
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2016-0070

Vol. 22, No. 5, pp. 1508-1532
November 2017

Computing Optimal Forcing Using Laplace

Preconditioning

M. Brynjell-Rahkola1,∗, L. S. Tuckerman2, P. Schlatter1 and D. S. Henningson1
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Abstract. For problems governed by a non-normal operator, the leading eigenvalue
of the operator is of limited interest and a more relevant measure of the stability is ob-
tained by considering the harmonic forcing causing the largest system response. Var-
ious methods for determining this so-called optimal forcing exist, but they all suffer
from great computational expense and are hence not practical for large-scale prob-
lems. In the present paper a new method is presented, which is applicable to problems
of arbitrary size. The method does not rely on timestepping, but on the solution of
linear systems, in which the inverse Laplacian acts as a preconditioner. By formulat-
ing the search for the optimal forcing as an eigenvalue problem based on the resolvent
operator, repeated system solves amount to power iterations, in which the dominant
eigenvalue is seen to correspond to the energy amplification in a system for a given
frequency, and the eigenfunction to the corresponding forcing function. Implemen-
tation of the method requires only minor modifications of an existing timestepping
code, and is applicable to any partial differential equation containing the Laplacian,
such as the Navier-Stokes equations. We discuss the method, first, in the context of
the linear Ginzburg-Landau equation and then, the two-dimensional lid-driven cavity
flow governed by the Navier-Stokes equations. Most importantly, we demonstrate that
for the lid-driven cavity, the optimal forcing can be computed using a factor of up to
500 times fewer operator evaluations than the standard method based on exponential
timestepping.
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1 Introduction

In hydrodynamic stability, a classical analysis generally consists of two parts — the de-
termination of a basic state about which the governing equations may be linearized, and
the calculation of eigenvalues of the Jacobian A. For non-normal operators, other consid-
erations may be more relevant. For example, solutions may experience transient growth
even when all of the eigenvalues are located in the left half of the complex plane, and in
a non-linear framework trigger subcritical transition [10,30,31]. Another type of analysis
concerns the amplification due to a harmonic driving force f (x)eiωt, where we seek to
determine the temporal frequency ω and spatial profile f that cause the largest energy
amplification in the system.

The purpose of this paper is to introduce a novel iterative matrix-free method for
computing the optimal forcing of a driven system. This method is best explained by
placing it in the context of those used to carry out linear stability analysis, so we begin
by surveying these techniques. Denoting by A the governing operator linearized about
a basic state, perturbations q(x,t) obey

∂q

∂t
=Aq. (1.1)

The governing operatorA is considered to be spatially dependent, either via the geo-
metrical specifications of the problem, or through a spatially-dependent basic state about
which the evolution equations have been linearized, or both. Perturbations q may de-
pend on one, two, or three spatial dimensions. If there is only one spatial dimension,
the governing operator can be formulated and treated explicitly. For higher-dimensional
systems, if one or two of the spatial directions are homogeneous, then the eigenfunctions
are trigonometric or exponential in those directions and the linearized operator is banded
or block-diagonal [12]. In such cases, it may still be possible to determine the eigenvalues
and eigenfunctions (denoted by eigenpairs) of A through direct methods.

With increased geometrical complexity, an explicit representation and a full diagonal-
ization of the operator are usually too costly in terms of storage and computational power
and it becomes necessary to use matrix-free methods to find the desired eigenpairs. A
timestepping algorithm for solving (1.1), which carries out the action of an approxima-
tion to the exponential operator exp(A∆t), is a natural means for doing so. Integrating
the linearized equations (1.1) in time is equivalent to carrying out the power method on
exp(A∆t), and will converge to the leading eigenfunction.

Turning to the topic of this paper, when a system is linearly stable, it may nevertheless
undergo amplification due to a harmonic driving force, as described by

∂q

∂t
=Aq+ f eiωt. (1.2)

If all of the eigenvalues ofA have negative real part, then q(x,t)→−(A−iωI)−1 f (x)eiωt
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as t→∞. Defining the amplification of (1.2) as

G(ω)≡ max
‖ f ‖6=0

‖(A−iωI)−1 f‖
‖ f‖ , (1.3)

we seek to determine the frequency ω and f that lead to the largest amplification in the
system. The solution to the optimization problem (1.3) will be referred to as the optimal
forcing of the system.

