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Abstract. The transition between uniform turbulence in plane Couette flow and turbulent-
laminar banded patterns is studied using numerical computations. Timeseries of the velocity
along a line in the midplane along the pattern wavevector are Fourier transformed. When
averaged in time, these spectra show diffuse maxima corresponding to streaks and longitudinal
rolls with a wavelength near 4, and a sharper, higher, maximum corresponding to the turbulent-
laminar pattern with wavelength 40. Probability distribution functions are computed for the
Fourier component corresponding to wavelength 40. It is shown that this PDF is a Gaussian
centered at 0 for a a uniform turbulent flow and that this maximum shifts to a finite value when
a turbulent-laminar banded pattern appears.

In large-aspect-ratio plane Couette flow, a pattern of oblique bands, alternating between
turbulent and laminar flow, is the intermediate regime between uniform turbulence and simple
laminar flow [1, 2]. The pattern wavelength is much larger than the gap and the pattern
wavevector is oriented obliquely to the streamwise direction; typical values are 40 half-gaps and
24◦. We have reproduced and studied these patterns numerically [3] in fully resolved simulations
of the Navier-Stokes equations. Here, we focus on the transition between uniform turbulence
and the turbulent-laminar pattern.

Figure 1 shows a perspective plot of one of our computed turbulent-laminar patterned flows.
Our computations use a horizontally periodic domain whose length (in the z direction) is the
expected pattern wavelength and whose orientation is along the expected pattern wavevector.
Figure 2 illustrates our computational domain. Within this domain, we use a spectral element-
Fourier code [4], with Nx × Ny × Nz = 81 × 41 × 512 points or modes to resolve a domain of
size Lx × Ly × Lz = 10 × 2 × 40. In our previous research [5], we have shown that the mean
flows corresponding to these patterns are represented almost perfectly by a single trigonometric
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Figure 1. Turbulent-laminar pattern at Reynolds number 350. Isosurfaces of instantaneous
streamwise vorticity. This visualization is constructed by tiling a large domain with many
repetitions of our computational domain.

Figure 2. Computational domain oriented at angle θ to the streamwise-spanwise directions.
The z direction is aligned to the pattern wavevector. The turbulent region is represented
schematically by hatching. (a) Domain oriented with streamwise velocity horizontal, as in
figure 1. (b) Domain oriented with z horizontal, as in remainder of paper. (c) View between
the plates.
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function along the direction of the pattern wavevector, which we denote by z. The Fourier
component corresponding to the pattern wavelength thus provides an order parameter for the
transition. Here we will analyse the dependence of this Fourier component and its statistical
properties on the Reynolds number.

The data we analyze are timeseries of the velocity at 32 equally spaced values of z along a
line x = y = 0 in the mid-plane. In the first row of figure 3, we show timeseries of the spanwise
velocity for a turbulent-laminar pattern at Re = 350, an intermittent state at Re = 410 and a
state at Re = 500 in which the turbulence is uniform in the z direction. In this investigation,
a single timeseries is analyzed for each value of Re. We then take the modulus of the Fourier
transform in the z direction of this data. The time-average of the square modulus of the Fourier
transform, i.e. the power spectrum avg(|spanm|2), of the spanwise velocity is shown in the second
row of figure 3. These spanwise spectra show very little variation with the wavenumber m, except
for one very prominent feature: the m = 1 Fourier component corresponding to wavelength 40
and shown as a blue square emerges from the rest of the spectrum at Re = 350 and, to a lesser
extent, at Re = 410. The corresponding power spectra of the streamwise velocity avg(|strmm|2)
are shown in the third row of figure 3. In addition to the peak at m = 1, the spectra of the
streamwise velocity also display a broad peak at 7 . m . 11, corresponding to wavelengths
3.6–5.7 and shown as red triangles. This peak reflects the streamwise streaks, i.e. the spanwise
variation of the streamwise velocity which are the “texture” of wall-bounded turbulence. These
streaks are intimately connected with longitudinal vortices which rotate in the cross-channel
and spanwise plane. The absence of these peaks in the spanwise spectra implies that these
vortices are centered between the plates and so the velocity in the midplane is exclusively in the
cross-channel direction. Indeed, spectra of the cross-channel velocity avg(|crossm|2) show the
broad peaks corresponding to the streaks and not the m = 1 peak corresponding to the pattern.
Using the color coding above, we can combine the spectra, which we display as a function of
Reynolds number in figure 4.

