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Computational Study of Turbulent Laminar Patterns in Couette Flow
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Turbulent-laminar patterns near transition are simulated in plane Couette flow using an extension of the
minimal-flow-unit methodology. Computational domains are of minimal size in two directions but large in
the third. The long direction can be tilted at any prescribed angle to the streamwise direction. Three types
of patterned states are found and studied: periodic, localized, and intermittent. These correspond closely to
observations in large-aspect-ratio experiments.
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FIG. 1 (color online). Turbulent-laminar pattern at Reynolds
number 350. The computational domain (outlined in white,
aligned along x0, z0) is repeated periodically to tile an extended
region. The kinetic energy is visualized in a plane midway
between and parallel to the plates moving in the streamwise
(x) direction. Uniform black corresponds to laminar flow. The
sides of the image are 60 times the plate separation Ly � 2; the
pattern wavelength is 20 Ly. Streamwise streaks, with spanwise
extent approximately Ly, are visible at the edges of the turbulent
regions.
Plane Couette flow—the flow between two infinite par-
allel plates moving in opposite directions—undergoes a
discontinuous transition from laminar flow to turbulence as
the Reynolds number is increased. Because of its simplic-
ity, this flow has long served as one of the canonical
examples for understanding shear turbulence and the sub-
critical transition process typical of channel and pipe flows
[1–11]. Only recently was it discovered in very large-
aspect-ratio experiments by Prigent et al. [12–14] that
this flow also exhibits remarkable pattern formation near
transition. Figure 1 shows such a pattern, not from experi-
ment, but from numerical computations reported here. An
essentially steady, spatially periodic pattern of distinct
regions of turbulent and laminar flow emerges spontane-
ously from uniform turbulence as the Reynolds number is
decreased. The most striking features of these patterns are
their large wavelength and the oblique angle they form to
the streamwise direction.

Related patterns have a long history in fluid dynamics. In
Taylor-Couette flow between counter-rotating cylinders,
Coles and van Atta [15–17] first discovered a state known
as spiral turbulence with coexisting turbulent and laminar
regions. This state was famously commented on by
Feynman [18] and has attracted attention as an example
of a coherent structure comprising both turbulence and
long-range order [19–21]. Until recently all experimental
studies of this state showed only one turbulent and one
laminar patch. Prigent et al. [12–14] found that in a very
large-aspect-ratio Taylor-Couette system, the turbulent and
laminar regions form a periodic pattern, of which the
original observations of Coles comprised only one wave-
length. Cros and Le Gal [22] discovered large-scale turbu-
lent spirals as well, in experiments on the shear flow
between a stationary and a rotating disk. The Reynolds-
number thresholds, wavelengths, and angles are very simi-
lar for all of these turbulent patterned flows. It now appears
that such patterns are inevitable intermediate states on the
route from turbulent to laminar flow in large-aspect-ratio
shear flows.
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We report the first direct numerical simulation of
turbulent-laminar patterns. Our simulations are designed
to reduce computational expense, to establish minimal
conditions necessary to produce these large-scale patterns,
and to impose and thereby investigate the pattern wave-
length and orientation. To do so, we use tilted rectangular
domains which are long perpendicular to the turbulent
bands, allowing for pattern formation and wavelength
competition, and of minimal size along the bands, in which
the pattern is homogeneous, the flow varying only over the
small scales typical of shear turbulence; see Fig. 1.

In plane Couette flow, plates located at y � �h move at
velocities �Ux̂. The Reynolds number is Re � hU=�,
where � is the fluid’s kinematic viscosity. We take h � 1,
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U � 1. The simple Couette solution uC � yx̂ is linearly
stable for all values of Re. However, above a critical Re
near 325 [6], transition to turbulence occurs for sufficiently
large perturbations. The turbulence is characterized by
the cyclical generation and breakdown of streaks by
streamwise-oriented vortices with a natural spanwise pair
spacing of about 4 [1,5,7,9,23,24]. In minimal-flow-unit
(MFU) simulations [1,5,9], a periodic domain of minimal
lateral dimensions is sought which can sustain this basic
cycle. For plane Couette flow near transition, the minimum
size is approximately Lx � Lz � 6� 4 [Fig. 2(a)].

We extend the MFU computations in two ways. First we
tilt the domain at angle 	 to the streamwise direction
[Fig. 2(b)], designating by x0 and z0 the periodic directions
of the tilted domain. To respect the spanwise streak spacing
while imposing periodic boundary conditions in x0, the
domain satisfies Lx0 sin	 ’ 4 for 	 > 0. (For 	 � 0, we
require Lx0 * 6.) Second, we greatly extend one of the
dimensions Lz0 past the MFU requirement [Fig. 2(c)], in
practice between 30 and 220, usually 120.

