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Practical Bifurcation Techniques

1 Making the most of your data

We have studied many model equations and normal forms. But what can be done when we only have
results from experiments, or from numerical simulations?

1.1 Locating the bifurcation threshold

The fastest and most precise way to locate a bifurcation threshold is to use growth or decay rates, not
final states. There is a very fundamental reason for this. At a bifurcation, two things take place:
–new branches form, or existing branches intersect
–the critical eigenvalue goes through zero.
Because of the second property, it necessarily takes a long time to converge to a steady state near a
bifurcation – theoretically an infinite time just at the bifurcation. This is calledcritical slowing down.
However, a growth or decay rate can be measured long before convergence; see figure 1. The growth or
decay rate is the slope of timeseries plotted on a logarithmic scale. Generally, thedecay or growth rate
varies linearly with the control parameter, e.g.µ, Re, or Ra near a bifurcation, for the simple reason that
most functions are locally linear. Interpolation or extrapolation from just twovalues gives a very accurate
estimate of the threshold; see figure 2. It is not necessary to calculate bothpositive values (growth) and
negative values (decay); two values of either kind usually suffice.

Explanation and generalizations

–Although a multidimensional dynamical system has as many eigenvalues as it has dimensions, the
evolution is quickly dominated by that with largest real part, i.e that associatedwith the slowest decay or
with the fastest growth. Figure 1 shows the evolution of

x(t) = a1e
λ1t + a2e

λ2t + a3e
λ3t (1)

with λ1 = −1, −0.5, 0.5, 1, λ2 = −4, λ3 = −9, a1 = 0.4, a2 = 2, a3 = 5. After an initial transient,
the faster decay associated withλ2, λ3 means that the timeseries resembles

x(t) ≈ a1e
λ1t (2)

This behavior leads to thepower methodfor calculating eigenvalues. But there is no sure method to
know when the asymptotic regime has been reached.

–Almostanyquantity suffices to measure growth or decay rates (e.g. the temperature orvelocity at one
location). This is because almost all quantities have a non-zero projection onto the critical eigenmode.

–This procedure can be extended to localize Hopf bifurcation thresholdsfrom oscillatory timeseries by
plotting successive maxima, as shown in figure 3.

Some cautionary points

–The growth or decay rate isfrom or to a steady statēx; i.e. (x(t) − x̄) ∼ eλ1t. Thus, it is necessary
to know the steady statēx as well as the timeseriesx(t). Sometimes one knows̄x exactly. For a
symmetry-breaking bifurcation,x can be chosen to measure the departure from symmetry, so thatx̄ = 0.

2



Figure 1: Determining the growth or decay rate from the latter part of a timeseries.

Figure 2: Determining the threshold by extrapolating or interpolating the growthor decay rates.
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Figure 3: Determining the growth or decay rate from an oscillatory timeseries.

Numerically, another means such as Newton’s method (see below) can be used to calculate the steady
state. Otherwise, one can wait for (approximate) convergence to determine x̄.

–The growth or decay rate varies linearly with the control parameter for many bifurcations, e.g. pitchfork,
Hopf and transcritical bifurcations. An important exception is the saddle-node bifurcation, for which
growth or decay rates vary like the square root of the distance from the threshold;

dx

dt
= f(x) = µ− x2 =⇒ x̄ = ±√

µ

f ′(x) = −2x =⇒ f ′(x̄) = ∓2
√
µ

Thus, near a suspected saddle-node bifurcation, the square of the growth or decay rate should be plotted
as a function of the control parameter in order to locate the threshold.
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1.2 Determining whether a bifurcation is supercritical or subcritical

Figure 4: Determining whether a bifurcation is supercritical or subcritical from a timeseries just above
the bifurcation point.

The most visible feature of a subcritical bifurcation is hysteresis: coexistence of two different steady
states. However, as stated above, convergence to a steady state is slow near a bifurcation. Barkley’s
method (R.D. Henderson & D. Barkley, Phys. Fluids8 1783 (1996)), illustrated in figure 4, calls for
examining a timeseries just above the bifurcation point to see if the initial deviationfrom exponential
growth is positive or negative.

