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Abstract. Perturbed plane Couette flow containing a thin spanwise-oriented ribbon undergoes a sub-
critical bifurcation at Re =~ 230 to a steady three-dimensional state containing streamwise vortices. This
bifurcation is followed by several others giving rise to a fascinating series of stable and unstable steady
states of different symmetries and wavelengths. First, the backwards-bifurcating branch reverses direc-
tion and becomes stable near Re &~ 200. Then the spanwise reflection symmetry is broken, leading to two
asymmetric branches which are themselves destabilized at Re =~ 420. Above this Reynolds number, time
evolution leads first to a metastable state whose spanwise wavelength is halved and then to complicated
time-dependent behavior. These features are in agreement with experiments.

1. Introduction

Research on plane Couette flow has long been hampered by the absence of states intermediate in complexity
between laminar plane Couette flow and three-dimensional (3D) turbulence. Intermediate states can be cre-
ated, however, if a thin wire oriented in the spanwise direction is inserted in an experimental setup (Bottin et
al. 1997, 1998). No longer subject to Squire’s theorem, this perturbed configuration undergoes a bifurcation
to a 3D steady or quasi-steady state. The 3D states contain vortices oriented in the streamwise direction and
of finite streamwise extent, localized around the ribbon. As the wire radius is reduced, the Reynolds number
threshold for the bifurcation and the streamwise extent occupied by the vortices increase, while the range of
Reynolds numbers over which the 3D steady states exist decreases.

We have carried out a numerical study corresponding to the experiments of (Bottin et al. 1997, 1998),
focusing primarily on the largest wire radius used. In a previous study (Barkley and Tuckerman, 1999), we
carried out a linear and weakly nonlinear stability analysis of this configuration. Here, we present a de-
tailed bifurcation diagram for this case. Our calculations show a rich bifurcation structure with many types
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of solutions: stable and unstable; steady, periodic, and aperiodic; and of different symmetries. Some of these
solutions persist as the wire radius is reduced.

2. Methods

The time-dependent Navier—Stokes equations have been solved using the spectral element code Prism
(Henderson and Karniadakis, 1995) written by Henderson. Instead of a wire, we have used a ribbon of in-
finitesimal streamwise (x) extent whose cross-channel (y) height is taken equal to the diameter of the wire
and whose length in the homogeneous transverse (z) direction is infinite. For most of the current study the
computational domain is |x| <32, |y| <1, and |z| < A/2 where A = 2m/1.3 is approximately the numer-
ically determined critical wavelength. Periodic boundary conditions have been imposed at x = £32 and at
z = =£A/2 and no-slip conditions at the channel walls y = %1 and at the ribbon x =0, |y| < p. The ratio p
of the ribbon height to that of the channel is set to p = 0.086 except where otherwise specified. In the (x, y)
directions, we use 24 x 5 computational elements, each of which is covered by a grid of 7 x 7 collocation
points or interpolating polynomials. In the z direction, we use 32 Fourier modes or gridpoints. (Simulations
were also conducted in a reduced spanwise domain |z| < A/4 with 16 Fourier modes.) This leads to a total
of 143 840 gridpoints or basis functions per velocity component. To compute each asymptotic state required
between 500 and 10 000 nondimensional time units (i.e., units of channel width/velocity difference), which
in turn required between 3 and 60 CPU hours on each of 16 processors of a Cray T3E. Some tests of the
adequacy of our numerical resolution and streamwise domain size are reported in (Barkley and Tuckerman
1999). The resolution for complex 3D flows has been checked by increasing the polynomial order from 7 to
11 and the number of Fourier modes from 32 to 64.

3. Bifurcation Scenario for p = 0.086

Figure 1 shows E3p, the energy in the z-dependent modes for all the steady states we have calculated for
Re < 500, and serves as a bifurcation diagram. Each branch is distinguished by its symmetry. The geometry
and basic 2D flow have O(2) symmetry in the periodic spanwise direction z, i.e., translations z — z 4 zo and
reflections z — —z, In the (x, y) plane, they have centrosymmetry (x, y) — (—x, —y).