In order to find the optimal forcing, (1.2) can be integrated in time, followed by inte-
gration of the corresponding adjoint problem, forced by q

−∂g

∂t
=A†g+2q. (1.4)

Algorithms of this type have been employed by Monokrousos et al. [26] to determine
the linear optimal initial condition and optimal forcing for the Blasius boundary layer.
Techniques based on the approximate exponential are straightforward, robust, and gen-
eral, but slow and computationally expensive. The reason for this is that the numerical
timestepping operator only approximates the exponential operator exp(A∆t) in the limit
of small ∆t. When ∆t is small, exp(A∆t) is near the identity, and so each action of the
operator has only an incremental effect. Moreover, (1.2) and (1.4) may need to be inte-
grated for a very long time horizon until initial transients have decayed and the solution
has converged to an approximate asymptotic time-periodic state.

Another approach, which is equivalent to timestepping with (1.2) and (1.4), is to seek
the singular value decomposition (SVD) of −(A−iωI)−1, where the right singular vec-
tors correspond to the spatial forcing profiles and the left singular vectors correspond to
the spatial structure of the flow responses. This is suitable for problems involving opera-
tors small or sparse enough to be formulated explicitly [33,34] or whose dynamics can be
captured by a reduced order model involving a modest number of eigenfunctions [1, 2].
In practice, the latter approach involving a reduced order model may require a basis
of as many as ∼103 eigenfunctions even for simple two-dimensional geometries, which
renders also this approach intractable for large problems.

In what follows, we describe a matrix-free iterative method for computing optimal
forcing that circumvents these issues and is applicable to problems of arbitrary size and
complexity. The method can conveniently be implemented by minor modifications of a
pre-existing time-integration code, and hence does not require development of any new
software. Variants of it have already been used to calculate steady states and eigenpairs
in fluid dynamics [6–9, 25, 38, 39] as well as in condensed matter physics [22, 23]. The
main purpose of the current article is to demonstrate for the first time that iterative in-
version with Laplacian preconditioning can also be used to calculate the frequency and
spatial function that yield the optimal forcing. We will show that our method only re-
quires a small fraction of the number of operator evaluations compared to the method of
timestepping, as has been shown to be the case for the calculation of steady states and
eigenpairs.
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Previous research on Laplacian preconditioning has been almost entirely applications-
oriented, reporting mainly the physical results of the computations; very little analysis
of the method itself has been published [8, 38]. A secondary purpose of this article is
to carry out a detailed study of its performance and convergence properties, in particu-
lar the effect of the value of ∆t on the spectra and pseudospectra of the preconditioned
operator.

The cases we investigate are the linearized one-dimensional Ginzburg-Landau equa-
tion, which is a commonly used model for the Navier-Stokes equations [4,14,15,17], and
the two-dimensional lid-driven cavity flow [3]. In Section 2 the concept and properties
of the Laplace preconditioner are reviewed and extended, and in Section 3 the optimal
forcing algorithm is outlined and applied to the chosen test cases. The article concludes
in Section 4 with a discussion.

Eigenvalue spectra are denoted by Λ(·) and individual eigenvalues by λ. Inner prod-
ucts 〈·,·〉, and their corresponding norms ‖·‖=

√

〈·,·〉, will refer to those of the L2-space.
The norm ‖·‖2 refers to the usual Euclidean norm. A superscript asterisk denotes com-
plex conjugate, and in the case of finite dimensional matrices conjugate transpose. Ad-
joint operators (possibly infinite dimensional) derived using the L2-inner product are
denoted with a superscript dagger.

2 Laplace preconditioner

2.1 Operator definitions

In what follows we study a linear partial differential equation whose evolution operator
A is the sum of two parts, L and N , i.e.

∂q

∂t
=Aq=N q+Lq. (2.1)

For the Navier-Stokes equations, L is usually taken to be the diffusive terms, with the
incorporation of the pressure, and N is taken to be the linearization of the advective
terms about the basic state. For the Ginzburg-Landau equation (see Appendix A.1), we
take L to contain the linear reaction coefficient µ(x) as well as the diffusive term, giving
L≡γ∂2/∂x2+µ(x) and N to be N ≡−ν∂/∂x. When the Reynolds number is low or
moderate, equations such as (2.1) are often discretized in time via an explicit scheme
for N and an implicit scheme for L. The reason for this is that L poses a much more
stringent stability requirement thanN on ∆t. In these cases, our method takes advantage
of the implicit timestepping scheme for L by interpreting it as a preconditioner for the
combined operator N+L. In other cases, such as for high Reynolds numbers, a mixed
explicit-implicit scheme is not advantageous. Our method does not apply to such flows.