ẋ = µx+ αx3 + βx5 (3)

For the panels on the left,α = −0.116 (supercritical bifurcation), while for those on right,α = 0.116
(subcritical bifurcation). For both casesµ = 1.041 andβ = −0.001. The initial growth, while term
µx dominates, is exponential (linear in the log scale below). Eventually the termαx3 contributes, which
causes the growth to slow down and saturate (left, supercritical case) orto speed up (right, subcritical
case). In the subcritical case (right), it is the contributionβx5 that halts the growth and leads to saturation.
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1.3 Freezing a symmetry

A complete understanding of a bifurcation scenario often requires the knowledge of unstable states. In
the case of a symmetry-breaking bifurcation, this is easy and in fact, often happens inadvertently in
numerical calculations. This is the case, for example, for the flow in the wakeof a circular cylinder,
illustrated in figure 5. Defining the coordinate system such that the imposed flow is in thex direction
and the cylinder axis is in thez direction, the sequence of flows and transitions is as follows:

steady flow
{

reflection symmetry iny
homogeneous inz

}

Hopf bifurcation ⇓ Re = 46

periodic von Ḱarmán
vortex street

{

spatio-temporal symmetry iny
homogeneous inz

}

circle pitchfork
of limit cycle

⇓ Re = 188.5

3D flow
{

spatio-temporal reflection symmetry iny
spatially periodic inz

}

Figure 5: Flows and transitions for the wake of a circular cylinder.

Thus, if reflection symmetry is maintained, the transition to the von Kármán vortex street is suppressed.
If a 2D calculation is carried out, then there is no transition to the 3D flow. In some cases, experimental
versions of these symmetry-freezing tricks can also be implemented.
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2 Numerical techniques

The sections which follow concern only numerical calculation and not experiments.

2.1 Timestepping and stability of schemes

Digital computers cannot actually carry out continuous operations. Any numerical method for time
integration is actually a transformation of the differential equation into a discrete-type dynamical system.
(For now, we do not address spatial discretization, the approximation of functions of space by a finite
number of values.)

Let us examine some of the simplest methods for solving

du

dt
= f(u) (4)

The forward Euler method is just the first-order Taylor expansion:

u(t+∆t) = u(t) + f(u(t))∆t (5)

This is called anexplicit method becausef is evaluated at the previous time step. The backward Euler
method is:

u(t+∆t) = u(t) + f(u(t+∆t))∆t (6)

This is called animplicit method, since the above equation must be solved foru(t + ∆t) by a not-
necessarily-trivial procedure. Note that this method also matches the Taylor expansion to first order,
since

f(u(t+∆t)) = f(u(t) + u′(t)∆t) = f(u(t)) + f ′(u(t))u′(t)∆t+ . . . (7)

Both methods are called first-order accurate.

Analysis is usually done on linear equations, such as

du

dt
= −qu (8)

for which everything is understood analytically and a single exact timestep would be:

u(t+∆t) = e−q∆tu(t) (9)

On this equation, the forward Euler method leads to

u(t+∆t) = u(t)− qu(t)∆t = (1− q∆t)u(t) (10)

while the backward Euler method leads to

u(t+∆t) = u(t)− qu(t+∆t)∆t (11a)

(1 + q∆t)u(t+∆t) = u(t) (11b)

u(t+∆t) =
1

1 + q∆t
u(t) (11c)
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Figure 6: One-step amplification factors for the exact evolution, forwardEuler, and backward Euler
methods.

Figure 7: Integration oḟu = −k2u using forward Euler method withk2∆t = 0.25 (decay to zero), 2
(neutral oscillations), 3 (growing oscillations).

This analysis is valuable for understanding diffusive equations, wherea Fourier representation of the
solutionu leads to:

∂tu = ∂2
xxu (12)

u(x, t) =

kmax
∑

k=1

uk(t) sin kx (13)

u̇k = −k2uk (14)

The timestepping schemes replace the exponential multiplicative factor by the factors shown in figure 6.

We see that the forward Euler method leads togrowing oscillationsinstead of decrease fork2∆t > 2,
as shown in figure 7. That is, one is constrained to use the timestep∆t < 2/k2max. One says that this
method is not absolutely stable (or A-stable). A method is said to be A-stable if, when used to solve
u̇ = qu with Re(q) < 0, the numerical solution tends to zero.

We see that the forward Euler method leads togrowing oscillationsLet us illustrate from the dynamical-
systems point of view the consequences of using the unstable forward Euler method on the standard
dynamical system

ẋ = µx− x3 (15)
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This is the standard normal form for a supercritical pitchfork bifurcation, with solutionx = 0 (stable for
µ ≤ 0, unstable forµ > 0 andx = ±√

µ for µ > 0.

The system (15) is to be integrated numerically in time using the timestepping scheme

x(t+∆t) = x(t) + ∆t(µx(t)− x(t)3)

for timestep∆t > 0, leading to the discrete-time dynamical system

xn+1 = f(xn) ≡ xn +∆t(µxn − x3n) (16)

wherexn = x(n∆t).

The steady states are solutions to
x̄ = x̄+∆t(µx̄− x̄3)

and hence the same as for the continuous-time system, i.e.x̄ = 0 andx̄ = ±√
µ for µ > 0.

