. Right: stability boundaries in the (< k >,Γ) plane, where

< k > is the mean wavenumber and Γ is the amplitude of the acceleration. From J. de. Bruyn, C. Bizon,

M.D. Shattuck, D. Goldman, J.B. Swift & H.L. Swinney, Continuum-type stability balloon in oscillated

granulated layers, Phys. Rev. Lett. 81, 1421 (1998).
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2.1 Newell-Whitehead-Segur equation

We will now investigate the stability of a pattern of rolls with wavenumber not too far from the critical

wavenumber qc. An amplitude A is defined, which depends on space and time via slow variables X , Y ,

T .

u(x, y, t) = A(X,Y, T )eiqcx + c.c. (24)

The method of multiple scales is then used to derive from the Swift-Hohenberg equation for u an ampli-

tude or envelope equation for A, formulated in 1969 by Newell, Whitehead and Segur:

∂TA = µA− |A|2A+

(

∂X − i

2
∂Y Y

)2

A (25)

For notational simplicity, we will revert to using x, y, t instead of X , Y , T .

∂tA = µA− |A|2A+

(

∂x −
i

2
∂yy

)2

A (26)

The uniform state A=constant corresponds to a pattern of rolls with wavenumber qc and oriented in the x
direction. A pattern of rolls with a wavelength qc + q (where q > −qc) is described by Aq ∼ eiqx, which

bifurcates from A = 0 at µ = q2 and satisfies:

0 = µ− |Aq|2 − q2 =⇒ Aq =
√

µ− q2eiφeiqx (27)

We linearize (26) about Aq by substituting Aq + eσta(x, y) into (26) and neglecting nonlinear terms:

σa = µa− 2|Aq|2a−A2
qa

∗ +

(

∂x −
i

2
∂yy

)2

a (28)
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2.2 Eckhaus instability

We begin by considering only variation in x. Such eigenvectors of (28) are of the form:

a0(x) ≡ α0e
iqx (29a)

ak(x) ≡ αke
i(q+k)x + βke

i(q−k)x, k > 0 (29b)

Using

(

µ− 2|Aq|2 + ∂xx
)

a0 = (µ− 2(µ− q2)− q2)α0e
iqx = −(µ− q2)α0e

iqx (30a)

A2
qa

∗

0 = (µ− q2)ei2qxα∗

0e
−iqx = (µ− q2)α∗

0e
iqx (30b)

we find

σa0 = −(µ− q2)α0e
iqx − (µ− q2)α∗

0e
iqx (31)

or

σ0

(

αR
0

αI
0

)

=

(

−2(µ− q2) 0
0 0

)(

αR
0

αI
0

)

(32)

The eigenvalues along the diagonal are the usual eigenmodes of a circle pitchfork, corresponding to

contraction with rate σ0− = −2(µ− q2) onto the circle of solutions and to the marginal stability (σ0+ =
0) along the circle. For k > 0, we use

(µ− 2|Aq|2 +∂xx)ak

=
(

µ− 2(µ− q2)− (q + k)2
)

αke
i(q+k)x +

(

µ− 2(µ− q2)− (q − k)2
)

βke
i(q−k)x

= −
(

µ− q2 + k2 + 2qk
)

αke
i(q+k)x −

(

µ− q2 + k2 − 2qk)
)

βke
i(q−k)x (33)

A2
qa

∗

k = (µ− q2)ei2qx
(

α∗

ke
−i(q+k)x + β∗

ke
−i(q−k)x

)

= (µ− q2)
(

α∗

ke
i(q−k)x + β∗

ke
i(q+k)x

)

so that

σkak = −
(

µ− q2 + k2 + 2qk
)

αke
i(q+k)x −

(

µ− q2 + k2 − 2qk
)

βke
i(q−k)x

−(µ− q2)
(

α∗

ke
i(q−k)x + β∗

ke
i(q+k)x

)

which is expressed in matrix form as:

σk

(

αR
k

βR
k

)

