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Practical Bifurcation Techniques

1 Making the most of your data

We have studied many model equations and normal forms. But what caonieenhen we only have
results from experiments, or from numerical simulations?

1.1 Locating the bifurcation threshold

The fastest and most precise way to locate a bifurcation threshold is tcawthgr decay rates, not
final states. There is a very fundamental reason for this. At a bifurgdtie things take place:

—new branches form, or existing branches intersect

—the critical eigenvalue goes through zero.

Because of the second property, it necessarily takes a long time to gerteea steady state near a
bifurcation — theoretically an infinite time just at the bifurcation. This is catlétical slowing down
However, a growth or decay rate can be measured long before gemeer; see figure 1. The growth or
decay rate is the slope of timeseries plotted on a logarithmic scale. Generatlgddne or growth rate
varies linearly with the control parameter, e.g.Re, or Ra near a bifurcation, for the simple reason that
most functions are locally linear. Interpolation or extrapolation from justigloes gives a very accurate
estimate of the threshold; see figure 2. It is not necessary to calculatpdmitive values (growth) and
negative values (decay); two values of either kind usually suffice.

Explanation and generalizations

—Although a multidimensional dynamical system has as many eigenvalues asdinmansions, the
evolution is quickly dominated by that with largest real part, i.e that assoaiatedhe slowest decay or
with the fastest growth. Figure 1 shows the evolution of

At

z(t) = are™Mt + age?! + azet?? (1)

with Ay = —1, —0.5, 0.5, 1, Ao = —4, A3 = =9, a1 = 0.4, as = 2, a3 = 5. After an initial transient,
the faster decay associated with A3 means that the timeseries resembles

z(t) ~ ajet (2)
This behavior leads to theower methodor calculating eigenvalues. But there is no sure method to

know when the asymptotic regime has been reached.

—Almostany quantity suffices to measure growth or decay rates (e.g. the temperatgiedty at one
location). This is because almost all quantities have a non-zero projectiorh critical eigenmode.

—This procedure can be extended to localize Hopf bifurcation thresfrolaisoscillatory timeseries by
plotting successive maxima, as shown in figure 3.

Some cautionary points

—The growth or decay rate feom or to a steady state; i.e. (z(t) — z) ~ e*t. Thus, it is necessary
to know the steady state as well as the timeseries(t). Sometimes one knows exactly. For a
symmetry-breaking bifurcatiomn;, can be chosen to measure the departure from symmetry, so that
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Figure 2: Determining the threshold by extrapolating or interpolating the groidiecay rates.
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Figure 3: Determining the growth or decay rate from an oscillatory timeseries.

Numerically, another means such as Newton’s method (see below) cardb¢ousalculate the steady
state. Otherwise, one can wait for (approximate) convergence to degetmin

—The growth or decay rate varies linearly with the control parameter foy liurcations, e.g. pitchfork,
Hopf and transcritical bifurcations. An important exception is the sadotkrbifurcation, for which
growth or decay rates vary like the square root of the distance from riaehibld;

d
& (2)=p—2> = T=+n

dt
fl(z)=—-22 = f'(z)=F2yp

Thus, near a suspected saddle-node bifurcation, the square obttih @r decay rate should be plotted
as a function of the control parameter in order to locate the threshold.



1.2 Determining whether a bifurcation is supercritical or subcritical
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Figure 4: Determining whether a bifurcation is supercritical or subcriticahfa timeseries just above
the bifurcation point.

The most visible feature of a subcritical bifurcation is hysteresis: coexistef two different steady
states. However, as stated above, convergence to a steady state i®atosvlnfurcation. Barkley’s
method (R.D. Henderson & D. Barkley, Phys. FIuRI4783 (1996)), illustrated in figure 4, calls for
examining a timeseries just above the bifurcation point to see if the initial devifrbonexponential
growth is positive or negative.