The 2D branch loses stability via a circle pitchfork bifurcation at Recp = 228, breaking the translation
symmetry in z. The critical spanwise wavelength is approximately A = 4.8 and the critical wavenumber
B = 1.3. The circle pitchfork bifurcation is subcritical, and so the 3D states created branch leftwards and are
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Figure 1. Bifurcation diagram for perturbed plane Couette flow with ribbon height p = 0.086. Horizontal line: 2D states exist for all
Re; they are stable for Re < Recp = 228. Short-dashed line (schematic): unstable symmetric states with spanwise wavelength A exist
between Resny = 197 and Recp = 228. Hollow circles: symmetric states with A exist between Resy = 197 and Rey = 395; they are
stable between Resn and Repp = 201. Filled circles: asymmetric states with A exist between Repr =201 and Regn' = 420. Hollow
triangles: symmetric states with A/2 exist for Re > Recp = 330. Filled triangles: asymmetric states with A/2 exist for Re > Repp =
440. Heavy long-and-short-dashed line (schematic): turbulent states occur for Re > Recy = 300.
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unstable; we cannot calculate them with the methods used here. These states have reflection symmetry in z
and centrosymmetry in (x, y); we call them 3D symmetric states. The centrosymmetry can be visualized as
follows: At the ribbon location at x = 0, four small vortices are present. The upper two vortices persist for
x > 0, while the lower two persist for x < 0.

The 3D branch changes direction and is stabilized by a saddle-node bifurcation at Resy = 197. Its stabil-
ity is short-lived, however, lasting only until a pitchfork bifurcation at Repr = 201. The pitchfork bifurcation
creates new stable branches with only the pointwise symmetry (x, y, z) — (—x, —y, —z); we call these
3D asymmetric states. Figure 2 illustrates this symmetry breaking by showing two different velocity fields
at Re = 240. The symmetric 3D field on the left has two different reflection symmetries, satisfying both
u(x,y, —z) =u(x,y,z)and u(—x, —y, z) = —u(x, y, z). The asymmetric 3D field on the right satisfies only
the single reflection symmetry u(—x, —y, —z) = —u(x, y, z). The difference between symmetric and asym-
metric 3D fields can also be seen in Figure 6 discussed below. Although the symmetric 3D branch is unstable,
we can continue to calculate it by imposing reflection symmetry in z. It is further destabilized, however, by
a Hopf bifurcation at Rey ~ 395, beyond which we have not followed it.

The asymmetric 3D branches change direction and are destabilized by a second saddle-node bifurca-
tion at Regny =~ 420. Surprisingly, time-dependent simulation at Re = 450 from an initial asymmetric state at
Re =400 leads to a metastable state with half the imposed wavelength of A = 4.8, or equivalently, twice the
wavenumber of § = 1.3. The evolution in time of the energies E; and E; in the B and 28 spanwise Fourier
components is shown in Figure 4. The initial field at Re =400 and the metastable state at Re = 450 are
shown in Figure 3. This transition is symmetry-restoring since the field is invariant under translation in z by
A/2. The metastable state persists during 4300 < ¢ < 5800, when E| is near zero.

The metastable state is the A/2 branch created from the 2D branch by a circle pitchfork bifurcation at
Recp = 330; see Figure 1. Calculations show that it branches rightwards. Each of the halves of the field is
symmetric under reflection in z about its midplane z = A /4 or z = —A /4. The 1 /2 branch undergoes another
pitchfork bifurcation at Reppr = 440, analogous to that undergone at Repp, creating branches which do not
have this reflection symmetry. From Figure 3, it can be seen that the vortices in the A /2 field remain some-
what circular; their cross-channel height is reduced along with their spanwise extent. The absence of vortices
near the upper and lower walls could indicate that the streamwise velocity profile is more stable in this region
than that near the center.