Their stability is determined by calculating

f ′(x) = 1 +∆t(µ− 3x2)
f ′(0) = 1 +∆tµ f ′(±√

µ) = 1 +∆t(µ− 3µ)) = 1− 2∆tµ
−1 < 1 + ∆tµ < 1 −1 < 1 + ∆t(µ− 3µ) = 1− 2∆tµ < 1
−2 < ∆tµ < 0 −2 < −2∆tµ < 0
−2/∆t < µ < 0 0 < µ < 1/∆t

(Recall that the timestep∆t is necessarily positive.)

Thus, there is a steady bifurcation atµ = 0, clearly a pitchfork bifurcation, since the two new branches
of steady states are created there, just as in the continuous system. But there are also period doubling
bifurcations atµ = −2/∆t, wheref ′(0) = −1, and atµ = 1/∆t, wheref ′(±√

µ) = −1.

The super or subcriticality of these period-doubling bifurcations can be ascertained as follows.

xn+1 = xn(1 + ∆t(µ− x2n))

We setµ = −2/∆t + δ. Perturbations tox = 0 grow in an oscillatory manner when the multiplicative
factor satisfies

1 + ∆t

(−2

∆t
+ δ − x2n

)

< −1

1 +
(

−2 + δ∆t− x2n∆t
)

< −1

−1 +
(

δ∆t− x2n∆t
)

< −1

δ∆t− x2n∆t < 0

δ < x2n

Thus, all perturbations tox = 0 grow whenδ < 0 (i.e. for µ < −2/∆t), and sufficiently large
perturbations tox = 0 grow for δ > 0 (i.e. forµ > −2/∆t). This implies that the two-cycle exists for
δ > 0, wherex = 0 is stable, and hence that the period doubling bifurcation atµ = −2/∆t is subcritical.

(Demonstrating the subcriticality of the period-doubling bifurcations atµ = 1/∆t, x = ±√
µ is more

difficult.)

9



Figure 8: Time-continuous system. Figure 9: Time-discretized system.

Similar analyses can be carried out on methods which are of higher order intime, i.e. which match
the Taylor series to higher order. the explicit 2nd-orderAdams-Bashforth methoduses two previous
timesteps to construct the next guess:

u(t+∆t) = u(t) +
∆t

2
(3f(u(t))− f(u(t−∆t))) (17)

It can be verified to be second-order accurate by expanding as a Taylor series ofu(t).

Stability analysis of the Adams-Bashforth method is more complicated, since it relies on two previous
steps. We write the method applied tou̇ = −k2u as follows:
(

u(t+∆t)
u(t)

)

=

(

u(t)− k2∆t
2 (3u(t)− u(t−∆t))

u(t)

)

=

(

1− 3k2∆t
2

k2∆t
2

1 0

)(

u(t)
u(t−∆t)

)

(18)

The eigenvalues of a matrix

(

a b
c 0

)

are

λ =
a

2
±
√

(a

2

)2
+ bc (19)

We seek values values ofk2∆t such that the Adams-Bashforth method is stable, i.e.|λ| ≤ 1.

±1 =
a

2
±
√

(a

2

)2
+ bc (20)

±1− a

2
= ±

√

(a

2

)2
+ bc (21)

(

±1− a

2

)2
=

(a

2

)2
+ bc (22)

1∓ a = bc (23)

1∓
(

1− 3k2∆t

2

)

=
k2∆t

2
(24)

0 = −k2∆t or 2 = k2∆t (25)
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The endpoints of the stability interval are0 ≤ ∆t ≤ 2/k2, just as they are for the forward Euler method.

In fact, no explicit method can be A-stable. This is because all explicit methods essentially approximate
the exponential functionexp(q∆t) by a polynomial

∑

n cn(q∆t)n. For Re(q) < 0, exp(q∆t) < 1,
while |∑n cn(q∆t)n| > 1 for ∆t sufficiently large. The explicit methods we have seen above are the
1st-order forwards Euler and 2nd-order Adams-Bashforth methods;the popular Runge-Kutta methods
are also explicit methods. The only methods that can be A-stable are implicit andat most second-order.

The implicit Crank-Nicolson or trapezoidal methodis an average of the forward and backward Euler
formulas:

u(t+∆t) = u(t) +
∆t

2
(f(u(t)) + f(u(t+∆t)) (26)

In terms of stability, using the test equationu̇ = −k2u, the Crank-Nicolson method yields

u(t+∆t) =
1− k2∆t/2

1 + k2∆t/2
u(t) (27)

For∆t > 0, this factor is always between−1 and 1, but ask → ∞, it approaches−1 as illustrated in
figure 2.1, meaning that the amplitudes of Fourier components with high spatial frequencies oscillate in
time, rather than being damped as they should be.

