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Spécialité : Concepts fondamentaux de la physique

Parcours : Physique des Liquides et Matìere Molle
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Quasiperiodicity and Intermittency

�

�

Figure 1: Poincaŕe sections of flows containing limit cycles. From left to right: before any bifurcation,
after a pitchfork bifurcation, afer a saddle-node bifurcation, after a Hopf bifurcation.

A system undergoes a Hopf bifurcation (or other event) creating a limit cycle. The limit cycle then
undergoes another a Hopf bifurcation. If we consider the discrete first return or Poincaŕe map, the limit
cycle is a fixed point and it undergoes a Hopf bifurcation. For the original continuous dynamical system,
this is called a secondary Hopf or a Neimark Sacker bifurcation and leads toa torus, as shown in the
rightmost portion of figure 1. Trajctories wind around the torus.

Circle maps

For the Poincaŕe map, the unstable fixed point is now surrounded by aninvariant circle. The discrete
trajectories do not go around the circle continually, but jump from point to point. This motivates the
study ofcircle maps:

θn+1 = f(θn) mod 1 (1)

(In this chapter, angles are measured in units of2π radians.)

The basic prototype for a circle map is thesine circle mapstudied by V. Arnold in the 1960s (then at
Moscow, now also at University of Paris IX, Dauphine):

θn+1 = fΩ,K(θn) ≡
[

θn + Ω − K

2π
sin(2πθn)

]

mod 1 (2)

The parameterK measures the strength of a nonlinear perturbation. We start by giving the behavior of
the sine circle map (2) for the linear case ofK = 0. The behavior depends onΩ, which is the basic
frequency of the map.

If Ω = 0 then allθ are fixed points off
If Ω = p any integer allθ are fixed points off
If Ω = p/q then allθ are members ofq-cycles off

f q(θ) = [θ +
p

q
+

p

q
+ . . .

p

q
︸ ︷︷ ︸

q times

] mod 1 = [θ + p] mod 1 = θ

If Ω irrational then there arenofixed points orq-cycles
All θ are members ofquasiperiodic orbits
Each orbit is dense on the circle
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Figure 2: Trajectories of circle mapθn+1 = θn + Ω for Ω = 1/5, Ω = 3/5 and forΩ slightly more
than 1/5. Since the map is discrete, trajectories are not continuous and may traverse the circle non-
monotonically. WhenΩ = 3/5, the trajectory is a 5-cycle which goes around the circle 3 times. IfΩ is
irrational, the trajectory contains an infinite number of points and never closes on itself.

Frequency locking

We now turn our attention to the nonlinear caseK 6= 0 (within the range0 ≤ K < 1). Figure 3 shows a
circle map that has undergone a saddle-node bifurcation, creating a stable and unstable fixed point. For
the original flow, this corresponds to the creation of a stable and unstable limitcycle. This phenomenon
is called frequency locking.

Figure 3: Sine circle map. Left: forK = 0, f(θ) = θ + Ω. Right: forK > 0, a saddle-node bifurcation
may create a pair of fixed points, one stable and one unstable. Values are(Ω, K) = (0.2, 0) (left) and
(0.1,1) (right).
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Let us determine some cycles and bifurcation points for the sine circle map. Weseek points such that

f ′(θ) = 1 f(θ) = θ (3)

1 − K cos(2πθ) = 1 θ + Ω − K

2π
sin(2πθ) = θ + n (4)

cos(2πθ) = 0 sin(2πθ) =
2π

K
(Ω − n) (5)

θ =
1

4
=⇒ sin

(

2π
1

4

)

= 1 =
2π

K
Ω =⇒ K = 2πΩ (6)

θ =
3

4
=⇒ sin

(

2π
3

4

)

= −1 =
2π

K
(Ω − 1) =⇒ K = 2π(1 − Ω) (7)

Figure 4 shows the saddle-node bifurcations taking place atθ = 1/4, K = 2πΩ andθ = 3/4, K =
2π(1 − Ω). Figure 5 shows the two bifurcation curves in the(Ω, K) plane, For0 < Ω < K/(2π), (left
portion of figure 5) or1 − K/(2π) < Ω < 1 (right portion of figure 5), the sine circle map has a pair of
fixed points, while forK/(2π) < Ω < 1 − K/(2π), it has no fixed points.