Choosing the first order forward/backward Euler time discretization leads to

q(x,t+∆t)−q(x,t)

∆t
=N q(x,t)+Lq(x,t+∆t), (2.2)
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from which the timestepping operator B(∆t) can be expressed as

q(x,t+∆t)=(I−∆tL)−1(I+∆tN )q(x,t)≡B(∆t)q(x,t). (2.3)

Given an existing timestepping code, we can calculate the difference between two con-
secutive solution fields separated by a single timestep ∆t:

q(x,t+∆t)−q(x,t)=(B(∆t)−I)q(x,t)

=
[

(I−∆tL)−1(I+∆tN )−I
]

q(x,t)

=(I−∆tL)−1
∆t(N+L)q(x,t). (2.4)

Defining

P(∆t)≡ (I−∆tL)−1
∆t, (2.5)

the calculation of (2.4) shows that the difference between two consecutive solution fields
provides the action of the evolution operatorA left-multiplied by P(∆t), i.e.

B(∆t)−I=P(∆t)A. (2.6)

The main point of this approach is that the operator PA is far better conditioned than
A and thus that iterative methods solving linear systems involving PA converge far more
quickly than those involving A.

We can interpret the cause of this to be the fact that P is a good preconditioner for A.
As will be discussed in Section 2.2, the operator L is responsible for the ill-conditioning
of A. The preconditioning property of P can be understood by considering the limit

of large timesteps ∆t for which P(∆t)=(I−∆tL)−1
∆t≈−L−1, thus counteracting the

poor conditioning of L. For small timesteps, P(∆t)≈∆tI , and hence provides no pre-
conditioning. Thus P can be viewed as interpolating between ∆tI and −L−1 as ∆t is
increased. We will refer to P and P † as the direct and adjoint Laplace preconditioner.
Considering the L2-inner product, it is straightforward to show that P is self-adjoint if
L is. This will for instance be the case for the Navier-Stokes flow case considered later,
where L is defined by (2.12b), but not the case for the Ginzburg-Landau equation with
L=γ∂2/∂x2+µ(x).

We stress that we do not carry out the actions of A and of P separately. Given the
existence of a timestepping code which effectively carries out B, the action of B−I is
more accessible than that of A. The action of P by itself may be performed by taking a
single implicit timestep with the linear operator L. Our assumption is that none of the
operatorsA, B, L,N , P are stored as matrices, and that only the actions of B, P and their
adjoint counterparts B†, P † are available to us via the timestepping code. We emphasize
that the Laplace preconditioner is an intrinsic part of our operator and thus requires no
additional computational cost, unlike many other preconditioners.
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2.2 Preconditioning properties

To empirically examine the properties of P , we consider the one-dimensional Ginzburg-
Landau equation and solve a linear system involving operator PA with a random right-
hand side using various ∆t. Since the matrix A in general is non-Hermitian (see Section
A.1), a method designed for non-Hermitian systems such as bi-conjugate gradients sta-
bilized (Bi-CGSTAB) [40] or generalized minimal residual (GMRES) [32] is required. For
the present analysis we will use GMRES and a relative tolerance of 10−13. The results
of these calculations are shown in Fig. 1(a), where it can be seen that the iteration count
goes down steadily with increasing ∆t. To gain better insight in the properties of the
preconditioner, we turn to the convergence theory of GMRES [11, 18, 19, 32].

The residual rk is bounded by

‖rk‖2

‖r0‖2
≤ min

pk∈P0
k

‖pk(PA)‖2, (2.7)

where P0
k = {polynomials p of order ≤ k satisfying p(0)=1} is the space of polynomials

over which the minimization is carried out. GMRES finds the optimal polynomial pk∈P0
k

which realizes the minimum in (2.7).