=

(

−(µ− q2 + k2)− 2qk −(µ− q2)
−(µ− q2) −(µ− q2 + k2) + 2qk

)(

αR
k

βR
k

)

(34)

and a similar system for (αI
k, βI

k), with the off-diagonal terms of opposite sign from (34). Eigenvalues of

(

a− c b
b a+ c

)

(35)

are

σ =
(a− c) + (a+ c)

2
±

√

(

(a− c)− (a+ c)

2

)2

+ b2 = a±
√

c2 + b2 (36)

The systems for (αR
k , β

R
k ) and (αI

k, β
I
k) lead to the same eigenvalues (which are therefore double):

σk± = −(µ− q2 + k2)±
√

(2qk)2 + (µ− q2)2 (37)
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Figure 13: Eigenvalues σk± of Aq for q = 1, k = 0, 1, 2. Branch Aq is created from the trivial state at a

primary circle pitchfork bifurcation (•) and stabilized at a secondary Eckhaus bifurcation (�).

These eigenvalues are shown in figure 13. We call the corresponding eigenvectors ak±.

Eigenvalues σk− and σ0± are always negative. At the bifurcation point µ = q2 at which Aq is created

σk+ = −k2 + |2qk| = k(2|q| − k) (38)

and hence is positive if k < 2|q|. This means that, when it is created, branch Aq is unstable to the

eigenvectors ak+ for k < 2|q|. The greater the value of q, i.e. the deviation from the critical wavenumber,

the more unstable directions, since there are more possible values of k which satisfy this criterion. The

eigenvalues associated with these unstable eigenvectors cross zero at:

(µ− q2 + k2)2 = (2qk)2 + (µ− q2)2

k4 + 2(µ− q2)k2 = (2qk)2

(µ− q2) = 2q2 − k2

2

µ = 3q2 − k2

2
(39)

These points are shown in figure 14. Each of these points corresponds to a pitchfork bifurcation. Since

these bifurcations occur from a branch already created via a bifurcation from the trivial state, they are
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Figure 14: Stability curves. The thick parabola shows the marginal stability curve µq = q2 along which

the trivial state is destabilized by primary bifurcations to periodic patterns Aq. Thin parabolas show the

finite-domain Eckhaus curves µqk = 3q2 − k2/2 for k = 1, 2, . . . along which the periodic patterns

are stabilized by successive secondary bifurcations to unstable mixed-mode states. The highest of these,

µfinite = µq1 = 3q2− 1/2, is the finite-domain Eckhaus boundary above which pattern Aq is stable. The

dotted portions of the Eckhaus curves below the marginal stability curve have no significance, since states

Aq do not exist in this region. Primary and secondary bifurcations for the specific case qc − [qc] = −1/4
are shown as solid and hollow dots, respectively. The infinite-domain Eckhaus curve µ∞ = 3q2 is shown

for contrast as a dashed curve.

called secondary bifurcations. New states emerge from these secondary bifurcation points, towards

increasing µ, i.e. where Aq is more stable, and so the bifurcations are called subcritical. The bifurcation

diagram is shown in figure 15.

When the last of these points is crossed, all of the eigenvalues have become negative and Aq is stable.

This change of stability of Aq is the Eckhaus instability: We recall that q − qc and k must be multiples

of 2π/L, with qn − qc = 2nπ/L. The lowest value of µ in (39) is attained for k = 2π/L. Equation (39)

takes on the more universal form

µE =

(

3n2 − 1

2

)(

2π

L

)2

⇐⇒ µ̂E ≡
(

L

2π

)2

µE = 3n2 − 1

2
(40)
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Figure 15: Left: bifurcation diagram. Branches with wavenumbers q0, q1, q2 · · · are created at successive

primary pitchfork bifurcations as µ is increased through the values q20, q
2
1, q