Having found fixed points, i.e. one-cycles, we now seek two-cycles. The sine circle map does not undergo
any period-doubling bifurcation in the range0 < K < 1 since, as shown on figure 6,1 − K < f ′(θ) <
1 + K, so f ′(θ) is never negative in this range. Thus, two-cycles cannot appear via period-doubling
bifurcations off , which, we recall, are pitchfork bifurcations of the second iteratef2 ≡ f(f(θ)). Two-
cycles can and do, however, appear via saddle-node bifurcations off2. Sincef(Ω=1/2,K=0) is a map for
which allθ’s are members of two-cycles, we write

Ω±(K) =
1

2
± ǫ(K) (8)

with K, ǫ(K) small. We write the form of the second iteratef2 as:

f2(θ) = f(θ) + Ω±(K) − K
2π sin(2πf(θ))

= θ + 1
2 ± ǫ(K) − K

2π sin(2πθ) + 1
2 ± ǫ(K) − K

2π sin(2πf(θ))

= θ + 1 ± 2ǫ(K) − K
2π sin(2πθ) − K

2π sin(2πf(θ))

(9)

We expand the last term in (9) as:

sin(2πf(θ)) = sin

(

2π

(

θ +
1

2
± ǫ(K) − K

2π
sin(2πθ)

))

= sin (2πθ + π ± 2πǫ − K sin(2πθ))

= sin (2πθ + π)
︸ ︷︷ ︸

=− sin(2πθ)

cos (±2πǫ − K sin(2πθ))
︸ ︷︷ ︸

≈1

+ cos (2πθ + π)
︸ ︷︷ ︸

=− cos(2πθ)

sin (±2πǫ − K sin(2πθ))
︸ ︷︷ ︸

≈±2πǫ−K sin(2πθ)

≈ − sin (2πθ) − cos (2πθ) (±2πǫ − K sin(2πθ)) (10)

where we have usedsin(θ+π) = − sin(θ), sin ǫ ≈ ǫ, cos(θ+π) = − cos(θ), andcos ǫ ≈ 1. Substituting
(10) into (9), we obtain

f2(θ) ≈ θ + 1 ± 2ǫ − K

2π
sin(2πθ) − K

2π
(− sin (2πθ) − cos (2πθ) (±2πǫ − K sin(2πθ)))

= θ + 1 ± 2ǫ +
K

2π
cos (2πθ) (±2πǫ − K sin(2πθ)) (11)
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Figure 4: Saddle-node bifurcations of sine circle mapf atK = 0.5.
At Ω = K/(2π) = 0.08, a stable-unstable pair of fixed points is created/destroyed atθ = 1/4.
At Ω = 1 − K/(2π) = 0.92, a stable-unstable pair of fixed points is created/destroyed atθ = 3/4.

Figure 5: First frequency-locking tongue in(Ω, K) plane. Fixed points (one-cycles) exist inside the
tongue, i.e. for0 ≤ Ω < K/(2π) and1 − K/(2π) < Ω ≤ 1.
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Figure 6: Derivativef ′(θ) of sine circle map forK = 0.25. 1 − K ≤ f ′ ≤ 1 + K andf ′(θ) = 1 for
θ = 1/4, 3/4. f ′(θ) is positive for allθ if K < 1.

