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Quasiperiodicity and Intermittency
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Figure 1. Poincar sections of flows containing limit cycles. From left to right: before anyrbition,
after a pitchfork bifurcation, afer a saddle-node bifurcation, afteopfHifurcation.

A system undergoes a Hopf bifurcation (or other event) creating a limlecy€he limit cycle then
undergoes another a Hopf bifurcation. If we consider the discretediten or Poinca& map, the limit
cycle is a fixed point and it undergoes a Hopf bifurcation. For the origimatinuous dynamical system,
this is called a secondary Hopf or a Neimark Sacker bifurcation and leaasaiws, as shown in the
rightmost portion of figure 1. Trajctories wind around the torus.

Circle maps

For the Poinca map, the unstable fixed point is now surrounded bynaariant circle The discrete
trajectories do not go around the circle continually, but jump from point fatpdrhis motivates the
study ofcircle maps

Oni1 = f(0,) mod 1 (1)

(In this chapter, angles are measured in unitdrofadians.)

The basic prototype for a circle map is thime circle mapstudied by V. Arnold in the 1960s (then at
Moscow, now also at University of Paris 1X, Dauphine):

Ont1 = fox(On) = [0n+Q — 2£ sin(276,) mod 1 (2)
0

The parameteK measures the strength of a nonlinear perturbation. We start by givingettavior of
the sine circle map (2) for the linear caseff= 0. The behavior depends @&, which is the basic
frequency of the map.

f Q=0 then allg are fixed points off
If Q= panyinteger alp are fixed points off
If Q=p/q then alld are members af-cycles off

fq(e):[9+§+§+...§} mod 1= [0 +p] mod1=0

q times
If Qirrational then there ameofixed points org-cycles
All 6 are members afuasiperiodic orbits
Each orbit is dense on the circle



Figure 2: Trajectories of circle maf),.1 = 6,, + Q for Q@ = 1/5, Q = 3/5 and forQ2 slightly more
than 1/5. Since the map is discrete, trajectories are not continuous and wergdr#he circle non-
monotonically. Wherf2 = 3/5, the trajectory is a 5-cycle which goes around the circle 3 timeQ.i¢f
irrational, the trajectory contains an infinite number of points and neverctoséself.

Frequency locking

We now turn our attention to the nonlinear cdse# 0 (within the range) < K < 1). Figure 3 shows a
circle map that has undergone a saddle-node bifurcation, creatinge atabunstable fixed point. For
the original flow, this corresponds to the creation of a stable and unstableyioht This phenomenon
is called frequency locking.

Figure 3: Sine circle map. Left: fak = 0, f(6) = 6 + Q. Right: for K > 0, a saddle-node bifurcation
may create a pair of fixed points, one stable and one unstable. Valug’,dtg = (0.2,0) (left) and
(0.1,1) (right).



Let us determine some cycles and bifurcation points for the sine circle mape&Kegpoints such that

flo) =1 f(0) =0 3)
1— Kcos(2m6) =1 6+ Q— % sin(276) =60 +n 4)
cos(2md) = 0 sin(270) = 2%((2 —n) (5)
9:% == sin(Zwi)zlzi?QzK:%rQ (6)

3 . 3 27
9:1 — sin (2774) :—1:?(9—1):>K:27r(1—9) (7

Figure 4 shows the saddle-node bifurcations taking place-atl/4, K = 27Q andf = 3/4, K =
27(1 — ). Figure 5 shows the two bifurcation curves in {f& K) plane, Foi0 < Q < K/(2x), (left
portion of figure 5) orl — K/(27) < € < 1 (right portion of figure 5), the sine circle map has a pair of
fixed points, while fork/(27) < © < 1 — K/(2m), it has no fixed points.