&= px + axd + fa° )

For the panels on the lefty = —0.116 (supercritical bifurcation), while for those on rigli,= 0.116
(subcritical bifurcation). For both cases= 1.041 ands = —0.001. The initial growth, while term
ux dominates, is exponential (linear in the log scale below). Eventually thedefnsontributes, which
causes the growth to slow down and saturate (left, supercritical case)speed up (right, subcritical
case). In the subcritical case (right), it is the contribufiani that halts the growth and leads to saturation.
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1.3 Freezing a symmetry

A complete understanding of a bifurcation scenario often requires thel&dge of unstable states. In
the case of a symmetry-breaking bifurcation, this is easy and in fact, oftlepehs inadvertently in
numerical calculations. This is the case, for example, for the flow in the whkecircular cylinder,
illustrated in figure 5. Defining the coordinate system such that the imposedsfioa the x direction
and the cylinder axis is in thedirection, the sequence of flows and transitions is as follows:

steady flow

reflection symmetry iy
homogeneous in

periodic von Karman
vortex street
spatio-temporal symmetry in
homogeneous in }

circle pitchfork

of limit cycle b Re=188.5

3D flow
spatio-temporal reflection symmetrygn
spatially periodic irn:

Figure 5: Flows and transitions for the wake of a circular cylinder.

Thus, if reflection symmetry is maintained, the transition to the vamt@n vortex street is suppressed.
If a 2D calculation is carried out, then there is no transition to the 3D flow. tmescases, experimental
versions of these symmetry-freezing tricks can also be implemented.
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2 Numerical techniques

The sections which follow concern only numerical calculation and notrexpats.

2.1 Timestepping and stability of schemes

Digital computers cannot actually carry out continuous operations. Amgenical method for time
integration is actually a transformation of the differential equation into a des¢ype dynamical system.
(For now, we do not address spatial discretization, the approximatiamefibns of space by a finite
number of values.)

Let us examine some of the simplest methods for solving

du

- f(u) (4)

The forward Euler method is just the first-order Taylor expansion:
u(t + At) = u(t) + f(u(t))At (5)

This is called arexplicit method becausg is evaluated at the previous time step. The backward Euler
method is:
u(t + At) = u(t) + f(u(t + At))At (6)

This is called anmplicit method, since the above equation must be solved.for+ At) by a not-
necessarily-trivial procedure. Note that this method also matches ther Eagansion to first order,
since

flu(t + At)) = f(ut) +u'(t)At) = fut)) + f'(ut))w' (1) At + . .. (7)
Both methods are called first-order accurate.

Analysis is usually done on linear equations, such as

du
o —qu 8)
for which everything is understood analytically and a single exact timestejivbe:
u(t + At) = e~ 8%(t) (9)
On this equation, the forward Euler method leads to

u(t + At) = u(t) — qu(t) At = (1 — gAt)u(t) (10)

while the backward Euler method leads to

u(t+ At) = wu(t) — qu(t + At)At (11a)
(14 gAt)u(t + At) = u(t) (11b)
ut+AH) = - +1q ) (11c)
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Figure 6: One-step amplification factors for the exact evolution, forvarkgr, and backward Euler
methods.

= Jt

Figure 7: Integration of. = —k?u using forward Euler method with? At = 0.25 (decay to zero), 2
(neutral oscillations), 3 (growing oscillations).

This analysis is valuable for understanding diffusive equations, whdteurier representation of the
solutionu leads to:

o = 0 u (12)
kmaz

u(z,t) = Zuk(t)sinkx (13)
k=1

U, = —kuy (14)

The timestepping schemes replace the exponential multiplicative factor byctbesfahown in figure 6.

We see that the forward Euler method leadgtowing oscillationsinstead of decrease faf At > 2,
as shown in figure 7. That is, one is constrained to use the timestep 2/k2_ .. One says that this

method is not absolutely stable (or A-stable). A method is said to be A-stablédéin wsed to solve
u = qu with Re(q) < 0, the numerical solution tends to zero.

We see that the forward Euler method leadgrmwing oscillationd_et us illustrate from the dynamical-
systems point of view the consequences of using the unstable forwéed reethod on the standard
dynamical system

i = px —a° (15)
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This is the standard normal form for a supercritical pitchfork bifurcatiath solutionxz = 0 (stable for
p < 0, unstable fop, > 0 andx = %,/ for ;o > 0.

The system (15) is to be integrated numerically in time using the timestepping scheme
x(t + At) = x(t) + At(pa(t) — z(t)?)
for timestepAt > 0, leading to the discrete-time dynamical system

Tni1 = f(@n) = xp + At(pua, — 23) (16)
wherex,, = x(nAt).