The roots of the approximating polynomial pk are the harmonic Ritz values [37] and
are given by the eigenvalues of the matrix Hk+h2

k+1,k(H
∗
k)
−1eke∗k , where ek is the kth di-

mensional unit vector and Hk is an upper Hessenberg matrix satisfying the Arnoldi rela-
tion:

(PA)Wk =WkHk+hk+1,kwk+1e∗k . (2.8)
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Figure 1: Preconditioning of the Ginzburg-Landau equation with Laplace preconditioner. Frame (a) shows the
number of GMRES-iterations required to solve the system PA with a random right-hand side for different ∆t.
Frame (b) plots residual as a function of iteration count for ∆t=10−3 (solid line), ∆t=0.1 (dashed line), ∆t=1
(dotted line), ∆t=10 (dot-dashed line).
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The right-hand side of (2.7) can be bounded in terms of the eigenvalues of PA, i.e.

min
pk∈P0

k

‖pk(PA)‖2≤κ(X) min
pk∈P0

k

max
λ∈Λ(PA)

|pk(λ)|, (2.9)

where κ(X) denotes the 2-norm condition number of the eigenfunction matrix X. If a
matrix is normal (i.e. if it has a complete set of orthogonal eigenvectors [37]), then κ(X)=
1. Thus a requirement for fast convergence of GMRES for a reasonably normal matrix
PA is that the polynomial pk can be made small on the spectrum Λ(PA) [19, 32]. If
the operator PA is strongly non-normal, as is the case for the Ginzburg-Landau operator
with the parameter values specified in Section A.1, κ(X) will be very large, and the bound
given by (2.9) may be uninformative [21]. In such cases a more suitable convergence
bound is obtained by looking at the ε-pseudospectra of PA [37], defined as

Λε(PA)≡{σ∈C | ‖(σI−PA)−1‖2≥ ε−1}. (2.10)

A convergence bound based on the ε-pseudospectra rather than the eigenvalues can be
derived to be

min
pk∈P0

k

‖pk(PA)‖2≤
L(Γε)

2πε
min
pk∈P0

k

max
σ∈Λε(PA)

|pk(σ)|, (2.11)

in which Γε is the bounding contour of Λε(PA) for a given ε and L(Γε) signifies the length
of this contour. As shown in (2.11), the pseudospectral convergence bounds depend on
the particular value of ε, and different values may characterize the convergence at differ-
ent stages of the iteration [18, 19].

In Fig. 2, the effect of different ∆t on the eigenvalue spectra and ε-pseudospectra of
the operator PA is shown. We focus here on the direct operator as similar behavior is
observed for the adjoint operator. To monitor the convergence, along with the spectra
and pseudospectra, we also plot the harmonic Ritz values [37].

Recall that, according to (2.5), for small timesteps, application of P amounts to a mere
scaling by ∆t of A. Comparison of Fig. 2(a) and Fig. 5(a) shows that the former spectrum
essentially resembles a scaled down copy of the latter. In the limit of small ∆t the spec-
trum and pseudospectrum of PA will be very close to the origin, where the approximat-
ing polynomials are normalized to have value one. Therefore, in order for the polynomial
to attain a small value on the spectra and pseudospectra, a large number of iterations are
required before it has sufficiently many degrees of freedom to satisfy both requirements.
Smaller values of ∆t will scale down the spectra even further, while increasing ∆t moves
the spectrum away from the origin and changes its shape, hence facilitating polynomial
fitting (Figs. 2(b)-2(c)). Eventually, several eigenvalues are expelled from the core of the
spectrum (Fig. 2(d)). However, given that they are located far away from the origin, each
of them will require only one zero in the approximating polynomial and may be anni-
hilated in a single iteration. As discussed in [18], outliers do not affect the asymptotic
convergence rate. This is also seen in Fig. 1(b), where the asymptotic convergence rate
for ∆t = 1 and ∆t = 10 are approximately the same, although the spectrum for ∆t = 10



M. Brynjell-Rahkola et al. / Commun. Comput. Phys., 22 (2017), pp. 1508-1532 1515

x 10
−3

x 10
−3

−40 −30 −20 −10  0
−5

 0

 5

 10

 15

 20

 25

 30

 35

λr

λ
i

(a) ∆t=10−3.

−1.0 −0.8 −0.6 −0.4 −0.2  0.0  0.2
−0.2

−0.1

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

λr

λ
i

(b) ∆t=0.1.

−1.5 −1.0 −0.5  0.0  0.5
−0.6

−0.4

−0.2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

λr

λ
i

(c) ∆t=1

−4.0 −3.0 −2.0 −1.0  0.0  1.0  2.0
−1.0

−0.5

 0.0

 0.5

 1.0

λr

λ
i

(d) ∆t=10.