We seek fixed points off2(θ) mod 1:

0 = (f2(θ) − θ) mod 1 ≈ ±2ǫ +
K

2π
cos (2πθ) (±2πǫ − K sin(2πθ))

= ±2ǫ (1 + K cos(2πθ)) − K2

2π
cos(2πθ) sin(2πθ) (12)

The terms in (12) are of orderǫ, ǫK andK2. SinceǫK ≪ ǫ, the balance must be between terms of order
ǫ andK2:

ǫ ≈ ±K2

8π
sin(4πθ) (13)

The saddle-node bifurcations off2 and the bifurcation curves in the(Ω, K) parameter plane are plotted
in in figures 7 and 8. As we did for the one-cycles, the condition

d

dθ
f2(θ) = 1 (14)

can be used to determineθ. It turns out that the values ofθ are near 1/8, 3/8, 5/8, 7/8.

Just as one-cycles occur via saddle-node bifurcations off and two-cycles via saddle-node bifurcations
of f2, three-cycles emerge fromK = 0, Ω = 1/3 andΩ = 2/3 via saddle-node bifurcations off3.
These three-cycles exist overΩ-intervals of widthO(K3). In general, for any integersp, q, we can seek
Ω, K, θ satisfying

f q
Ω,K(θ) = θ + p (15)

where wedo notuse use mod 1 to constructf q (in order to retain knowledge of the value ofp). Such
cycles are created via saddle-node bifurcations and exist over a finite interval of(Ω, K). These regions
are calledfrequency-locking tonguesor Arnold tongues. The union of all such tongues has zero measure
(consisting of the rationalsΩ = p/q) at K = 0 and widen asK increases. AtK = 1 the union of the
tongues has measure one.
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Figure 7: Saddle-node bifurcations of second iteratef2 of sine circle map atK = 0.5.
At Ω ≈ 1/2 − K2/(8π) ≈ 0.475, two stable-unstable pairs of fixed points are created/destroyed at
θ ≈ 3/8 and 7/8. AtΩ ≈ 1/2 − K2/(8π) ≈ 0.525, two stable-unstable pairs of fixed points are
created/destroyed atθ ≈ 1/8 and 5/8.

Figure 8: Frequency-locking tongue 1/2 in(Ω, K) plane. Two-cycles exist inside the tongue, i.e. for
1/2 − K2/(8π) . Ω . 1/2 + K2/(8π).
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Figure 9: Winding numberW (fΩ,K) for K = 0 (left, simple diagonal line) and
for K = 1 (right, devil’s staircase) Devil’s staircase from E. Weisstein, MathWorld,
http://mathworld.wolfram.com/DevilsStaircase.html.

Figure 10: Schematic representation of frequency locking tongues in the(Ω, K) plane. From M. Cross,
CalTech,http://www.cmp.caltech.edu∼mcc/Chaos Course/Lesson19/Circle.pdf
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Winding number

We define thewinding numberof a circle mapf to be

W (f) ≡ lim
n→∞

fn(θ0) − θ0

n
(16)

wherefn is not truncated to[0, 1]. Poincaŕe showed that iff is monotonic and continuous, then this limit
exists and is independent ofθ0. For the sine circle map withK = 0,

W (fΩ,K=0) ≡ lim
n→∞

θ0 + nΩ − θ0

n
= Ω (17)

The winding number generalizes the frequencyΩ to maps which are less trivial. In particular, when
(Ω, K) is inside a frequency-locking tongue with frequencyp/q, thenW (fΩ,K) = p/q. Thus, from
figures 5 and 8, we see thatW (fΩ=0,K) = 0, W (fΩ=1/2,K) = 1/2 andW (fΩ=1,K) = 1 for all K.

At K = 1, the graph ofW (fΩ,K=1) is called the Devil’s staircase and is shown in figure 9. It consists of
a series of steps, with narrow steps for large denominatorsq and wide steps for small denominatorsq. It
is continuous (!) and constant almost everywhere (on a set of measureone), with jumps at each irrational
number.

The golden mean

The “most irrational”number, which is the golden mean, stays furthest awayfrom the frequency-locking
tongues associated with each rational. All these terms can be given rigorous meanings.