The steady states are solutions to
T =171+ At(uz — 7°)

and hence the same as for the continuous-time systens, +€0) andz = &, /i for > 0.

Their stability is determined by calculating

f'(z) =1+ At(pu — 32?)

7(0) =14 Atp fl(Ey/m) =1+ At(p —3p)) =1 —2Atu
-1<1+Atp<1 —1<1+At(p—3u)=1-2Atu<1
—2<Atu <0 —2 < =2Atpu <0

—2/At<pu<0 0<pu<1/At

(Recall that the timesteft is necessarily positive.)

Thus, there is a steady bifurcationiat= 0, clearly a pitchfork bifurcation, since the two new branches
of steady states are created there, just as in the continuous system. BBuirthalso period doubling
bifurcations af. = —2/At, wheref’(0) = —1, and atu = 1/At, wheref'(£,/i) = —1.

The super or subcriticality of these period-doubling bifurcations carsbertained as follows.
Tny1 = za(1 4+ At(p —27))

We setu = —2/At + 6. Perturbations ta = 0 grow in an oscillatory manner when the multiplicative
factor satisfies

2 2
1+At<m+5—xn> < -1

1+ (=24 6At—a2At) < -1

—1+ (6At—a2At) < -1
SAL — 22 At <

5 < a2

Thus, all perturbations ta = 0 grow whend < 0 (i.e. for u < —2/At), and sufficiently large
perturbations ta: = 0 grow ford > 0 (i.e. foru > —2/At). This implies that the two-cycle exists for
0 > 0, wherex = 0 is stable, and hence that the period doubling bifurcatign-at—2/At is subcritical.

(Demonstrating the subcriticality of the period-doubling bifurcationg at 1/At, x = +,/u is more
difficult.)
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Similar analyses can be carried out on methods which are of higher ordiendni.e. which match
the Taylor series to higher order. the explicit 2nd-ordelams-Bashforth methagses two previous
timesteps to construct the next guess:

u(t + At) = u(t) + % (B (u(t)) — f(u(t — At))) (17)

It can be verified to be second-order accurate by expanding ada $ayies ofu(t).

Stability analysis of the Adams-Bashforth method is more complicated, since & oglievo previous
steps. We write the method appliedite= —k2u as follows:

()= (ro Sy () ()

The eigenvalues of a matr% CCL 8 ) are

A:%i (%)ZMC (19)

We seek values values bf At such that the Adams-Bashforth method is stable| A< 1.

41 = %:I:\/(%)Z—I—bc (20)
il—% - ,/( )2—|—bc 1)

H-
N

a2 a2
(jzl _ 5) - (5) +be (22)
1Fa = be (23)
3k2At k2 At
1T (1 - ) = (24)
0=—kAt or 2 =Kk2At (25)



The endpoints of the stability interval abe< At < 2/k?, just as they are for the forward Euler method.

In fact, no explicit method can be A-stable. This is because all explicit metheskntially approximate
the exponential functiomxp(gAt) by a polynomial} " c,(¢At)". For Re(q) < 0, exp(qAt) < 1,
while | > ¢, (gAt)"| > 1 for At sufficiently large. The explicit methods we have seen above are the
1st-order forwards Euler and 2nd-order Adams-Bashforth meththdgpopular Runge-Kutta methods
are also explicit methods. The only methods that can be A-stable are implicit amaist second-order.

The implicit Crank-Nicolson or trapezoidal methasd an average of the forward and backward Euler

formulas: A
u(t + At) = u(t) + 7(f(u(t)) + fu(t + At)) (26)

In terms of stability, using the test equation= —k2u, the Crank-Nicolson method yields

1 — k2At/2

u(t+ At) = T kAL u(t)

(27)
For At > 0, this factor is always betweenl and 1, but ag — oo, it approaches-1 as illustrated in
figure 2.1, meaning that the amplitudes of Fourier components with high spatiaeihcies oscillate in
time, rather than being damped as they should be.

The implicitbackward differentiation method

3 1
QUn+1 — 2u,, + JUn—1= Atf(upt1) (28)
is second order and also has the desirable property that its amplificationdaes to 0 aa\t — oo for

Re(q) < 0, as shown in figure 2.1.