Having found fixed points, i.e. one-cycles, we now seek two-cycles sirte circle map does not undergo
any period-doubling bifurcation in the range< K < 1 since, as shown on figure 6 K < f'(0) <

1 + K, so f’(0) is never negative in this range. Thus, two-cycles cannot appear si@lgioubling
bifurcations off, which, we recall, are pitchfork bifurcations of the second itefdte= f(f(6)). Two-
cycles can and do, however, appear via saddle-node bifurcatigfits 8incefa—1/2,x—0) is @a map for
which all §’s are members of two-cycles, we write

0. (K) = § + e(K) ®)

with K, ¢(K) small. We write the form of the second itergtéas:

20 = f) + Qu(K)  — gosin(2nf(0))
= 0+ 1dte(K)— £sin(2r0) + FLte(K) — 2sin(2rf(0)) (9)
= 0+ 1+2¢K)— % sin(276) - % sin(27f(0))

We expand the last term in (9) as:

sin(2rf(9)) = sin (27r (9 + % + e(K) — 25 sin(27r9)>>

T
= sin (270 + 7 £ 27e — K sin(276))
= sin (270 4+ ) cos (+2me — K sin(276)) + cos (270 + 7) sin (+2we — K sin(276))

=—sin(270) ~1 =—cos(270) ~+2me—K sin(2m0)
~ —sin(270) — cos (270) (£27e — K sin(270)) (10)
where we have usedn(0+7) = —sin(f), sine ~ ¢, cos(8+7m) = — cos(#), andcos € ~ 1. Substituting

(20) into (9), we obtain

K K
f20) ~ 6+1+2e— o sin(270) — o (—sin (270) — cos (270) (£27e — K sin(270)))

K
= 0+1%2+ 5, €os (2m0) (£2me — K sin(276)) (11)
T



0.75

n+1
0.5

0.25

‘ /
/
Y
Y
0.75 I~ -
//
6n+1 7
/

0.5 / —

/

/
/
/
//
0.25 — Y —
/
/
/
/

0 ! !
0 0.25 0.5 0.75 1

0

Figure 4: Saddle-node bifurcations of sine circle nfegt K = 0.5.
At Q = K/(2m) = 0.08, a stable-unstable pair of fixed points is created/destroyéd-at /4.
At Q =1- K/(2r) = 0.92, a stable-unstable pair of fixed points is created/destroyéd-ad /4.
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Figure 5: First frequency-locking tongue {2, K') plane. Fixed points (one-cycles) exist inside the
tongue, i.e. fo0 < Q < K/(2m) andl — K/(27) < Q < 1.
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Figure 6: Derivativef’(6) of sine circle map foll = 0.25. 1 — K < f/ <1+ K andf/'(§) = 1 for
0 =1/4,3/4. f'(0) is positive for allf if K < 1.

We seek fixed points of?(§) mod 1:

0=(f%#)—0) modl ~ =2+ 25 cos (270) (£27e — K sin(276))
T

K2
= +2¢(1+ K cos(270)) — o cos(2m0) sin(276) (12)
T

The terms in (12) are of ordereK andK2. SinceeK < ¢, the balance must be between terms of order

eand K2 )

€~ :I:£ sin(476) (13)
8w

The saddle-node bifurcations ¢t and the bifurcation curves in th€), K') parameter plane are plotted
in in figures 7 and 8. As we did for the one-cycles, the condition

Lre =1 (14)

can be used to determie It turns out that the values éfare near 1/8, 3/8, 5/8, 7/8.

Just as one-cycles occur via saddle-node bifurcationsarid two-cycles via saddle-node bifurcations
of f2, three-cycles emerge froli = 0, Q = 1/3 andQ) = 2/3 via saddle-node bifurcations ¢#.
These three-cycles exist ov@rintervals of widthO(K?). In general, for any integeys ¢, we can seek
Q, K, 0 satisfying

fh(0)=0+p (15)

where wedo notuse use mod 1 to constru€t (in order to retain knowledge of the value @f Such
cycles are created via saddle-node bifurcations and exist over a fitgteahof (€2, K'). These regions
are calledrequency-locking tongues Arnold tonguesThe union of all such tongues has zero measure
(consisting of the rational® = p/q) at K = 0 and widen ads increases. A = 1 the union of the
tongues has measure one.
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Figure 7: Saddle-node bifurcations of second iteydtef sine circle map af = 0.5.