2
2, · · · . All but the first (q0)

branch is unstable; each branch is restabilized by successive secondary Eckhaus bifurcations at µ =
3qn − k2. For clarity, only the lowest-µ portions of the mixed-mode branches created at the Eckhaus

bifurcations are shown. Thick curves indicate stable portions of the trivial and primary branches. Right:

schematic phase portraits at values of µ indicated on left. The coordinates represent projections of the

first two or unstable directions of the trivial state C. Stable steady states are indicated by filled circles,

unstable steady states by hollow circles. (α) For µ < 0, C is the only steady state. C is stable as

indicated by the solid circle and by the arrows pointing towards it. (β) After one supercritical bifurcation

the trivial state is unstable and a pair of stable steady states A0 (whose wavenumber is q0, the allowed

wavenumber closest to qc) has been created. (γ) After a second supercritical bifurcation, C has two

unstable directions. Another pair of steady states A1, with allowed wavenumber q1 now exists. These,

however, are unstable (in one direction), as can be seen from the trajectories leading to A0. These

trajectories and unstable directions are inherited from C. (δ) States A1 have been stabilized by undertoing

a subcritical bifurcation. Each state A1 emits a pair of unstable steady states, on the trajectories joining

A0 and A1. (ǫ) C has undergone another supercritical bifurcation, acquiring a third unstable direction,

and creating another pair of unstable steady states A2. Each new state has two unstable directions, as

can be seen from the trajectories joining A2 to A0 (towards the north and south poles) and to A1 (left

and right along the equator). States A2 would require two subcritical bifurcations, one in each unstable

direction, in order to become stable.
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2.3 Zig-zag instability

We now carry out a similar analysis, but for variation in y. We seek eigenvectors of (28) of the form:

am(x) ≡ αmei(qx+my) + βmei(qx−my), m > 0 (41)

Using:

(

∂x −
i

2
∂yy

)2

ei(qx±my) =

(

iq − i

2
(im)2

)2

ei(qx±my) = −
(

q +
m2

2

)2

ei(qx±my)

= −
(

q2 + qm2 +
m4

4

)

ei(qx±my) (42)

(µ− 2|Aq|2)am = (µ− 2(µ− q2))am = (−µ+ 2q2)am (43)

A2
qa

∗

m = (µ− q2)ei2qx
(

α∗

me−i(qx+my) + β∗

me−i(qx−my)
)

= (µ− q2)
(

α∗

mei(qx−my) + β∗

mei(qx+my)
)

(44)

equation (28) becomes

σm

(

αmei(qx+my) + βmei(qx−my)
)

=

(

−µ+ 2q2 − q2 − qm2 − m4

4

)

(

αmei(qx+my) + βmei(qx−my)
)

−(µ− q2)
(

α∗

mei(qx−my) + β∗

mei(qx+my)
)

=

(

−(µ− q2)−m2

(

q +
m2

4

))

(

αmei(qx+my) + βmei(qx−my)
)

−(µ− q2)
(

α∗

mei(qx−my) + β∗

mei(qx+my)
)

(45)

which is expressed in matrix form as:

σm

(

αR
m

βR
m

)

=





−(µ− q2)−m2
(

q + m2

4

)

−(µ− q2)

−(µ− q2) −(µ− q2)−m2
(

q + m2

4

)





(

αR
m

βR
m

)

(46)

Eigenvalues of
(

a b
b a

)

(47)

are

σ =
a+ a

2
±

√

(

(a− a)

2

)2

+ b2 = a± b (48)

Hence the eigenvalues of (46) are

σm = −(µ− q2)−m2

(

q +
m2

4

)

± (µ− q2) =







−m2
(

q + m2

4

)

−2(µ− q2)−m2
(

q + m2

4

) (49)

For q + m2

4 < 0, i.e. for q < −m2

4 , the first eigenvalue above is positive, independent of µ. As for the

Eckhaus case, the larger the value of |q|, the more unstable m modes there are. This instability occurs

only for q negative, i.e. for wavenumbers smaller than – and wavelengths larger than – the critical values.

As the rolls bend under the influence of the zig-zag instability, their wavelengths decrease.
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