Let us define the sequencewn as follows:

w1 =
1

1 + 0
=

1

1
= 1

w2 =
1

1 +
1

1 + 0

=
1

1 + w1
=

1

1 + 1
=

1

2

w3 =
1

1 +
1

1 +
1

1 + 0

=
1

1 + w2
=

1

1 + 1
2

=
1
3
2

=
2

3

wn+1 =
1

1 + wn
(18)

Another definition ofwn is based on the Fibonacci sequence

F0 = F1 = 1, Fn+2 = Fn+1 + Fn =⇒ 1, 1, 2, 3, 5, 8, 13, . . . (19)

wn+1 =
Fn

Fn+1
(20)

9



Figure 11: The ratio between1 − w∗ andw∗ is the same as that betweenw∗ and 1.

These are equivalent, as can be seen from:

w1 = 1 =
F0

F1

w2 =
1

2
=

F1

F2

wn+1 =
Fn

Fn+1
=

Fn

Fn + Fn−1
=

1
Fn+Fn−1

Fn

=
1

1 + wn
(21)

The golden mean can be defined by
w∗ ≡ lim

n→∞
wn (22)

Definition (18) then leads to

w∗ =
1

1 + w∗

w∗(1 + w∗) = 1

w2
∗ + w∗ − 1 = 0

w∗ =
−1 +

√
1 + 4

2
=

√
5 − 1

2
= 0.618 . . . (23)

The golden mean gets its name from the property illustrated in figure 11, namely that the ratio between
1 − w∗ andw∗ is the same as that betweenw∗ and 1.

1 − w∗

w∗

=
w∗

1
=⇒ w2

∗ = 1 − w∗ (24)

The irrationalw∗ is the number which is furthest from its approximation by a truncated continuedfrac-
tion. This implies that it is furthest from its approximation by fractions (because the closest fraction to
a number is in fact the truncated continued fraction approximation). Thus thewinding numberw∗ is
the irrational furthest from a frequency-locking tongue. A special path through the(Ω, K) plane keeps
winding number nearw∗ and the dynamics away from frequency-locking (i.e. quasiperiodic instead of
periodic) as long as possible.

10



Taylor-Couette flow

Laminar Couette
UC(r)

Taylor Vortex
UTV (r, z)

Wavy Vortex
UWV (r, θ, z, t)

Modulated Wavy Vortex
UMWV (r, θ, z, t)

Taylor-Couette flow between infinitely long (or very long) differentially rotating concentric cylinders un-
dergoes successive transitions. The transition fromlaminar Couette flowUC(r) to axisymmetric Taylor
vortex flowUTV (r, z) is a circle pitchfork, since any phase inz is permitted. The transition towavy
vortex flowUWV (r, θ, z, t) is a Hopf bifurcation to a limit cycle, since the pattern precesses inθ with
time. The transition tomodulated wavy vortex flowUMWV (r, θ, z, t) is a secondary Hopf bifurcation to
flow on a torus and introduces another temporal frequency. We have seen above that frequency-locking
on a torus is very common as nonlinearity is increased. However, although experimentalists looked for
frequency-locking in the 1970s, it was not seen in modulated wavy vortexflow! Why not? In 1981,
Rand pointed out thatsymmetryplayed an important role. Wavy vortex flow, while periodic, is steady
in a rotating frame. The time-dependence is on asymmetry group orbit: successive states are related
by symmetry (rotation) and are hence dynamically equivalent. Saddle-nodebifurcations, such as those
depicted in figure 4 and 7 cannot occur, since they distinguish between different states (here, values of
θ). This explains why frequency-locking is not observed in modulated wavy-vortex flow.
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A timeseries from a flow with two frequencies (flow on a torus) is shown in figure 12.

Figure 12: Periodic and quasiperiodic behavior in a model of an oscillating chemical reaction. From
D. Barkley, J. Ringland & J.S. Turner,Observations of a torus in a model of the Belousov-Zhabotinskii
reaction, J. Chem. Phys.87, 3812 (1987).
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Intermittency

Figure 13: Slow dynamics near a bifurcation. Left: near a saddle-node bifurcation forg = xn+0.2+x2
n,

Middle: near a period-doubling bifurcation forf = −1.2xn +0.1x3
n. Right: near a pitchfork bifurcation

for f2.