Essentially, implicit methods can be A-stable because they approxixateAt) by a rational function
YoncnlqAt)™/ >, dn(gAt)™ and rational functions can be bounded for all values\of as we have
seen for the 1st-order backward Euler and 2nd-order Crank-Micaisethods. Evaluating a rational
function is, of course, hardly more difficult than evaluating a polynomialdifieculty of implicit meth-
ods lies in applying them to other than the simple test prohlemgqu. In just one dimension, recalling
that the backward Euler method is:

u(t + At) = u(t) + Atf(u(t + At) (29)

the above occasion must usually be solvefl(if) is a nonlinear function. Far more frequentlyand f
are multidimensional. In particular, if the equation to be solved is a PDE (paiffexdehtial equation),
then the number of unknowns is the number of gridpoints times the numberialble. For example,
for a single variable on a modest grid of s x 50 x 50, the number of unknowns is 125 000. For
three velocity components onla0 x 100 x 100 grid, the number of unknowns #x 10°. In this case,
even if fis linear, i.e. a matrix operator, a large linear system must be inverted

u(t+ At) = u(t) + AtM(u(t + At)) = (30)
(I — AtM) tu(t + At) = u(t) (31)

Large linear systems will be discussed in the next section.
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Crank-Nicolson (trapezoidal Backward differentiation

Figure 10: The amplification factor or factors for A-stable one- and ti@p-schemes.

2.2 Newton’s method

Another method of calculating unstable steady states in Newton’s methodct)iNawton’s method is
useful even when the steady states sought are stable, because it ifastacthan integrating in time.

Newton’s method is based on the fact that functions are usually locally limbas if we seek the roat
of f(z), we can approximate it by the root of the local linear approximatiofy19:

F)
7/(z)

Of course, since (32) is only an approximation, the value obtained ¥all not be accurate. We iterate
the process as follows:

0=f(@) ~ f@) + f (D) (@ - 2) =z~ 2 - (32)

@) Az

(n+1) (

f@™) (33a)
) — Az (33b)

Figure 11 illustrates this procedure. Figure 11 also shows that comergd Newton’s method is
independent of the sign d¢f, i.e. of the stability of the fixed poimt
In the multidimensional cas¢,andx are vectors and the derivative is replaced by the Jacobian:
[Df (") Az = f() (34a)
et = 2™ — Az (34b)
where the matrix of partial derivativé® f],; = df;/0x; is evaluated at(™).

For large dynamical systems, it may be difficult to solve the linear system [3w¥re are two types of
methods for solving linear systems:

Direct: Other names are Gaussian elimination, LU decomposition, forward and betkwbstitution.
For a matrix A, it is possible to write:
A=LU (35)

wherelL is lower triangular and’ is upper triangular. 1fA is a generalV x N matrix, this step requires
O(N?3) operations. Then one solves

Az =b<—= LUz =b<—= Ly=b<= Uz =y (36)

12



Figure 11: Newton’s method finds a rapbf f by repeated linear extrapolation independent of the sign
of f’.

This step require®)(NN?) operations for a gener&f x N matrix. For a banded matrix with bands,
the LU decomposition requireg3(J2 V) operations and the backsolve requié®s/ N) operations. The
rows and/or columns may need to be interchanged (called pivoting) if the eieare along the diagonal
are much smaller than the off-diagonal elements.

Iterative: There are many sorts of iterative methods. Here we mention only methodsfaifrithe called
conjugate gradient, or Krylov. By acting (multiplying) the right-hand-didepeatedly by the matriA,

one generates a set of vectokgylov vectors), a linear combination of which is used to construct an
approximation to the unknown vector

b= Ab = A% = ... AKX 1p (37a)
Orthogonalize to formvy, vo, . .. vk (37b)
K
T~ Z CLUL (37¢)
k=1

The success of this method depends a great deal on the nature of the AnafriKk = N, then (in
exact arithmetic and for a non-singular matriX)independent vectors are generated, from which it is
necessarily possible to construct the solution. Since each matrix-veottugtirequires) (N?) opera-
tions, generatingV vectors require$)(NN?3), the same order as for direct methods. There are two ways
in which iterative methods can save time:

—The matrix can be such that a matrix-vector product takes les<th&ii) operations. This is the case

if a matrix is sparse, for example, but even if it is not sparse, its entrieme#e this so. An example is
the Fourier transform, which, as a linear process, is equivalent to multiphcly a matrix, but which
takesO(N log N) operations.