The incompressible Navier-Stokes equations are simu-
lated using a spectral-element (x0 � y)–Fourier (z0) code
[25]. The boundary conditions are no-slip at the moving
plates and periodic in the x0 and z0 directions. The spatial
resolution for the Lx0 � Ly � Lz0 � 10� 2� 120 domain
is Nx � Ny � Nz � 61� 31� 1024, consistent with pre-
vious studies [5,9]. We have verified the accuracy of our
simulations in small domains by comparing to prior simu-
lations [5]. In large domains we have examined mean
velocities, Reynolds stresses, and correlations in a
turbulent-laminar flow at Re � 350 and find that these
reproduce experimental results from Taylor-Couette [17]
and plane Couette [7] flow. While neither experimental
study corresponds exactly to our case, the agreement sup-
ports our claim that our large-domain simulations correctly
capture turbulent-laminar states.
FIG. 2 (color online). Simulation domains. The wall-normal
direction y is not seen; Ly � 2. The gray or colored bars
represent streamwise vortex pairs with a spanwise spacing
of 4. (The vortices are schematic; these are dynamic features
of the actual flow.) (a) MFU domain of size 6� 4. (b) Central
portion of a domain [on the same scale as (a)] tilted to the
streamwise direction. �;�0, and �;�0 are pairs of points iden-
tified under periodic boundary conditions in x0. (c) Full tilted
domain with Lx0 � 10, Lz0 � 120, and 	 � 24�. On this scale
the MFU domain, shown for comparison, is small.
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We make two comments distinguishing our approach.
Experimentalists [12–14] vary Re and report the measured
angles and wavelengths, varying from 	 � 25� and �z0 �
46 at Re � 394 to 	 � 37� and �z0 � 60 at Re � 340.
(They extrapolated the domain of existence to be 325 	
Re 	 415.) In contrast, we fix the pattern angle and restrict
the wavelength: in this way, we can determine the bounda-
ries in parameter space within which each pattern can exist.
Second, all the turbulent states we report are bistable with
simple Couette flow. A major goal [6,8–11], not addressed
here, has been the determination of lifetimes and transition
probabilities of turbulent flow as a function of amplitude
and Re.

We begin with simulations exploring the dependence of
patterns on Re. To allow the system sufficient freedom to
select different states, we set Lz0 � 120, 2 to 3 times the
experimentally observed wavelength. We fix 	 � 24�, near
its observed value at pattern onset. Figure 3 shows a long
simulation over a time T � 43 000 and spanning the range
420 
 Re 
 290, with Re decreased in discrete steps over
time. A space-time diagram of kinetic energy is shown in
the middle and spatial Fourier transforms are on the left.
FIG. 3 (color online). Space-time evolution of turbulent-
laminar patterns in the domain Lx0 � Lz0 � 10� 120, 	 �
24�. Time evolves upward with changes in Re indicated on the
right. States seen upon decreasing Re from uniform turbulence at
Re � 420, through various patterned states, ending in simple
Couette flow at Re � 290. Center: Time-averaged kinetic energy
hEi on a space-time grid. The same scale is used for all space-
time plots, with hEi � 0 in white. Right: kinetic energy plotted
over a time window T � 500 in a turbulent and laminar region.
Left: Average spectral components hjŵmji of spanwise velocity
with m � 3 (solid line) and m � 2 (dotted line), m � 0 (long-
dashed line), and m � 1 (short-dashed line).
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FIG. 4 (color online). Simulations at Re � 350, Re � 300,
and Re � 410 illustrating three distinct states: periodic, local-
ized, and intermittent. Space-time representation of hEi is as in
Fig. 3. For Re � 350 and Re � 300 the domain length is
increased from Lz0 � 50 to Lz0 � 140 in increments of 5. The
integrated energy profile �E�z0� is shown at the final time. For
Re � 410 a single long simulation is shown for Lz0 � 40,
accompanied by m � 1 (solid line) and m � 0 (dashed line)
spectral components.

FIG. 5 (color online). Turbulent-laminar patterns at minimum
(	 � 15�) and maximum (	 � 66�) angle for which they have
been computed at Re � 350. Conventions as in Fig. 1.
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More specifically, we compute E � ju� uCj
2=2 at 32

points equally spaced in z0 along a line (x0 � y � 0) in the
midchannel and average these time series over windows of
length T � 500 to yield hEi, which measures the flow’s
turbulent intensity on a space-time grid. (Other measures
such as the individual velocity components or the rms
rather than the means give similar results.) Fig. 3 also
shows E from which hEi is computed at two points on
the space-time grid. We also compute the instantaneous
spatial (z0) Fourier transform ŵm of the spanwise velocity
w for the same 32 points. We take the modulus (to remove
phase information) and average over windows of length
T � 500 to obtain hjŵmji; we plot these for m � 0,1, 2, and
3 on the right. We find that these low-order spectral com-
ponents of w provide the best diagnostic of pattern
wavelength.