Intermittency is similar to a phenomenon that we have already discussed, namelyslow dynamics near
ghostsof fixed points close to asniperbifurcation orsaddle-node bifurcation on a limit cycle.

The left portion of figure 13 shows the iteration of a map

xn+1 = f(xn) = xn − µ + x2
n (25)

near a saddle-node bifurcation, both in terms of the initial conditionx0 and also in terms ofµ. For
µ . 0, no steady states exist, but the dynamics are slow since steady statesx = ±√

µ exist forµ > 0.
It is assumed that another mechanism exists to re-inject the dynamics into the vicinity of x = 0. This is
called Type I intermittency.

The middle and right portions of figure 13 show the iteration of a map

xn+1 = f(xn) = −xn − µxn + αx3
n (26)

and of its second iteratexn+2 = f(xn) near a subcritical period-doubling bifurcation forf . Recall that a
period-doubling bifurcation forf corresponds to a pitchfork bifurcation forf2. Both can be supercritical
or subcritical. Here too, the dynamics are slow nearx = 0 and another mechanism is assumed to exist
to re-inject the dynamics into the vicinity ofx = 0. This is called Type III intermittency.

Type II intermittency is associated with a subcritical Hopf bifurcation.

We have seen that the logistic map provides an example of aroute to chaosvia period-doubling. The
logistic map also provides an example of a route to chaos via Type I intermittency.The logistic map has
a period-3 cycle formed by a saddle-node bifurcation off3 at r3 = 0.9624. For r & r3, the dynamics
visit a period-3 cycle. Forr . r3, the dynamics are chaotic.

Rayleigh-B́enard convection in a small-aspect-ratio container provides examples of allthree types of
intermittency.
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Figure 14: Type III intermittency seen in Rayleigh-Bénard convection experiment. Top: timeseries. The
subharmonic (period-doubled signal) grows, ending with a burst, followed by the laminar phase in which
the signal returns to its original period. Bottom: Poincaré map from the maxima of the timeseries{Ik}
above. The maximumIk+2 is plotted as a function ofIk. From M. Dubois, M.A. Rubio & P. Berǵe,Ex-
perimental Evidence of Intermittencies Associated with a Subharmonic Bifurcation, Phys. Rev. Lett.51,
1446 (1983).
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Figure 15: Type I intermittency seen in Rayleigh-Bénard convection experiment. Top: non-intermittent
timeseries forRa = 280 Rac. Bottom: intermittent timeseries forRa = 300 Rac. From P. Berǵe,
M. Dubois, P. Manneville & Y. Pomeau, J. Phys. (Paris) Lett.41, 341 (1980).
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Lyapunov exponents

Figure 16: An infinitesimal displacement evolves exponentially until it reaches the attractor boundary.
The initial slope seen above is the largest Lyapunov exponent. From P. Manneville, Class notes, DEA
Physique des Liquides.

The stability of a steady statēx is determined by the eigenvalues of the Jacobian matrix. The stability of
a limit cyclex̄(t) is determined by its Floquet exponents. Such a quantity can be defined for any kind of
attractor and is called theLyapunov exponent. For any trajectorȳx(t), we can study the evolution of an
infinitesimal perturbationǫ(t), governed by the dynamicslinearized about̄x(t). The largest Lyapunov
exponent is defined to be:

λ = λ(1) = lim
t→∞

1

t
ln

∣
∣
∣
∣

ǫ(t)

ǫ(0)

∣
∣
∣
∣

(27)

In fact, we do not really want to taket → ∞, since once the trajectory reaches the geometric boundary of
the attractor,ǫ(t) ceases to grow. This is illustrated in figure 16. It can be shown thatλ(1) is independent
of the initial condition and characterizes the entire attractor on whichx̄ evolves. Just as the winding
number defines an average rotation per iteration, the Lyapunov exponent defines the average growth or
decay per iteration.