At Q ~ 1/2 — K?/(87) ~ 0.475, two stable-unstable pairs of fixed points are created/destroyed at
6 ~ 3/8 and 7/8. AtQ ~ 1/2 — K?/(87) ~ 0.525, two stable-unstable pairs of fixed points are
created/destroyed ét~ 1/8 and 5/8.
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Figure 8: Frequency-locking tongue 1/2 (f?, K) plane. Two-cycles exist inside the tongue, i.e. for
1/2— K?/(87) SQ < 1/2+ K?/(87).
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Figure 9: Winding numberW(fqx) for K = 0 (left, simple diagonal line) and
for K = 1 (right, devil's staircase) Devil's staircase from E. Weisstein, MathWorld,
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Figure 10: Schematic representation of frequency locking tongues (i2th#€) plane. From M. Cross,
CalTechhttp: //ww. cnp. cal t ech. edu~ntc/ Chaos_Cour se/ Lessonl9/ Circl e. pdf



Winding number

We define thevinding numbenof a circle mapf to be

W(f)= lim f"(00) = b

n—00 n

(16)

wheref™ is nottruncated td0, 1]. Poincaeé showed that if is monotonic and continuous, then this limit
exists and is independent &f. For the sine circle map witkh = 0,

. O+ nQ—06
W(fax=0) = lim =———2 =0 (17)

— 00 n

The winding number generalizes the frequeficyo maps which are less trivial. In particular, when
(2, K) is inside a frequency-locking tongue with frequengly;, thenW (fq k) = p/q. Thus, from
figures 5 and 8, we see thiaf(fo—o,x) = 0, W(fo=1/2,x) = 1/2 andW (fo=1,x) = 1 for all K.

At K = 1, the graph oW ( fo x—1) is called the Devil's staircase and is shown in figure 9. It consists of
a series of steps, with narrow steps for large denomingtarsl wide steps for small denominatqrdt

is continuous (1) and constant almost everywhere (on a set of mease)ewith jumps at each irrational
number.

The golden mean

The “most irrational’number, which is the golden mean, stays furthest &waythe frequency-locking
tongues associated with each rational. All these terms can be given rsgoeanings.

Let us define the sequenes, as follows:

1 1
N T
1 1 1 1
o= 1 14w 1+1 2
B 1 B 1 1 1 2
= 1 14w 1+1 273
1+ 1
170
1
Wntl = T (18)
Another definition ofw,, is based on the Fibonacci sequence
Fo=F =1, Fyo=F, 1 +F,=—1,1,2,3,5,8,13,... (19)
Wpt1 = Ffil (20)



Figure 11: The ratio between— w, andw, is the same as that between and 1.

These are equivalent, as can be seen from:

Fy
= 1 = —
w1 Fl
1 R
w _= _——= —_—
2 2 R
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ot Fn+1 Fn+ Fna % 14w, ( )
The golden mean can be defined by
wy = lim wy, (22)
n—oo
Definition (18) then leads to
1
Wy =
1+ wy
we(l4+wy) = 1
wz + we—1=0
—1++v1+4 5—1
w, = +2 i :‘[2 — 0618, .. 23)

The golden mean gets its name from the property illustrated in figure 11, naraéléhratio between
1 — w, andw, is the same as that between and 1.
1 — w, Wy 9

Wi 1

The irrationalw, is the number which is furthest from its approximation by a truncated contifnraed
tion. This implies that it is furthest from its approximation by fractions (beedhs closest fraction to
a number is in fact the truncated continued fraction approximation). Thuwititding numberw, is
the irrational furthest from a frequency-locking tongue. A speci#h parough thg 2, K') plane keeps
winding number neaw, and the dynamics away from frequency-locking (i.e. quasiperiodic idsiEa
periodic) as long as possible.
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Taylor-Couette flow
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Uc(r) Ury(r, z) Uwvy(r,6,z,1) Uywv(r,0,z,t)

Taylor-Couette flow between infinitely long (or very long) differentially totg concentric cylinders un-
dergoes successive transitions. The transition flaominar Couette flowJ () to axisymmetric Taylor
vortex flow Upy (1, 2) is a circle pitchfork, since any phase inis permitted. The transition tavavy
vortex flowUyv (1, 0, 2, t) is a Hopf bifurcation to a limit cycle, since the pattern precessésviith
time. The transition tenodulated wavy vortex floW v (7, 0, 2, t) is a secondary Hopf bifurcation to
flow on a torus and introduces another temporal frequency. We haneai®ve that frequency-locking
on a torus is very common as nonlinearity is increased. However, althopghimentalists looked for
frequency-locking in the 1970s, it was not seen in modulated wavy véidex Why not? In 1981,
Rand pointed out thatymmetryplayed an important role. Wavy vortex flow, while periodic, is steady
in a rotating frame. The time-dependence is osymmetry group orhitsuccessive states are related
by symmetry (rotation) and are hence dynamically equivalent. Saddlehifonieations, such as those
depicted in figure 4 and 7 cannot occur, since they distinguish betwdenredif states (here, values of
#). This explains why frequency-locking is not observed in modulated/wavtex flow.
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A timeseries from a flow with two frequencies (flow on a torus) is shown irréid2.
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Figure 12: Periodic and quasiperiodic behavior in a model of an oscillatiegnical reaction. From
D. Barkley, J. Ringland & J.S. Turne@bservations of a torus in a model of the Belousov-Zhabotinskii
reaction J. Chem. Phys87, 3812 (1987).
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Intermittency