−16 −14 −12 −10 −8 −6 −4 −2

Figure 2: Effect of ∆t on the eigenvalue spectra and ε-pseudospectra of PA. Plotted are the eigenvalue spectrum
(dots), harmonic Ritz values of GMRES-iteration k=40 (circles), and the contours of the ε-pseudospectra ranging

from 10−2 to 10−15. For ∆t≥1 the core of the spectrum remains centered around λr=−1, λi=0 and does not
move relative to the origin. Notice how the harmonic Ritz values tend to be roughly aligned with the contours
Γε following (2.11), and for large ∆t encircle an increasing number of eigenvalues.

contains many more outliers. Fig. 1(b) also displays an initial region of stagnation in con-
vergence for small values of ∆t. This may partly be explained by the non-normality of
the matrix PA [19], but given the rapid shortening of this region with increasing ∆t, this
more likely is due to near-origin clustering. As a final remark, we notice no significant
change in the shape and location of the main part of the spectra for ∆t&5, which is in line
with what can be expected given the asymptotic behavior shown in Fig. 1(a).
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2.3 Extension to Navier-Stokes equations

In the present section, the concepts introduced in the previous sections for the one-
dimensional Ginzburg-Landau equation will be verified in the multi-dimensional setting
governed by the Navier-Stokes equations. The direct and adjoint fields will be denoted
q(x,t) and g(x,t), where x∈Rd (d is the number of dimensions). As discussed in Ap-
pendix A.2, the incompressible Navier-Stokes equations can be formulated in the same
form as (2.1), namely ∂q/∂t=Nq+Lq, where

Nq=P∇(−(q̄·∇)q−(q·∇)q̄), (2.12a)

Lq=P∇(Re−1∇2q), (2.12b)

and the operator P∇(·) is used to project the velocities onto a divergence-free field [16].

Although the method presented in Section 3 and all concepts discussed in this paper
apply to cases of arbitrary size and complexity, we will illustrate it on the well-known
two-dimensional lid-driven cavity flow (see Section A.2). To verify that the desired be-
havior of the preconditioner is also obtained with the Navier-Stokes equations, a figure
equivalent to Fig. 1 for the system PA with L and N defined in (2.12) is generated. In
Fig. 3(a), the system is solved to a relative tolerance of 10−10 for different values of ∆t with
a random right-hand side. Indeed, the same trend as observed in Fig. 1(a) is obtained.
Variation of the Reynolds number from Re=100 to Re=500 increases the iteration count
required for convergence and ∆t at which the preconditioner saturates. Fig. 3(b) shows
how the residual of the calculation varies with iteration for different ∆t. Again, the same
behavior with respect to ∆t as seen in Fig. 1(b) is observed (here only the results for
Re=100 are shown for clarity).
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Figure 3: Convergence of GMRES for the lid-driven cavity. Frame (a) shows the iteration count versus timestep
∆t for Re=100 (black), Re=300 (blue) and Re=500 (red), and frame (b) illustrates the decrease in residual

with iteration count for Re=100 and ∆t=10−2 (solid line), ∆t=0.1 (dashed line), ∆t=1 (dotted line), ∆t=10
(dot-dashed line).
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3 Optimal forcing

With the increased understanding of the properties of Laplace preconditioner from Sec-
tion 2, we now explain how to apply these techniques to the problem of optimal forc-
ing. As in the previous section, we start by deriving the method for the one-dimensional
Ginzburg-Landau equation, and then apply it to the two-dimensional Navier-Stokes equa-
tions.

3.1 Application of Laplace preconditioner

We recall from Section 1 that we are interested in the harmonically driven system

∂q

∂t
=Aq+ f eiωt,

where q= q(x,t) and x represents the spatial coordinate. The linear operator A depends
on x and usually contains spatial derivatives. This problem has as its general solution

q(x,t)= eAtc(x)−(A−iωI)−1 f (x)eiωt, (3.1)

where c(x)= q(x,0)+(A−iωI)−1 f (x). Assuming that all of the eigenvalues of A have
negative real part, then as t→∞, q(x,t)→ s(x)eiωt , where

s(x)≡−(A−iωI)−1 f (x)≡−R(iω) f (x). (3.2)

Thus, an input field f is mapped into an output field s by the resolvent operator R.
Defining the amplification (gain) of (1.2) as

G(ω)≡ max
‖ f ‖6=0

‖s(x)‖
‖ f (x)‖ = max

‖ f ‖6=0

√

〈−R(iω) f (x),−R(iω) f (x)〉
〈 f (x), f (x)〉 , (3.3)

we seek to determine the forcing frequency ω and forcing profile f that yield the largest
amplification. The problem of determining the amplification G(ω) and f , given a fre-
quency ω, is thus that of finding the dominant eigenpair of the operator

R†(iω)R(iω)=
(

(A−iω I)(A†+iω I)
)−1

. (3.4)

The operatorR†R is self-adjoint, which implies that all of its eigenvalues are real and can
be ordered in descending order. Physically, 〈 f ,R†R f 〉 is a measure of the kinetic energy
in the domain, and will thus always be larger than or equal to zero.