The implicitbackward differentiation method

3

2
un+1 − 2un +

1

2
un−1 = ∆tf(un+1) (28)

is second order and also has the desirable property that its amplification factor goes to 0 as∆t → ∞ for
Re(q) < 0, as shown in figure 2.1.

Essentially, implicit methods can be A-stable because they approximateexp(q∆t) by a rational function
∑

n cn(q∆t)n/
∑

m dm(q∆t)m and rational functions can be bounded for all values of∆t, as we have
seen for the 1st-order backward Euler and 2nd-order Crank-Nicolson methods. Evaluating a rational
function is, of course, hardly more difficult than evaluating a polynomial: thedifficulty of implicit meth-
ods lies in applying them to other than the simple test problemu̇ = qu. In just one dimension, recalling
that the backward Euler method is:

u(t+∆t) = u(t) + ∆tf(u(t+∆t)) (29)

the above occasion must usually be solved iff(u) is a nonlinear function. Far more frequently,u andf
are multidimensional. In particular, if the equation to be solved is a PDE (partial differential equation),
then the number of unknowns is the number of gridpoints times the number of variables. For example,
for a single variable on a modest grid of size50 × 50 × 50, the number of unknowns is 125 000. For
three velocity components on a100× 100× 100 grid, the number of unknowns is3× 106. In this case,
even if f is linear, i.e. a matrix operator, a large linear system must be inverted:

u(t+∆t) = u(t) + ∆tM(u(t+∆t)) =⇒ (30)

(I −∆tM)−1u(t+∆t) = u(t) (31)

Large linear systems will be discussed in the next section.
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Figure 10: The amplification factor or factors for A-stable one- and two-step schemes.

2.2 Newton’s method

Another method of calculating unstable steady states in Newton’s method. In fact, Newton’s method is
useful even when the steady states sought are stable, because it is muchfaster than integrating in time.

Newton’s method is based on the fact that functions are usually locally linear. Thus if we seek the root̄x
of f(x), we can approximate it by the root of the local linear approximation tof(x):

0 = f(x̄) ≈ f(x(0)) + f ′(x(0))(x̄− x(0)) =⇒ x̄ ≈ x(0) − f(x(0))

f ′(x(0))
(32)

Of course, since (32) is only an approximation, the value obtained forx̄ will not be accurate. We iterate
the process as follows:

f ′(x(n))∆x = f(x(n)) (33a)

x(n+1) = x(n) −∆x (33b)

Figure 11 illustrates this procedure. Figure 11 also shows that convergence of Newton’s method is
independent of the sign off ′, i.e. of the stability of the fixed point̄x.

In the multidimensional case,f andx are vectors and the derivative is replaced by the Jacobian:

[Df(x(n))]∆x = f(x(n)) (34a)

x(n+1) = x(n) −∆x (34b)

where the matrix of partial derivatives[Df ]ij = ∂fi/∂xj is evaluated atx(n).

For large dynamical systems, it may be difficult to solve the linear system (34). There are two types of
methods for solving linear systems:

Direct: Other names are Gaussian elimination, LU decomposition, forward and backward substitution.
For a matrix A, it is possible to write:

A = LU (35)

whereL is lower triangular andU is upper triangular. IfA is a generalN ×N matrix, this step requires
O(N3) operations. Then one solves

Ax = b ⇐⇒ LUx = b ⇐⇒ Ly = b ⇐⇒ Ux = y (36)
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Figure 11: Newton’s method finds a rootx̄ of f by repeated linear extrapolation independent of the sign
of f ′.

This step requiresO(N2) operations for a generalN × N matrix. For a banded matrix withJ bands,
the LU decomposition requiresO(J2N) operations and the backsolve requiresO(JN) operations. The
rows and/or columns may need to be interchanged (called pivoting) if the elements are along the diagonal
are much smaller than the off-diagonal elements.