We now consider the distribution of values of the modulus a of the m = 1 Fourier
component of the spanwise velocity span1 corresponding to the turbulent-laminar pattern.
Writing span1 = a exp(iφ), the probability distribution p(a, φ) satisfies

1 =

∫
∞

0
ada

∫ 2π

0
dφ p(a, φ)

︸ ︷︷ ︸

p(a)

(1)

By counting the occurrences of a within the interval [ai, ai+1], we estimate

∫ ai+1

ai

ada

∫ 2π

0
dφ p(a, φ) (2)

Dividing (2) by (ai+1 − ai)(ai + ai+1)/2 leads to an approximation of p(a) at (ai + ai+1)/2.
The probability density functions for various Reynolds numbers are shown on the left part of

figure 5. For Re ≥ 440, when the turbulence is uniform, the maximum, i.e. the most probable
value, is at amax = 0 and

ln p(a) = c0 + c2a
2 (3)

provides an excellent fit, i.e. p(a) is almost perfectly Gaussian. As shown in figure 5, the most
probable value shifts to positive a as Re is lowered and a pattern appears. Generalizing (3) to a
functional form which fits p(a) for lower values of Re has thus far proved to be problematic. The
canonical scenario would include a quartic term c4a

4 in (3) ; c4 would vary little with Re while
c2 would change sign at the transition. However, addition of c4a

4 does not provide a good fit
for any of the patterned flows, as exemplified by the dashed blue curve of figure 5 for Re = 350.
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Figure 3. Left column: statistically steady turbulent-laminar pattern at Re = 350. Middle
column: intermittent state at Re = 410. Right column: uniform turbulence at Re = 500. Top
row: timeseries of the spanwise velocity along the line x = y = 0 at 32 equally spaced values
of z. Middle row: time-average of the power spectrum in z of the spanwise velocity. Bottom
row: time-average of the power spectrum of the streamwise velocity. The blue square at m = 1
corresponds to the pattern wavelength of 40. The red triangles at 7 . m . 11 correspond to
streaks of wavelength near 40/9=4.44. The m = 0 component is shown as a black cross and the
remaining components are shown as green dots.
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Figure 4. Power spectra as a function of Re. Left: streamwise. Middle: cross-channel. Right:
spanwise. Blue squares: wavenumber m = 1 corresponding to pattern wavelength 40. Red
triangles: wavenumbers 7 . m . 11 corresponding to streaks of wavelengths near 40/9=4.44.
Black crosses: wavenumber m = 0. Green dots: other wavenumbers. Transition involves both
m = 1 mode (blue square, higher for Re < Rec) and streak modes (red triangles, higher
for Re > Rec). Streamwise spectrum shows transition in both pattern and streaks. Cross-
channel spectrum shows only streaks transition. Spanwise spectrum shows pattern transition
most clearly.

Figure 5. Left: probability distribution functions p(a) for Re = 500 (red, highest at
a = 0), Re = 410 (black), and Re = 350 (blue, lowest at a = 0). Points indicate values
obtained by postprocessing full numerical simulations. PDFs for uniform turbulent states are
all quantitatively, as well as qualitatively similar; PDFs for turbulent-laminar patterns are also
similar. Solid curves are least-squares fits to the functional form ln p(a) = c0 + c1a + c2a

2,
with the weighting function p(a); dashed curves are least-squares fit to the functional form
ln p(a) = c0 + c2a

2 + c4a
4. Right: Maximum amax of PDFs as a function of Reynolds number

(solid black dots) and coefficient c1/10 (hollow red dots) from least-squares fit.
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A better fit is provided by including instead a linear term c1a, as shown by the solid blue curve.
This functional form gives amax = −c1/(2c2) as the most probable value. Both amax and c1 are
shown on the right part of figure 5. When Re ≤ 460, p(a) begins to widen and when Re ≤ 440,
amax is no longer zero.

We have shown that turbulent-laminar patterns in plane Couette flow are well-characterized
by their Fourier spectra along the direction of the pattern wavevector. The spectrum
distinguishes small-scale structures, notably streaks, and also the large-scale pattern. The
amplitude of the Fourier component corresponding to the pattern provides an excellent order
parameter for the transition from uniform turbulence. Future plans include the analysis of
multiple timeseries at each value of Re, in order to acquire more accurate information about the
PDFs, particularly their tails.
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