As previously stated, it is generally not possible to construct and treat the operatorsA
orA† explicitly. However, as shown in (2.4)-(2.6), the matrix-vector products are realized
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through the difference between solution fields separated by one direct or adjoint first-
order Euler timestep. Given an estimate f (k), we produce f (k+1)≡R†R f (k) as follows:

f (k+1)=
(

(A−iωI)(A†+iωI)
)−1

f (k) ⇐⇒ (3.5a)

(A−iωI)(A†+iωI) f (k+1)= f (k) ⇐⇒ (3.5b)

P(A−iωI)P †−1P †(A†+iωI) f (k+1)=P f (k). (3.5c)

Formation of each power iterate f (k) thus requires the solution of two linear systems,
which will be well-conditioned given a suitably chosen ∆t, and one application of the
direct and adjoint Laplace preconditioner. We emphasize again that we neither form
nor factorize any of the operators in system (3.5). Our method is entirely matrix-free,
meaning that all linear systems are solved using GMRES, which requires only the action
of the operator on a field.

The complete algorithm for solving (3.5c) and carrying out power iterations is given
in Algorithm 1. Steps 4–7 essentially implement (3.5c), whereas step 8 evaluates the
Rayleigh quotient. As discussed in Section 2.1, the action of PA (and P †A†) are ob-
tained by (2.4). The action of P (and P †) can be obtained by simply taking an implicit
timestep with L. If PA, P and their corresponding adjoint operators are real, and the
complex arithmetic needs to be handled explicitly, the sizes of the systems are doubled,
so that on each iteration the system

[ PA ωP
−ωP PA

](

vr

vi

)

=

(

wr

wi

)

(3.6)

is solved, followed by a similar equation for the adjoint problem.
Due to the self-adjointness ofR†R, eigenvectors corresponding to different eigenval-

ues will be pairwise orthogonal. If sub-optimal forcing profiles are of interest, for instance
if different forcing profiles have similar amplification rates, or, if a basis on which an arbi-
trary forcing can be represented is sought, the solution of (3.5c) (steps 4–7 of Algorithm 1)
can be coupled with the Lanczos algorithm [28] in a straightforward manner.

In order to obtain the optimal forcing frequency and forcing function, the optimiza-
tion problem (3.3) must be solved for a range of frequencies ω. Hence, computational
savings can be achieved with a good choice of initial vector f (0). Techniques exist for re-
cycling Krylov subspaces when solving a sequence of slightly varying linear systems [27],
but here a sequence of slightly varying eigenvalue problems needs to be considered. As-
suming that ∆ω is small, then the operatorsR†(iω+i∆ω)R(iω+i∆ω) andR†(iω)R(iω)
will be close to one another (a first order Taylor expansion shows thatR†(iω+i∆ω)R(iω+
i∆ω)=R†(iω)R(iω)−∆ω[(2ωI+i(A−A†))(R†(iω)R(iω))2]), and as a result, it is rea-
sonable to expect the eigenpairs of the two operators also to be close. Hence, a good
candidate for the initial vector of Algorithm 1 applied to ω+∆ω is the optimal forcing
profile obtained for the preceding frequency ω. Alternatively, if the Lanczos algorithm
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Algorithm 1: Optimal forcing through application of the Laplace preconditioner
and the inverse power method.

Input : Forcing frequency ω, initial guess f (0)

Output: Amplification G, force profile f

1 f̃ (0)← f (0)/‖ f (0)‖;
2 α(0)←0;
3 for k=1,.. . do

4 w←P f̃ (k−1);
5 solve (PA−iωP)v=w;

6 w←P †v;

7 solve (P †A†+iω∗P †)v=w;

8 α(k)←〈 f̃ (k−1),v〉;
9 f̃ (k)←v/‖v‖;

10 if satisfied then break;

11 end

12 G←
√

α(k);

13 f← f̃ (k);

is carried out, the initial vector can be chosen as a linear combination of the dominant
eigenvectors for the preceding frequency.