—A much smaller numbeK < N of the Krylov vectors may be needed to approximate the solution.
This is the case if the matrix iwell-conditioned meaning essentially that the ratio of largest to smallest

13



eigenvalue is not too large, so that the matrix is not too far from the identity.

Iterative methods save space as well as time. The LU decomposition of eabgsparse matrix4 is
not sparse — only bandedness is preserved. Thus the LU decompesltigenerally requireO(N?)
storage, even ifd is sparse. In contrast, if only matrix-vector multiplies are required, thesgpanf
A is preserved. In addition, iterative methods may use a procedure fgintpout the matrix-vector
multiplications which does not require storage of the matriat all.

When Newton’s method is used to find the complex roots®of 1, it can converge to any of the three
roots, depending on the initial condition. The set of initial conditions cajimgrto each of the three
roots forms a well-known fractal called a Julia set.

Figure 12: Basins of attraction for Newton’s method to the three roots ef1.

2.3 Linearizing a code

Newton’s method (34) requires the JacobiaR'. As stated above, iterative methods can use a procedure
which calculates the matrix-vector product instead of explicitly constructiedaleobian matrix. This is
often easier conceptually as well. For example, the Navier-Stokes equations

ouU = —(U-V)U-VP+ éAU (38)
V-U =0 (39)
are linearized as follows:
ou = —(U-Vju—(u-V)U-Vp+ éAu (40)
V-u = 0 (41)

If we have a numerical method for solving the Navier-Stokes equationsaweasily transform it to a
code for solving the linearized Navier-Stokes equations. This is anaddgdbe change

F(U) = DF(U)u (42)

14



2.4 Power method

The simplest method for calculating eigenvalues and eigenvectors reliee tacthhat repeated action
of a matrix leads to growth and decay of the various eigenvectors acgdadiheir eigenvalues. Let the
eigenvectors and eigenvaluesdbe uy, ¢x:

Agp = pdr (43)
with |ze1] > |pa| > |u3] > .. .. An arbitrary initial vector:(") will have components along eagh
u =" criy (44)
k
Repeated multiplication byl generates
u™ = An "y, = Z Chl Pk — C1AT D1 (45)
K

Thusu(™ is parallel to the eigenvectar, and an approximation to ttgominant eigenvalug; (that of
largest absolute value) is given by the Rayleigh quotient
<U(n+1)a U(n)> —~ ClN%nJrl((ﬁl, é1)
<u(n)7u(n)> Cl,u%n<¢17 ¢1>

= (46)

For finding theleading eigenvaluéthat of largest real part), the exponential of the matrix can be used
since
ey = By (47)

and leading eigenvalues are mapped into dominant ones by the exponepiéhgia

3 Some mathematical techniques

Here we present some important mathematical constructions used in bifonpaildems.

3.1 Center manifold reduction

Consider a system undergoing a bifurcation whose Jacobian has magdiyveesigenvalues and one
or more eigenvalues that are zero (for complex eigenvalues, we areimgfto the real part). We di-
agonalize the Jacobian and use coordinates corresponding to theeeigesy We write the directions
corresponding to the zero eigenvalues as the vecamd those corresponding to the negative eigenvalues
as vectoty.

x = Ax+ f(x,y) (48a)
y = By+g(xy) (48b)

whereA andB are the Jacobian reducedd@ndy respectively. We assume that the negative eigenvalues
are bounded away from zero, andysevolves very quickly compared ta After a short initial transient,
we say thay is “slaved” tox and write:

0= By +g(x,y) (49)

15
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Figure 13: Center manifold reduction. Thelynamics can be considered to be passive, following:the
dynamics.
relatingy andx which implicitly givesy as a function ok, so that in principle:

y = h(x) withy = O(‘XP) (50)

In practice, (49) is solved approximately by expandirigt) as a series, whose elements are monomials
in the components of andy. We then substitute the exact or approximiate) into (48a) to obtain:

x = Ax + f(x,h(x)) (51a)