Iterative: There are many sorts of iterative methods. Here we mention only methods of thefamily called
conjugate gradient, or Krylov. By acting (multiplying) the right-hand-sideb repeatedly by the matrixA,
one generates a set of vectors (Krylov vectors), a linear combination of which is used to construct an
approximation to the unknown vectorx.

b =⇒ Ab =⇒ A2b =⇒ . . . AK−1b (37a)

Orthogonalize to formv1, v2, . . . vK (37b)

x ≈
K
∑

k=1

ckvk (37c)

The success of this method depends a great deal on the nature of the matrixA. If K = N , then (in
exact arithmetic and for a non-singular matrix)N independent vectors are generated, from which it is
necessarily possible to construct the solution. Since each matrix-vector product requiresO(N2) opera-
tions, generatingN vectors requiresO(N3), the same order as for direct methods. There are two ways
in which iterative methods can save time:
–The matrix can be such that a matrix-vector product takes less thanO(N2) operations. This is the case
if a matrix is sparse, for example, but even if it is not sparse, its entries canmake this so. An example is
the Fourier transform, which, as a linear process, is equivalent to multiplication by a matrix, but which
takesO(N logN) operations.
–A much smaller numberK ≪ N of the Krylov vectors may be needed to approximate the solution.
This is the case if the matrix iswell-conditioned, meaning essentially that the ratio of largest to smallest
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eigenvalue is not too large, so that the matrix is not too far from the identity.

Iterative methods save space as well as time. The LU decomposition of a general sparse matrixA is
not sparse – only bandedness is preserved. Thus the LU decompositionwill generally requireO(N2)
storage, even ifA is sparse. In contrast, if only matrix-vector multiplies are required, the sparsity of
A is preserved. In addition, iterative methods may use a procedure for carrying out the matrix-vector
multiplications which does not require storage of the matrixA at all.

When Newton’s method is used to find the complex roots ofz3 − 1, it can converge to any of the three
roots, depending on the initial condition. The set of initial conditions converging to each of the three
roots forms a well-known fractal called a Julia set.

Figure 12: Basins of attraction for Newton’s method to the three roots ofz3 − 1.

2.3 Linearizing a code

Newton’s method (34) requires the JacobianDF . As stated above, iterative methods can use a procedure
which calculates the matrix-vector product instead of explicitly constructing the Jacobian matrix. This is
often easier conceptually as well. For example, the Navier-Stokes equations

∂tU = −(U · ∇)U−∇P +
1

Re
∆U (38)

∇ ·U = 0 (39)

are linearized as follows:

∂tu = −(U · ∇)u− (u · ∇)U−∇p+
1

Re
∆u (40)

∇ · u = 0 (41)

If we have a numerical method for solving the Navier-Stokes equations, wecan easily transform it to a
code for solving the linearized Navier-Stokes equations. This is analogous to the change

F (U) =⇒ DF (U)u (42)
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2.4 Power method

The simplest method for calculating eigenvalues and eigenvectors relies on the fact that repeated action
of a matrix leads to growth and decay of the various eigenvectors according to their eigenvalues. Let the
eigenvectors and eigenvalues ofA beµk, φk:

Aφk = µkφk (43)

with |µ1| > |µ2| > |µ3| > . . .. An arbitrary initial vectoru(1) will have components along eachφk

u(1) =
∑

k

ckφk (44)

Repeated multiplication byA generates

u(n) = An−1u1 =
∑

k

ckµ
n
kφk → c1µ

n
1φ1 (45)

Thusu(n) is parallel to the eigenvectorφ1 and an approximation to thedominant eigenvalueµ1 (that of
largest absolute value) is given by the Rayleigh quotient

〈u(n+1), u(n)〉
〈u(n), u(n)〉 ≈ c1µ

2n+1
1 〈φ1, φ1〉

c1µ2n
1 〈φ1, φ1〉

= µ1 (46)

For finding theleading eigenvalue(that of largest real part), the exponential of the matrix can be used
since

eA∆tφk = e∆tµkφk (47)

and leading eigenvalues are mapped into dominant ones by the exponential mapping.

3 Some mathematical techniques

Here we present some important mathematical constructions used in bifurcation problems.

3.1 Center manifold reduction

Consider a system undergoing a bifurcation whose Jacobian has mostly negative eigenvalues and one
or more eigenvalues that are zero (for complex eigenvalues, we are referring to the real part). We di-
agonalize the Jacobian and use coordinates corresponding to the eigenvectors. We write the directions
corresponding to the zero eigenvalues as the vectorx and those corresponding to the negative eigenvalues
as vectory.

ẋ = Ax+ f(x,y) (48a)

ẏ = By + g(x,y) (48b)

whereA andB are the Jacobian reduced tox andy respectively. We assume that the negative eigenvalues
are bounded away from zero, and soy evolves very quickly compared tox. After a short initial transient,
we say thaty is “slaved” tox and write:

0 = By + g(x,y) (49)
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Figure 13: Center manifold reduction. They dynamics can be considered to be passive, following thex
dynamics.

relatingy andx which implicitly givesy as a function ofx, so that in principle:

y = h(x) with y = O(|x|2) (50)

In practice, (49) is solved approximately by expandingh(x) as a series, whose elements are monomials
in the components ofx andy. We then substitute the exact or approximateh(x) into (48a) to obtain:

ẋ = Ax+ f(x,h(x)) (51a)

The Reduction Principle states that system (48) is locally topologically equivalent near the origin to
(51a) with

ẏ = By (51b)

in whichx andy are decoupled.