3.2 Validation case: Ginzburg-Landau equation

As an initial validation case, Algorithm 1 is implemented and applied to the Ginzburg-
Landau equation. Given the preconditioning capabilities of the Laplace preconditioner
shown in Fig. 1(a), a timestep of ∆t= 10.0 is chosen. In order to validate the results, we
also consider an SVD of the resolvent operator, which is a convenient way of computing
the optimal forcing and its corresponding response for a small problem like the present
one. Given (3.3), and the Cholesky factorization of the weight matrix associated with the
L2-inner product, M, the gain can be written as

G(ω)=‖M(A−iω I)−1M−1‖2. (3.7)

An SVD of the operator appearing on the right-hand side of (3.7) yields

M(A−iω I)−1M−1=UΣVH⇐⇒ (A−iω I)−1(M−1V)=(M−1U)Σ, (3.8)

where the weighted right singular vectors (M−1V) are to be interpreted as forcing pro-
files, the weighted left singular vectors (M−1U) as the spatial distributions of the corre-
sponding flow responses, and the singular values Σ as their amplifications.
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Figure 4: Optimal forcing of the Ginzburg-Landau operator. (a) Frequency response with a peak energy
amplification for ω =−0.648. (b) The modulus of the optimal forcing function (solid blue line), the modulus
of the adjoint eigenfunction corresponding to eigenvalue λ=−0.018+i0.648 (dashed red line) scaled according
to the left vertical axis, and the optimal response (solid black line) to this forcing scaled according to the right
vertical axis. The spatial region of exponential instability is shown in gray. The solid dots are results from an
SVD, i.e. σ1 in (a), and M−1u1 (blue) and σ1M−1v1 (black) for ω=−0.648 in (b) (for a description, see the
text).
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Figure 5: Eigenvalues of the discretized direct Ginzburg-Landau operator. A close-up of the leading ones marked
with a rectangle in frame (a), is plotted in frame (b). The region of instability is shown in gray.

The frequency response is shown in Fig. 4(a) and has an energy peak at ω =−0.648
due to resonance with the leading eigenvalue (see Fig. 5). An amplification peak for
the same frequency was also obtained by Bagheri et al. [4] when applying a Gaussian
force centered around the upstream instability branch (branch I, x=−8.246) for the same
configuration.

The corresponding optimal forcing profile is plotted in Fig. 4(b) with a blue solid
line. The profile is seen to have a peak at x =−7.202 around the upstream instability
branch and to closely resemble the adjoint eigenfunction corresponding to eigenvalue
λ=−0.018+i0.648, shown with a red dashed line. The optimal response to this forcing
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is recovered by solving (3.2), which in practice amounts to solving

−(PA−iωP)s=P f . (3.9)

The optimal response is plotted with a black solid line in Fig. 4(b). We see that the optimal
response is oriented towards the downstream instability branch (branch II, x=8.246) and
has a norm that matches the peak in Fig. 4(a).

Comparison of these results with the largest singular value σ1 (which is equivalent
to the resolvent norm), and the corresponding left and right singular vectors M−1u1 and
σ1M−1v1 shows a perfect agreement.

3.3 Validation case: Navier-Stokes equations (lid-driven cavity flow)

Next, Algorithm 1 is applied to the lid-driven cavity flow. In addition to the operators
defined in (2.12), we now require their adjoint counterparts, i.e.

N †g=P∇((q̄·∇)g−(∇q̄)Tg), (3.10a)

L†g=P∇(Re−1∇2g) (3.10b)

(see Section A.2 for details and references).
The outcome of the computation for Re=100 is shown in Fig. 6(b). As seen, the largest

amplification, G(ω)= 1.9879, is achieved for a steady forcing, which resonates with the
eigenmode corresponding to the leading eigenvalue λ=−0.5425+i0.0 (see Fig. 6(a)). To
recover the optimal flow response, one can either solve (3.9), or substitute the optimal
forcing into the governing equation and integrate the solution in time. Here we choose
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Figure 6: Frequency response of the lid-driven cavity at Re = 100. The eigenvalue spectra showing the 20
leading eigenvalues of the lid-driven cavity is plotted in frame (a) (the region of instability is colored in gray).
The energy amplification for different frequencies is shown in frame (b), where results obtained with Algorithm
1 and 2 are plotted with dots and circles, respectively. Frame (c) shows the energy evolution in the system
when driven by a steady force corresponding to the amplification peak in frame (b).
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Algorithm 2: Optimal forcing through time integration.