When the X /2 branch is created at Recpr, it is necessarily unstable to wavelength doubling in a domain of
size X, because its parent 2D branch is already unstable to A modes. We are able to calculate the /2 branch
from its creation at Recps (and, for Re > Repp, its asymmetric version) by using a domain of size /2. How-

Figure 2. Two velocity fields at Re = 240, illustrating breaking of reflection symmetry in z. Contours of streamwise velocity u
are shown at x =2 (above) and at x = —2 (below). Left: State with reflection symmetry in z and centrosymmetry in (x, y). For
x =2, deformation of u contours shows that w velocity is upwards at mid-z. Thus vortex on left (right) is counterclockwise
(clockwise). For x = —2, the direction of w and vortex orientation are reversed. Right: State with only the pointwise symmetry
x, v, 2) = (—x, =y, —2).
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Figure 3. Velocity fields at Re =400 and Re = 450 illustrating symmetry-restoring transition. Contours of streamwise velocity u are
shown above and (v, w) velocity field vectors are shown below, both at x = 2. Left: Asymmetric state with spanwise wavelength
A =4.8 at Re =400. The asymmetry in z is very pronounced. Right: Metastable state with spanwise wavelength A/2 =2.4 at
Re = 450. The vortices occupy only the central portion in y.
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Figure 4. Time evolution of energy in the spanwise Fourier components 8 (E1, solid curve) and 28 (E>, dashed curve) at Re = 450.
The initial state is the asymmetric B state at Re =400. E| decreases to near-zero levels for 4300 < ¢ < 5800; during this inter-
val, the flow is in a metastable state with wavenumber 2. For ¢ 2 7500, the flow undergoes large-amplitude irregular oscillations,
corresponding to turbulence.

ever, we emphasize that during its appearance as a metastable state, it is calculated in the full domain of
size A, i.e., it has been stabilized to wavelength doubling. We propose a possible mechanism for this stabi-
lization: At Regn, the asymmetric A branches change direction and stability. If the unstable asymmetric A
branches terminate on the symmetric X /2 branch in a subcritical pitchfork bifurcation Repg~, then the sym-
metric A/2 branch will be stabilized to A perturbations for Re > Reppr, as will the asymmetric A /2 branch
for Re > Repp'.

However, this bifurcation scenario sheds no light on the subsequent evolution from the metastable X /2
state to irregular oscillations, as shown in Figure 4 for ¢ = 7500. Irregular oscillations persist when the
Reynolds number is reduced until Re < Recy = 300, where the flow reverts to the steady asymmetric A
branch. We believe these states correspond essentially to the turbulent flow observed in unperturbed plane
Couette flow for Re 2 325 (Lundbladh and Johansson, 1991; Tillmark and Alfredsson, 1992; Daviaud et
al., 1992; Hamilton et al., 1995), both because of the closeness of the lower bound in Reynolds num-
ber, and because of their appearance and streamwise extent (see Figure 6). Because lack of resolution can
produce spurious time dependence, we have verified that these dynamics persist with increased numerical
resolution.
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Figure 5. Evolution of energy Ey (solid curve) and E; (dashed curve) in the zero and B spanwise Fourier modes for a turbulent state
at Re =350. Dots at t =355 and ¢ = 630 show times at which instantaneous streamwise velocity contours are plotted in Figures 6
and 7.

Figure 6. Streamwise velocity contours at Re = 350 in the y = 0 midplane. Shown from top to bottom are the symmetric, the asym-
metric, and the 1 /2 steady states, instantaneous turbulent fields at = 355 and ¢ = 630 where E; is locally maximal and minimal,
respectively.

Figure 5 shows the evolution of the energy Ep and E| in the zero and  spanwise Fourier components at
Re = 350. Turbulent states at Re = 350 are illustrated via streamwise velocity contours in Figures 6 and 7.
Figure 6 shows the symmetric, asymmetric, and A /2 steady states, in the (x, z) midplane (y = 0), as well as
two instantaneous snapshots of turbulent states ¢ = 355 and t = 630, where E| is locally maximal and mini-
mal, respectively (see Figure 5). Figure 7 shows the asymmetric steady state and two instantaneous snapshots
of turbulent states at = 355, 630 in the (x, y) midplane (z = 0). The deviation from plane Couette flow is
highly localized around the wire at x = O for the steady states, but extends over the entire streamwise domain
for the turbulent states.