The first exponentλ(1) is the rate of growth or decay of distances fromx̄(t). Rather than monitoring a
linear distanceǫ evolving according to the dynamics linearized aboutx̄, we can monitor the evolution of
an area. This yieldsλ(1) + λ(2), where the second Lyapunov exponent isλ(2). One can then defineλ(3).
For a steady statēx(t), the Lyapunov exponents are the eigenvalues of the Jacobian and for alimit cycle,
they are the Floquet exponents.

For a map, we have

ǫ1 = f ′(x̄0)ǫ0 (28)

ǫn =
n−1∏

k=0

f ′(x̄k)ǫ0 (29)

λ = lim
n→∞

1

n
ln

∣
∣
∣
∣
∣

n−1∏

k=0

f ′(x̄k)

∣
∣
∣
∣
∣
= lim

n→∞

1

n

n−1∑

k=0

ln
∣
∣f ′(x̄k)

∣
∣ (30)

On chaotic attractors, nearby initial conditions eventually diverge, and soat least one Lyapunov exponent
is positive. This is one of the possible definitions of chaos.

16



Wrinkling of a torus

Figure 17: Poincaŕe sections calculated from a model of an oscillating chemical reaction. One sees
quasiperiodic behavior (a), mode-locking (b,e) and wrinkled tori (d,f).From D. Barkley, J. Ringland &
J.S. Turner,Observations of a torus in a model of the Belousov-Zhabotinskii reaction,J. Chem. Phys.87,
3812 (1987).

What happens whenK exceeds one? The sine circle map then becomes non-invertible. This implies
that:
–it cannot be the Poincaré mapping of a flow
–it can become chaotic (an invertible map cannot become chaotic).

The attractor, which can no longer be mapped onto a circle, may becomewrinkled, like the example in
figure 17.
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Route to chaos from a torus

Before the 1970s, the leading dynamical systems theory of turbulence, put forward by Landau, was
that turbulence consisted of a sequence of Hopf bifurcations, each adding a frequency to the flow, with
turbulence as an asymmptotic state containing a large or infinite number of frequencies. The new devel-
opments in the 1970s and 1980s concerning chaos changed this prevailingpoint of view. First, Lorenz
showed that a small set of deterministic ordinary differential equations could lead to behavior that was
essentially unpredictable. This was followed by the discovery that only three frequencies could lead to
chaos.

More specifically, Ruelle and Takens (1971) and Newhouse, Ruelle andTakens (1978) proved a famous
theorem concerning quasiperiodic motion, i.e. motion on a torus, of dimensionn ≥ 3. The theorem says
that perturbations could lead to chaos:

“Let v be a constant vector field on the torusTn = Rn/Zn. If n ≥ 3, everyC2 neighborhood ofv
contains a vector fieldv′ with a strange Axiom A attractor. Ifn ≥ 4, we may takeC∞ instead ofC2.”

How likely are these perturbations? Curry and Yorke (1978) and Grebogi, Ott and Yorke (1985) in-
vestigated numerically the probability of random perturbations leading to chaos. Just as the Poincaré
mapping for flow on two-torus is a circle map, the Poincaré map for flow on a three-torus consists of a
pair of coupled circle maps:

θn+1 = θn + ω1 + KP1(θn, φn) mod 1 (31)

φn+1 = φn + ω2 + KP2(θn, φn) mod 1 (32)

The solutions can be quasiperiodic with three frequencies, quasiperiodicwith two frequencies, periodic,
or chaotic. The map becomes non-invertible forK = Kc. .

Attractor Lyapunov exponents K
Kc

= 3
8

K
Kc

= 3
4

K
Kc

= 9
8

Three frequency quasiperiodic 0, 0 82% 44% 0%
Two frequency quasiperiodic 0,− 16% 38% 33%
Periodic −,− 2% 11% 31%
Chaotic +, ? 0% 7% 36%

(33)
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