The Reduction Principle states that system (48) is locally topologically equivalent near the origin to
(51a) with
y = By (51b)

in whichx andy are decoupled.
3.2 Fredholm alternative

The statement of the Fredholm alternative for self-adjoint operatordafl@ass. Supposel is a singular
linear operator and its null vector, i.e. such that

AC=0 (52)
Then the equation
Ax=Db (53)
has a solution if and only if
(¢,b)=0 (54)

The solution to (53), if it exists, is non-unique since any multipl€ efan be added ta, and we may
choose it to be orthogonal to the null vector:

(Cx) =0 (55)

16



If A is not self adjoint, then its adjoint’ also has a null vector

Af¢t =0 (56)
and (54)-(55) are generalized to

¢hb)y =0 (57)

(¢hz) = 0 (58)

where¢! is the null eigenvector of the adjoint operaté¥ or, equivalently, the left eigenvector df

One direction is easy to show. Taking the inner product of (53) with theveator¢' leads to:
(¢",b) = (¢ Ax) = (AT, x) = 0 (59)

Thus, (53) implies (57). The other direction is more difficult to show in theérabs but is also simple
in finite dimensions. IfA is a singular matrix and its null vector, then we can carry out a change of
basis such that the newhas zeroes in its first row. Equation (57) then merely says that any \adttor
form Ax must have zero as its first component. This is because thelhdas zeroes in its first column,
the new¢' is the first unit vector, and the inner product of a vector withs the first component. Thus,
equation (53) becomes

Ax = b (60)
0O 0 0 O T a
X X X X y _ b
X X X X z a c
X X X X w d

where X designates entries of that are not necessarily zero. Equation (56) becomes

Af¢t = 0 (61)
0 X X X 1 0
0 X X X o |0
0 X X X 0 N 0
0 X X X 0 0
and equation (57) becomes
a
<¢b>=[10 0 0] i =a=0 (62)
d

The condition (62) suffices for (60) to have a solution if there are noirenganull vectors, since then the
remaining loweB x 3 matrix of A is non-singular. If there are other null vectors, then the right-harel-sid
b must be orthogonal to these as well.
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3.3 Constructing bifurcating solutions

We now illustrate how the Fredholm alternative is used to construct solutaches in the neighbor-
hood of a bifurcation point. This treatment is taken from

G. looss Bifurcations successives et stat@/idournal de Physiqu&9, C5-99 (1978).

We begin with an evolution equation for a fialdvith a term£ which is linear inu and which depends
on a control parametet;, and a termV which is quadratic in:

Ou = L(r)u+ N (u,u) (63)

The trivial solutionu = 0 undergoes a steady bifurcationrat= 0. ThusLy = L(r = 0) has a null
vector(:

0=LoC (64)

as well as an adjoint null vectgr
0=Li¢t (65)

which we take to be normalized
(=1 (66)

Finally, we will assume that the bifurcating eigenvalue crosses zero tesedy
o(r=0)=0 o (r=0)#£0 (67)
which leads (for reasons we will not explain here) to the condition:
(¢t 1) #0 (68)

We are interested in the behavior of steady solutions neaf). We expandC andV in powers ofr:

L(r) = Lo+7rLli+ 7"2£2 + ... (69a)
N(uu) = No(u,u) + rNi(u,u) + r°Na(u, u) (69b)
We then expand the solutianand control parameterin powers of some small parameter
U = ue+use+ ... (69c¢)
o= rietroct ... (69d)

whereu andr contain noO(1) terms because we have are considering a solution bifurcating{fren
atr = 0. Substituting the expansions (69) into (63) leads to:

0 = (Lo+7rLy+r°Lo+ .. u+Nolu,u) +rNi(u,u) + ...
(Lo+ (redroe® +.. )L + (rie+r2e® +.. )% Lo+ .. ) (ure +ug e +..)
+62N0(U1,U1) + 263N0(U1,UQ) +...+ (7“16 + 7‘262 + .. ) 62N1(ul,ul) + ... (70)

Separating orders inleads to

= Loug (71)
= Louz +riLiug + No(ui,up) (72)
= Loug+ riLius + roLiug + T%LQUl + 2N0(u1, ug) + N (ul, ul) (73)
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Equation (71) states that is proportional to the bifurcating null vector. Because we have notgfated
€, we may take
up = ¢ (74)