In the experiments (Bottin et al., 1997, 1998), streamwise vortices are observed for Re > 150, compared
with our threshold of Re = 200. Their wavelengths are between 5.2 and 5.7, compared with our critical
A & 4.8. Intermittency is observed experimentally for Re > 280 and turbulence for Re > 325, in close agree-
ment with our observation of Re > 300. Spatial period-halving events are also observed in the experiments
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Figure 7. Streamwise velocity contours at Re = 350 in the z = 0 plane in the central half of the domain. Shown from top to bot-
tom are the asymmetric steady state and instantaneous turbulent fields at + =355 and ¢t = 630 where E; is maximal and minimal,
respectively.

(Dauchot, private communication), as in our transition from the A to the /2 metastable state. This period-
halving transition should be amenable to bifurcation-theoretic analysis.

4. Smaller Ribbons

An important question is the dependence of this scenario on ribbon height p. Results from calculations
performed for two smaller heights, o = 0.071 and p = 0.043, are given in Table 1. For both of these rib-
bon heights, the 2D flow undergoes a circle pitchfork bifurcation to a 3D eigenmode. Because the critical
wavenumber, denoted by B, changes very little with p, we have given more precise values for S.(p) in
Table 1 in order to specify the p dependence. The fact that . is relatively insensitive to p provides evi-
dence for the idea that this instability arises from the underlying unperturbed plane Couette flow rather than
depending sensitively on the perturbing ribbon. (We have used the same domain with spanwise periodicity
A =2m/(1.30) to calculate all secondary bifurcations.) The critical Reynolds number Recp increases as p
decreases, as expected from the absence of linear instability at finite Re for plane Couette flow. Both aspects
of the p-dependence of the transition to three dimensionality are also observed in the experiments.

For p = 0.071, the bifurcation scenario is similar to that at p = 0.086. Resn increases more slowly as p
decreases than does Recp, lending support to the hypothesis that branches of steady 3D states might continue
to exist as p approaches zero, although disconnected from the 2D branch. However, Regns decreases, so that
the Reynolds number range over which stable steady 3D states exist is smaller, as is also observed experi-
mentally. Specifically, the branch of unstable 3D states bifurcating subcritically from the 2D flow occupies
the Reynolds number range Recp — Resn, which increases from 31 for p = 0.086 to 65 for p = 0.071, while
the branches of stable 3D states occupy the Reynolds number range Resn' — Resn which decreases from 223
for p = 0.086 to 147 for p = 0.071. We note that Nagata (1990, 1998) and Faisst and Eckhardt (2000) have
attempted to compute steady states of plane Couette flow containing streamwise vortices by continuing Tay-
lor vortex flow. In the plane Couette flow limit, they find that the solutions which persist are analogues of
wavy Taylor vortex flow, here streamwise traveling waves, and exist for Re > 125.

For p = 0.043, we have been unable to find any stable steady 3D states, despite extensive searching. Thus
Table 1 lists only the primary instability Recp and . for p = 0.043. We observe irregular oscillations for all
the initial conditions, Reynolds numbers, and spatial resolutions we have tried. This is in contrast to the ex-
periments (Bottin ez al. 1997, 1998), in which approximately steady states containing streamwise vortices are

Table 1. Dependence of bifurcations on ribbon height p. See Figure 1 and text for a description of the bifurcation sequence. All
secondary bifurcations (i.e. all but Recp) have been calculated in a domain of spanwise periodicity length 27/(1.30).

P Be Recp Resn Repp Regn Rey

0.086 1.28 228 197 202 420 395
0.071 1.30 283 218 218 365 395
0.043 1.45 538
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observed for p even smaller than 0.043. Calculations at intermediate ribbon heights would clarify whether,
when, and how the stable steady 3D states disappear as p is reduced.
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