3.2 Fredholm alternative

The statement of the Fredholm alternative for self-adjoint operators is asfollows. SupposeA is a singular
linear operator andζ its null vector, i.e. such that

Aζ = 0 (52)

Then the equation
Ax = b (53)

has a solution if and only if
〈ζ,b〉 = 0 (54)

The solution to (53), if it exists, is non-unique since any multiple ofζ can be added tox, and we may
choose it to be orthogonal to the null vector:

〈ζ, x〉 = 0 (55)
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If A is not self adjoint, then its adjointA† also has a null vector

A†ζ† = 0 (56)

and (54)-(55) are generalized to

〈ζ†,b〉 = 0 (57)

〈ζ†, x〉 = 0 (58)

whereζ† is the null eigenvector of the adjoint operatorA† or, equivalently, the left eigenvector ofA.

One direction is easy to show. Taking the inner product of (53) with the nullvectorζ† leads to:

〈ζ†,b〉 = 〈ζ†, Ax〉 = 〈A†ζ†,x〉 = 0 (59)

Thus, (53) implies (57). The other direction is more difficult to show in the abstract, but is also simple
in finite dimensions. IfA is a singular matrix andζ its null vector, then we can carry out a change of
basis such that the newA has zeroes in its first row. Equation (57) then merely says that any vectorof the
formAx must have zero as its first component. This is because the newA† has zeroes in its first column,
the newζ† is the first unit vector, and the inner product of a vector withζ† is the first component. Thus,
equation (53) becomes

Ax = b (60)








0 0 0 0
X X X X
X X X X
X X X X

















x
y
z
w









=









a
b
c
d









whereX designates entries ofA that are not necessarily zero. Equation (56) becomes

A†ζ† = 0 (61)








0 X X X
0 X X X
0 X X X
0 X X X

















1
0
0
0









=









0
0
0
0









and equation (57) becomes

< ζ†,b >=
[

1 0 0 0
]









a
b
c
d









= a = 0 (62)

The condition (62) suffices for (60) to have a solution if there are no remaining null vectors, since then the
remaining lower3×3 matrix ofA is non-singular. If there are other null vectors, then the right-hand-side
b must be orthogonal to these as well.
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3.3 Constructing bifurcating solutions

We now illustrate how the Fredholm alternative is used to construct solution branches in the neighbor-
hood of a bifurcation point. This treatment is taken from
G. Iooss,Bifurcations successives et stabilité, Journal de Physique,39, C5-99 (1978).
We begin with an evolution equation for a fieldu with a termL which is linear inu and which depends
on a control parameterr, and a termN which is quadratic inu:

∂tu = L(r)u+N (u, u) (63)

The trivial solutionu = 0 undergoes a steady bifurcation atr = 0. ThusL0 ≡ L(r = 0) has a null
vectorζ:

0 = L0ζ (64)

as well as an adjoint null vectorζ†

0 = L†
0ζ

† (65)

which we take to be normalized
〈ζ†, ζ〉 = 1 (66)

Finally, we will assume that the bifurcating eigenvalue crosses zero transversely

σ(r = 0) = 0 σ′(r = 0) 6= 0 (67)

which leads (for reasons we will not explain here) to the condition:

〈ζ†,L1ζ〉 6= 0 (68)

We are interested in the behavior of steady solutions nearr = 0. We expandL andN in powers ofr:

L(r) = L0 + rL1 + r2L2 + . . . (69a)

N (u, u) = N0(u, u) + rN1(u, u) + r2N2(u, u) (69b)

We then expand the solutionu and control parameterr in powers of some small parameterǫ:

u = u1ǫ+ u2 ǫ
2 + . . . (69c)

r = r1ǫ+ r2ǫ
2 + . . . (69d)

whereu andr contain noO(1) terms because we have are considering a solution bifurcating fromu = 0
at r = 0. Substituting the expansions (69) into (63) leads to:

0 = (L0 + rL1 + r2L2 + . . .)u+N0(u, u) + rN1(u, u) + . . .

= (L0 + (r1ǫ+ r2ǫ
2 + . . .)L1 + (r1ǫ+ r2ǫ

2 + . . .)2L2 + . . .)(u1ǫ+ u2 ǫ
2 + . . .)