Equation (72) involves the singular operatlyto which we apply the Fredholm alternative. We take the
inner product of T with (72):

0= (¢", Louz) +r1(¢T, £1¢) + (¢T, N (¢, ) (75)
We deduce that <CT No ¢, )
_ 3 /V0 Ca
T ) (76)
We then write
e ~ = (77)
r1
S A VYA (s A (78)
Moreover, withry as in (76), we can solve (72) fak:
Lous = —r1L1¢ — No(¢, Q) (79)

Although (67) insures that the denominator in (76) is non-zero, it maydrafiyat the numerator of (76)
is zero. This is in fact what happens in the case of a pitchfork bifurcat@a must then continue to
higher order to obtain a first approximation to the solutiowe simplify (73) using-; = 0 andu; = ¢

0= Loug +roLyus + 2N0(u1, ’LLQ) (80)

whereus, is known via (79). We now take the inner product with

0 = (¢", Lous) + r2(¢T, £1€) + 2(¢T, No (¢, u2)) (81)
We deduce that ot Nb(Cu)
T L) (82)
We then write
o~ (83)

Ty
u o~ ECZ\/ZC (84)

The expansion (78) corresponds to a transcritical bifurcation-( () and the expansion (84) to a
pitchfork bifurcation ¢ ~ /r¢). Since we have written (63) such that= 0 is always a steady solution,

saddle-node bifurcations, which do not involve the transverse int@saxf branches, must be treated
in a slightly different manner, which we will not do here.
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4 Some other model dynamical systems

We have studied in detail the Lorenz model, the logistic map, the sine circle mapatkiey model, the
Swift-Hohenberg and real Ginzburg-Landau equations and the kicted Many other model dynam-
ical systems have played a role in the recent explosion of the field, andh whicmay encounter, but
which we did not get a chance to study. We present some of them briedly he

4.1 RoOssler system

The Rossler system

i = —y— 2z (853)
= x+ay (85b)
2 = b+z(x—oc (85¢)

was proposed in 1976 by OttodRsler (University of Tubingen, Germany) There are two fixed points,
both with a complex conjugate pair of eigenvalues and one real eigenvalreone fixed point the
c.c. pair has positive real part and the real eigenvalue is negatidevie@ versa for the other one).
Trajectories spiral outwards (c.c. pair) from the first fixed point arehtually return to it (negative real
eigenvalue). This system also undergoes a period-doubling casdagie two of the parametets b, ¢

are fixed and the third is varied.

Figure 14: Rssler attractor. Left: frorht t p: // en. wi ki pedi a. or g/ wi ki / Rossl er _attractor.
Right: fromht t p: / / mat hwor | d. wol f ram com Roessl erAttractor. htm .
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4.2 Van der Pol oscillator
i—e(l—a2*)i+az = Fcos(wyst) (86)

This is a harmonic oscillator to which nonlinear damping and forcing havedded. When the forcing
is zero, (86) can be written as

T =y (87a)
e(1—z%)y —=x (87b)

Scholarpedia has an extensive website on the van der Pol oscillator (withteons) by T. Kanamaru.

Figure 3: Flows for ¢ == 1 of the van der Pol 5]

osmllatlor written bb'f' equations (2) and (3). The ) 0 20 40 60 80 100
dynamics of the point are also shown for e = 10. r

Figure 15: Van der Pol oscillator. Left: Nullclines in the,y) = (z,2) plane. Right: timeseries
showing relaxation oscillations. From T. Kanamuvan der Pol oscillatgrScholarpedia 2(1):2202

4.3 Duffing oscillator
The Duffing oscillator is governed by the equation
i+ 0% — x + x> = ~cos(wt) (88)

In contrast to the van der Pol oscillator, here the dampitiy i€ linear, but there is a nonlinear potential
V(zt/4 — 22/2).

Scholarpedia has an extensive website (with animations) on the Duffifligtmsdy T. Kanamaru.

4.4 Heénon map

Tpy1 = Yn+1—az) (89a)
Ynt1 = bxy (89b)
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rigid frame

sinusoidal
exciting force

Figure 16: The Duffing oscillator describes the behavior of the magrastieebeam.