05 ——— T 1l 7 1

g(x) | 1) | ] )|

N A R st o5V R
~0.5 0 0.5 -05 0 0.5 1 ~0.5 0 0.5 1

Figure 13: Slow dynamics near a bifurcation. Left: near a saddle-riwtedttion forg = z,, +0.2+ 22,
Middle: near a period-doubling bifurcation fgr= —1.2x,, +0.12}. Right: near a pitchfork bifurcation
for f2.

Intermittency is similar to a phenomenon that we have already discussed, relovelglynamics near
ghostsof fixed points close to aniperbifurcation orsaddle-node bifurcation on a limit cycle

The left portion of figure 13 shows the iteration of a map
Tpy1 = f(@n) = T — p + x?z (25)

near a saddle-node bifurcation, both in terms of the initial conditiprand also in terms ofi. For
p < 0, no steady states exist, but the dynamics are slow since steadyastates, /i exist for . > 0.
It is assumed that another mechanism exists to re-inject the dynamics intoitlig/\a€ z = 0. This is
called Type | intermittency.

The middle and right portions of figure 13 show the iteration of a map

Tyl = f(zn) = —2p — pa, + az’ (26)
and of its second iterate, . = f(z,,) near a subcritical period-doubling bifurcation ffiwrRecall that a
period-doubling bifurcation fof corresponds to a pitchfork bifurcation f¢f. Both can be supercritical
or subcritical. Here too, the dynamics are slow neat 0 and another mechanism is assumed to exist
to re-inject the dynamics into the vicinity ef= 0. This is called Type IIl intermittency.

Type Il intermittency is associated with a subcritical Hopf bifurcation.

We have seen that the logistic map provides an exampleratfita to chaowia period-doubling. The
logistic map also provides an example of a route to chaos via Type | intermitfEheyogistic map has
a period-3 cycle formed by a saddle-node bifurcatiorfdfitr3 = 0.9624. Forr > r3, the dynamics
visit a period-3 cycle. For < rs3, the dynamics are chaotic.

Rayleigh-Benard convection in a small-aspect-ratio container provides examplesthfesl types of
intermittency.
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FIG. 1. Time dependence of light intensity, roughly
proportional to the horizontal temperature gradient
near the cold plume, Np,/Np, ,~420.
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FIG. 2. Return mapl,, ,=f([,), constructed from
the data shown in Fig. 1 superposing two laminar per-
iods. The amplitudes of the light modulation in the
turbulent bursts have not been drawn.

Figure 14: Type lll intermittency seen in Rayleigléard convection experiment. Top: timeseries. The
subharmonic (period-doubled signal) grows, ending with a burst, folldwyehe laminar phase in which
the signal returns to its original period. Bottom: Poiricarap from the maxima of the timeserigh, }
above. The maximunf, 5 is plotted as a function af,. From M. Dubois, M.A. Rubio & P. Berg, Ex-
perimental Evidence of Intermittencies Associated with a Subharmonic BlifomcBhys. Rev. Lett51,
1446 (1983).
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Figure 15: Type | intermittency seen in Rayleigé+iard convection experiment. Top: non-intermittent
timeseries forRa = 280 Ra.. Bottom: intermittent timeseries faRa = 300 Ra.. From P. Berg,
M. Dubois, P. Manneville & Y. Pomeau, J. Phys. (Paris) L£1{.341 (1980).
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Lyapunov exponents

0.0 50.0 100.0

Figure 16: An infinitesimal displacement evolves exponentially until it remthe attractor boundary.
The initial slope seen above is the largest Lyapunov exponent. Fronafhédwille, Class notes, DEA
Physique des Liquides.