+ǫ2N0(u1, u1) + 2ǫ3N0(u1, u2) + . . .+ (r1ǫ+ r2ǫ
2 + . . .) ǫ2N1(u1, u1) + . . . (70)

Separating orders inǫ leads to

0 = L0u1 (71)

0 = L0u2 + r1L1u1 +N0(u1, u1) (72)

0 = L0u3 + r1L1u2 + r2L1u1 + r21L2u1 + 2N0(u1, u2) + r1N1(u1, u1) (73)
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Equation (71) states thatu1 is proportional to the bifurcating null vector. Because we have not yet defined
ǫ, we may take

u1 = ζ (74)

Equation (72) involves the singular operatorL0 to which we apply the Fredholm alternative. We take the
inner product ofζ† with (72):

0 = 〈ζ†,L0u2〉+ r1〈ζ†,L1ζ〉+ 〈ζ†,N0(ζ, ζ)〉 (75)

We deduce that

r1 = −〈ζ†,N0(ζ, ζ)〉
〈ζ†,L1ζ〉

(76)

We then write

ǫ ≈ r

r1
(77)

u ≈ ǫ ζ =
r

r1
ζ = − 〈ζ†,L1ζ〉

〈ζ†,N0(ζ, ζ)〉
r ζ (78)

Moreover, withr1 as in (76), we can solve (72) foru2:

L0u2 = −r1L1ζ −N0(ζ, ζ) (79)

Although (67) insures that the denominator in (76) is non-zero, it may happen that the numerator of (76)
is zero. This is in fact what happens in the case of a pitchfork bifurcation. We must then continue to
higher order to obtain a first approximation to the solutionu. We simplify (73) usingr1 = 0 andu1 = ζ

0 = L0u3 + r2L1u1 + 2N0(u1, u2) (80)

whereu2 is known via (79). We now take the inner product withζ†:

0 = 〈ζ†,L0u3〉+ r2〈ζ†,L1ζ〉+ 2〈ζ†,N0(ζ, u2)〉 (81)

We deduce that

r2 =
−2〈ζ†,N0(ζ, u2)〉

〈ζ†,L1ζ〉
(82)

We then write

ǫ2 ≈ r

r2
(83)

u ≈ ǫ ζ =

√

r

r2
ζ (84)

The expansion (78) corresponds to a transcritical bifurcation (u ∼ rζ) and the expansion (84) to a
pitchfork bifurcation (u ∼ √

rζ). Since we have written (63) such thatu = 0 is always a steady solution,
saddle-node bifurcations, which do not involve the transverse intersection of branches, must be treated
in a slightly different manner, which we will not do here.
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4 Some other model dynamical systems

We have studied in detail the Lorenz model, the logistic map, the sine circle map, theBarkley model, the
Swift-Hohenberg and real Ginzburg-Landau equations and the kickedrotor. Many other model dynam-
ical systems have played a role in the recent explosion of the field, and which you may encounter, but
which we did not get a chance to study. We present some of them briefly here.

4.1 Rössler system

The R̈ossler system

ẋ = −y − z (85a)

ẏ = x+ ay (85b)

ż = b+ z(x− c) (85c)

was proposed in 1976 by Otto Rössler (University of Tubingen, Germany) There are two fixed points,
both with a complex conjugate pair of eigenvalues and one real eigenvalue.For one fixed point the
c.c. pair has positive real part and the real eigenvalue is negative (and vice versa for the other one).
Trajectories spiral outwards (c.c. pair) from the first fixed point and eventually return to it (negative real
eigenvalue). This system also undergoes a period-doubling cascade,when two of the parametersa, b, c
are fixed and the third is varied.

Figure 14: R̈ossler attractor. Left: fromhttp://en.wikipedia.org/wiki/Rossler attractor.
Right: fromhttp://mathworld.wolfram.com/RoesslerAttractor.html.
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4.2 Van der Pol oscillator

ẍ− ǫ(1− x2)ẋ+ x = F cos(ωf t) (86)

This is a harmonic oscillator to which nonlinear damping and forcing have beenadded. When the forcing
is zero, (86) can be written as

ẋ = y (87a)

ẏ = ǫ(1− x2)y − x (87b)

Scholarpedia has an extensive website on the van der Pol oscillator (with animations) by T. Kanamaru.

Figure 15: Van der Pol oscillator. Left: Nullclines in the(x, y) = (x, ẋ) plane. Right: timeseries
showing relaxation oscillations. From T. Kanamura,Van der Pol oscillator, Scholarpedia 2(1):2202

4.3 Duffing oscillator

The Duffing oscillator is governed by the equation

ẍ+ δẋ− x+ x3 = γ cos(ωt) (88)

In contrast to the van der Pol oscillator, here the damping (δẋ) is linear, but there is a nonlinear potential
V (x4/4− x2/2).

Scholarpedia has an extensive website (with animations) on the Duffing oscillator by T. Kanamaru.