The Henon map was introduced by MicheEHRon (Observatoire de Nice, France) in 1976. The web-
sitehttp://ibiblio.org/e-notes/Chaos/ henon. ht mby Evgeny Demidov has an exten-
sive treatment of the &hon map. Its actions stretching and folding are an essential part of chaos and
are shared by other prototypical maps, such assthale Horseshoand theBaker's Map. See figure
17.

4.5 Reaction-Diffusion Systems

We already mentioned the FitzHugh-Nagumo equations and the Barkley moée¢ are two more
reaction-diffusion systems.
TheBrusselator.
flu,v) = a+u*v—bu—u (90a)
g(u,v) = bu—u’v (90Db)
was formulated by the group of I. Prigogine in Belgium to describe autod&tadactions. Prigogine was

interested in irreversibility in quantum mechanics and was one of the pioofeies study of oscillating
chemical reactions. He was awarded the Nobel Prize in Chemistry in 1977.

The Gray-Scott model

fu,v) = —uv? + a(l — u) (91a)
g(u,v) = w? — (1 + k) (91b)

forms self-replicating spots, as seen in figure 18.
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Fig. 1

Figure 17:  Above: lBnon map. Left: lBnon map explained as a decompo-
sition of three operations: stretching, folding, and rotation. From E. Demido
http://ibiblio.org/e-notes/Chaos/ henon. ht m Right: Attractor of Henon map fou =

1.4 andb = 0.3. Fromhttp://en. w ki pedi a. or g/ wi ki / Henon_nmap. Below: Smale horse-
shoe map composes stretching and folding. Fhdrmp: / / commons. wi ki medi a. or g/ wi ki .
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Laboratory experiment

Figure 18: Laboratory chemical experiment compared with simulations of tég-Scott model. From
K. Lee, W.D. McCormick, J.E. Pearson & H.L. Swinndyxperimental observation of self-replicating
spots in a reaction-diffusion systeMature369, 215 (1994).
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4.6 Burgers’ equation
Burgers’ equation:
Ut + Uy = Vgy (92)

was formulated by J.M. Burgers and has a clear correspondencertmypdmics. Ifv = 0, then shocks
can appear and the equation is used to model gas dynamics and traffi¢ floy 10, the Cole-Hopf
transformation

w=—2,/d (93)

transforms (92) into the diffusion equation.

Ot = Vhga (94)

4.7 Kuramoto-Sivashinsky equation

k

Figure 19: Growth rate as a function of spatial wavenumbefor the Kuramoto-Sivashinsky equation.
The trivial u = 0 state is unstable to periodic perturbations with wavenumbers: < 1.

The Kuramoto-Sivashinsky equation
Up + Uy = —Ugy — Ugzra x€[-L/2,L/2 (95)

also has a clear correspondence to hydrodynamics. However, thiedsderivative term-u,, has a
negative sign and so is destabilizing instead of stabilizing: substituting sin kz leads to+k?u on

the right-hand side. In the K-S equation, it is the fourth derivative term....., which is stabilizing:
substitutingu ~ sin kz leads to—k*u on the right-hand side. Boundary conditions can be periodic, or
Dirichlet or Neumann (four Dirichlet or Neumann conditions are needethfs fourth-order equation).
The K-S equation was originally formulated to describe flame fronts.
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For periodic boundary conditions, linear instability of the trivial= 0 solution tosin kx is governed by
o=k -k (96)

shown in figure 19, where it can be seen that the unstable wavenunbdrs<a £ < 1. Allowed
values of the wavenumbéy, i.e. those which can fit into the box of length are multiplies of2r /L.

If L < 27, thenky;, = 27/L > 1 and sou = 0 is stable. As the sizé& of the box is increased, an
increasing number of unstable wavenumbers can fit, leading to more bidutnedrom the trivial state.
There exists a large number of solutions to the Kuramoto-Sivashinskyieguaven for fixedL. Some
solutions are shown in figure 20.

4.8 Cross-Newell equations

Cross and Newell have considered the spatial pf&&eY, T') and its gradienk = V6 of a system of
convection rolls or a more general striped pattern and formulated evolujia@tiens for these fields.
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Figure 20: Some solutions to the Kuramoto-Sivashinsky equation for lerdgths10, 12, 16, 22, 24.
Horizontal axis i¢, vertical axis isc. From P. Cvitanov et al.,ht t p: / / chaosbook. or g
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