We initialized a turbulent flow at Re � 500 by perturb-
ing simple Couette flow and subsequently decreased Re in
discrete steps of 10 or 20. Figure 3 begins at Re � 420 with
an unpatterned turbulent state we call uniform turbulence.
Its low-m spectral components hjŵmji are all of comparable
size. At Re � 410 laminar regions begin to appear and
disappear and this continues through Re � 400 (see be-
low). At Re � 390 a stable pattern forms with three dis-
tinct turbulent and laminar regions. The m � 3 spectral
component emerges. The selected wavelength of 40 agrees
closely with experiment [12–14]. The final flow at Re �
350 is that visualized in Fig. 1. The pattern remains quali-
tatively the same through Re � 320. At Re � 310 the
pattern loses one turbulent region, accompanied by the
emergence of the m � 2 spectral component. At Re �
300, a single turbulent region remains, and finally, at Re �
290, the flow reverts to simple Couette flow.

We now present evidence that the patterns in Fig. 3
represent three qualitatively different states. The banded
state at Re � 350 is fundamentally spatially periodic. To
support this we show in Fig. 4 a simulation at Re � 350 in
a domain whose length Lz0 is slowly increased. The pattern
adjusts to keep the wavelength in the approximate range
35–65 by splitting the turbulent bands when they grow too
large. The instantaneous integrated energy profile �E �R
dx0dyE�x0; y; z0; t� is plotted at the final time. Between

the turbulent bands, �E does not reach zero and the flow,
while basically laminar, differs from the simple Couette
solution yex.

In sharp contrast, the single turbulent patch seen in Fig. 3
prior to return to laminar Couette flow is a localized state.
Figure 4 shows that in a domain of increasing size at Re �
300 a single turbulent region of approximately fixed extent
persists, independent of Lz0 . Moreover, �E decays to zero
exponentially as the flow approaches the simple Couette
solution away from the patch. The localized states in our
computations necessarily take the form of bands when
visualized in the x� z plane [e.g., right half of Fig. 5].
Isolated bands and spots are reported experimentally [12–
14] near these values of Re.
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The third behavior is displayed by the intermittent state
in Fig. 3 near the transition to uniform turbulence. Figure 4
shows a very long simulation at Re � 410 in a domain
Lz0 � 40, the size of a single pattern wavelength. The flow
never stabilizes but instead quasilaminar regions nucleate
and disappear continually. The range of hEi in the space-
time plot is noticeably smaller than for the stable patterns.
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Simulations at Lz0 � 120, Re � 410 show similar behav-
ior, as do simulations at Re � 400 (not immediately evi-
dent in Fig. 3 because of the long time scale of the
intermittent events). Intermittency has been interpreted in
[12–14] as resulting from noise-driven competition be-
tween banded patterns at equal and opposite angles.
However, the intermittency is captured in our simulations,
even though the competition between states of opposite
angles is absent.

We have also examined transitions for Re increasing.
The transition from banded to intermittent and then to
uniform turbulence occurs at the same values of Re, up
to our step size of �Re � 10, as in Fig. 3. (The character-
istics of the intermittent state make it difficult to determine
the threshold more accurately than this.) Thus there is no or
little hysteresis in these transitions. States for Re< 330 are
somewhat protocol dependent in that the number of bands
at a given Re is not unique.

We have explored regions of existence for various states
as a function of Re, wavelength, and tilt. By varying Lz0 at
	 � 24�, Re � 350, we have determined that the mini-
mum and maximum wavelengths are approximately 35 and
65, respectively. For Lz0 & 30, only uniform turbulence is
obtained. For Lz0 * 70 two bands of wavelength Lz0=2
form (as in Fig. 4). This range of allowed wavelengths is
nearly independent of Re wherever we have computed
banded states. Figure 5 shows a banded state at 	 � 15�

and a localized state at 	 � 66�, the minimum and maxi-
mum angles for which we have thus far obtained patterns
for Lz0 � 120, Re � 350. These extreme states may not be
stable without imposed periodicity. The sequence of states
seen for increasing 	 at Re � 350 is qualitatively the same
as that for decreasing Re at 	 � 24�: 	 � 0� gives uniform
turbulence and 	 � 90� simple Couette flow.

In past years minimal-flow-unit simulations have been
used to great effect in understanding shear turbulence. We
have shown that the same philosophy can be employed in
the study of large-scale structures formed in turbulent
flows. Specifically, we have reported the first simulations
of turbulent-laminar patterns in plane Couette flow by
solving the Navier-Stokes equations in domains with a
single long direction. The other dimensions are just large
enough to resolve the interplate distance and to contain an
integer number of longitudinal vortex pairs or streaks. Thus
we have demonstrated that the patterns are quasi one-
dimensional and we have identified what we believe to
be near-minimal conditions necessary for their formation.
Key is that the computational domain be tilted obliquely to
the streamwise direction of the flow. We have found peri-
odic, localized, and intermittent states where similar states
are observed experimentally. We have explored the pat-
terns’ dependence on Reynolds number, wavelength, and
tilt. Future studies of these states may shed light on the
01450
mechanisms responsible for laminar-turbulent patterns and
for turbulent transition.
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