4.4 Hénon map

xn+1 = yn + 1− ax2n (89a)

yn+1 = bxn (89b)
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Figure 16: The Duffing oscillator describes the behavior of the magneto-elastic beam.

The H́enon map was introduced by Michel Hénon (Observatoire de Nice, France) in 1976. The web-
site http://ibiblio.org/e-notes/Chaos/henon.htm by Evgeny Demidov has an exten-
sive treatment of the H́enon map. Its actions ofstretching and folding are an essential part of chaos and
are shared by other prototypical maps, such as theSmale Horseshoeand theBaker’s Map. See figure
17.

4.5 Reaction-Diffusion Systems

We already mentioned the FitzHugh-Nagumo equations and the Barkley model. Here are two more
reaction-diffusion systems.

TheBrusselator:

f(u, v) = a+ u2v − bu− u (90a)

g(u, v) = bu− u2v (90b)

was formulated by the group of I. Prigogine in Belgium to describe autocatalytic reactions. Prigogine was
interested in irreversibility in quantum mechanics and was one of the pioneersof the study of oscillating
chemical reactions. He was awarded the Nobel Prize in Chemistry in 1977.

TheGray-Scott model:

f(u, v) = −uv2 + a(1− u) (91a)

g(u, v) = uv2 − (1 + k)v (91b)

forms self-replicating spots, as seen in figure 18.
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Figure 17: Above: H́enon map. Left: H́enon map explained as a decompo-
sition of three operations: stretching, folding, and rotation. From E. Demidov,
http://ibiblio.org/e-notes/Chaos/henon.htm. Right: Attractor of H́enon map fora =
1.4 andb = 0.3. Fromhttp://en.wikipedia.org/wiki/Henon map. Below: Smale horse-
shoe map composes stretching and folding. Fromhttp://commons.wikimedia.org/wiki.
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Figure 18: Laboratory chemical experiment compared with simulations of the Grey-Scott model. From
K. Lee, W.D. McCormick, J.E. Pearson & H.L. Swinney,Experimental observation of self-replicating
spots in a reaction-diffusion system, Nature369, 215 (1994).
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4.6 Burgers’ equation

Burgers’ equation:
ut + uux = νuxx (92)

was formulated by J.M. Burgers and has a clear correspondence to hydrodynamics. Ifν = 0, then shocks
can appear and the equation is used to model gas dynamics and traffic flow If ν 6= 0, the Cole-Hopf
transformation

u = −2νφx/φ (93)

transforms (92) into the diffusion equation.

φt = νφxx (94)

4.7 Kuramoto-Sivashinsky equation

Figure 19: Growth rateσ as a function of spatial wavenumberk for the Kuramoto-Sivashinsky equation.
The trivialu = 0 state is unstable to periodic perturbations with wavenumbers0 < k < 1.

TheKuramoto-Sivashinsky equation:

ut + uux = −uxx − uxxxx x ∈ [−L/2, L/2] (95)

also has a clear correspondence to hydrodynamics. However, the second derivative term−uxx has a
negative sign and so is destabilizing instead of stabilizing: substitutingu ∼ sin kx leads to+k2u on
the right-hand side. In the K-S equation, it is the fourth derivative term−uxxxx which is stabilizing:
substitutingu ∼ sin kx leads to−k4u on the right-hand side. Boundary conditions can be periodic, or
Dirichlet or Neumann (four Dirichlet or Neumann conditions are needed for this fourth-order equation).
The K-S equation was originally formulated to describe flame fronts.

25



For periodic boundary conditions, linear instability of the trivialu = 0 solution tosin kx is governed by

σ = k2 − k4 (96)

shown in figure 19, where it can be seen that the unstable wavenumbers are 0 < k < 1. Allowed
values of the wavenumberk, i.e. those which can fit into the box of lengthL, are multiplies of2π/L.
If L < 2π, thenkmin = 2π/L > 1 and sou = 0 is stable. As the sizeL of the box is increased, an
increasing number of unstable wavenumbers can fit, leading to more bifurcations from the trivial state.
There exists a large number of solutions to the Kuramoto-Sivashinsky equation, even for fixedL. Some
solutions are shown in figure 20.

4.8 Cross-Newell equations

Cross and Newell have considered the spatial phaseθ(X,Y, T ) and its gradientk = ∇θ of a system of
convection rolls or a more general striped pattern and formulated evolution equations for these fields.
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Figure 20: Some solutions to the Kuramoto-Sivashinsky equation for lengthsL = 10, 12, 16, 22, 24.
Horizontal axis ist, vertical axis isx. From P. Cvitanovíc et al.,http://chaosbook.org
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