The stability of a steady stateis determined by the eigenvalues of the Jacobian matrix. The stability of
a limit cyclez(t) is determined by its Floquet exponents. Such a quantity can be defined/fkina of
attractor and is called theyapunov exponentor any trajectoryz(¢), we can study the evolution of an
infinitesimal perturbation(t¢), governed by the dynamidmearized about:(¢). The largest Lyapunov
exponent is defined to be:

€(t)

€(0)
In fact, we do not really want to take— oo, since once the trajectory reaches the geometric boundary of
the attractore(t) ceases to grow. This is illustrated in figure 16. It can be showntHats independent

of the initial condition and characterizes the entire attractor on whielrolves. Just as the winding
number defines an average rotation per iteration, the Lyapunov expadefames the average growth or
decay per iteration.

1
= lim —In
t—o0

A=A (27)

The first exponenhA() is the rate of growth or decay of distances fraft). Rather than monitoring a
linear distance evolving according to the dynamics linearized abhoutve can monitor the evolution of
an area. This yieldd™) + X\(?), where the second Lyapunov exponent&. One can then defing®).
For a steady state(t), the Lyapunov exponents are the eigenvalues of the Jacobian anliiitreycle,
they are the Floquet exponents.

For a map, we have

a = fl(Zo)eo (28)
n—1
en = [ F (@) (29)
k=0
n—1 1 n—1
A= lim = [T F @) = lim = | f/(z)| (30)
k=0 k=0

On chaotic attractors, nearby initial conditions eventually diverge, aatllsast one Lyapunov exponent
is positive. This is one of the possible definitions of chaos.
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Wrinkling of a torus
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Figure 17: Poincdr sections calculated from a model of an oscillating chemical reaction. @s3e se
quasiperiodic behavior (a), mode-locking (b,e) and wrinkled tori (¢kfam D. Barkley, J. Ringland &
J.S. TurnerPbservations of a torus in a model of the Belousov-Zhabotinskii readtiGhem. Phys37,
3812 (1987).

What happens whek exceeds one? The sine circle map then becomes non-invertible. This implies
that:

—it cannot be the Poincamapping of a flow

—it can become chaotic (an invertible map cannot become chaotic).

The attractor, which can no longer be mapped onto a circle, may bewoimided, like the example in
figure 17.
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Route to chaos from a torus

Before the 1970s, the leading dynamical systems theory of turbulentéomaard by Landau, was
that turbulence consisted of a sequence of Hopf bifurcations, eathgaa frequency to the flow, with
turbulence as an asymmptotic state containing a large or infinite number oéfreiqa. The new devel-
opments in the 1970s and 1980s concerning chaos changed this prepailihgf view. First, Lorenz

showed that a small set of deterministic ordinary differential equationisl ¢ead to behavior that was

essentially unpredictable. This was followed by the discovery that onlg tineguencies could lead to
chaos.

More specifically, Ruelle and Takens (1971) and Newhouse, Ruell@alehs (1978) proved a famous
theorem concerning quasiperiodic motion, i.e. motion on a torus, of dimensiofl. The theorem says
that perturbations could lead to chaos:

“Let v be a constant vector field on the torti€ = R"/Z". If n > 3, everyC? neighborhood of
contains a vector field’ with a strange Axiom A attractor. i > 4, we may takeC'™ instead ofC2.”

How likely are these perturbations? Curry and Yorke (1978) and @ielxit and Yorke (1985) in-
vestigated numerically the probability of random perturbations leading toschagst as the Poindar
mapping for flow on two-torus is a circle map, the Poircarap for flow on a three-torus consists of a
pair of coupled circle maps:

9n+1 = gn + w1 + KPl(ena ¢n) mod 1 (31)
Ont1 = Opt+wo+ KP2(97L7 ¢n) mod 1 (32)

The solutions can be quasiperiodic with three frequencies, quasipevidditvo frequencies, periodic,
or chaotic. The map becomes non-invertible for= K.. .

Attractor Lyapunov exponents £ =3[ £ =2 K =3

Three frequency quasiperiodic 0,0 82% 44% 0%

Two frequency quasiperiodic 0,— 16% 38% 33% (33)
Periodic - — 2% 11% 31%

Chaotic +,7 0% 7% 36%
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