Input : Forcing frequency ω, initial guess f (0), optimization horizon T
Output: Amplification G, force profile f

1 f̃ (0)← f (0)/‖ f (0)‖;
2 α(0)←0;
3 for k=1,.. . do

4 q|t=0←0;

5 integrate q|t=T =
∫ T

0

(

Aq+ f̃ (k−1)eiωt
)

dt,

obtain the response s(x) during the last period of ω in t∈ [0,T];
6 g|t=T←0;

7 integrate g|t=0=−
∫ 0

T

(

A†g+2seiωt
)

dt,
obtain the response b(x) during the last period of ω in t∈ [0,T];

8 α(k)←‖b‖/2;

9 f̃ (k)←b/(2α(k));
10 if satisfied then break;

11 end

12 G←
√

α(k);

13 f← f̃ (k);

the latter approach, which gives the solution q(x,t)=(eAt−I)A−1f(x) (since ω=0). As
expected, q→−R(iω)f and ‖q‖2→G2 after a brief transient phase (see Fig. 6(c)).

As a validation, we compare our results with those obtained with the method of [26].
This method is derived by seeking a stationary point of the Lagrangian functional (see the
derivation in Appendix B). On each iteration, the direct equation is integrated forward in
time and during the last period of the forcing frequency, the flow response is computed,
e.g. through a Fourier transformation. This flow response is then used as a forcing of
the adjoint equation, which is integrated backward in time. The details of the different
steps are outlined in Algorithm 2 and the result of this algorithm for a sample of forcing
frequencies are shown in Fig. 6(b). As seen, the agreement between the results obtained
with the two algorithms is good.

To show the efficiency of the novel method, the computational cost associated with
calculating the largest eigenpair of the operatorR†(iω)R(iω) using Algorithm 1 and Al-
gorithm 2 is investigated. An important note regarding the two methods is the role of ∆t,
which in Algorithm 1 is an algebraic parameter that should be chosen large enough to
ensure convergence of the linear systems. (Absolute and relative tolerances of 10−10 and
10−13, respectively, are used as a convergence criterion for the iterative solvers.) In con-
trast, when carrying out the time integration in Algorithm 2, we march the solution using
the timestepping operator, i.e. q(x,t+∆t)=B(∆t)q(x,t)+P(∆t)ℜ(feiωt). The timestep
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∆t must be chosen small so as to achieve sufficient precision in the timestepping scheme
and to achieve stability via the CFL-condition. Moreover, the time horizon T in Algo-
rithm 2 should be chosen long enough such that the homogeneous solution in (3.1) has
decayed and the output is dominated by the particular solution. Convergence is mea-
sured by |α(k)−α(k−1)|, and the computation is halted when this value is below 10−6. We
furthermore choose T to be the smallest integer number of forcing periods that yields a
change in the gain that is below this tolerance. Correspondingly, for the case of ω=0.0,
the integration time was gradually increased in steps of 500 timesteps until the further
increases led to a change in gain that was below the tolerance. For consistency of the
comparison, time integration is carried out using the first order forward/backward Euler
time discretization defined in (2.3). The initial condition for the forcing profile is random
noise in both algorithms.

Since N can be applied explicitly, the cost of each timestep is mainly due to solving
(I−∆tL)−1. Therefore, each application of B, PA and P and their adjoint counterparts
is measured as 1 cost unit, meaning that the price of each timestep in Algorithm 2 is 1
unit (the force term can be grouped together with the advective term), and the price of
each iteration required to solve the systems in Algorithm 1 is 4 units (or 1 unit if ω=0),
assuming that the complex arithmetic must be handled explicitly by doubling the system
size according to (3.6).

The resulting number of operator evaluations are presented in Table 1. Both methods
are shown to give the same amplification to the third or fourth digit, but the number of
operator evaluations associated with Algorithm 1 is between 30 and 490 times lower than
that associated with Algorithm 2 depending on the forcing frequency. For generality, we
do not compare the wall-clock time associated with executing the different algorithms
since this is strongly dependent on the spatial discretization. However, one could expect
these figures to be reflected in the execution time for a numerical scheme in which the
cost of evaluating the above operators is independent of the timestep. This is the case,
for example, if the linear problems are solved directly, as they are in a spectral method
with a tensor-product basis. Although the above comparison indicates that the inverse
power method has the potential for being far less costly than time integration for the
same accuracy, the exact figures are strongly dependent on the flow case, tolerance and
mesh.

Table 1: Comparison of the results and the number of operator evaluations associated with Algorithm 1 and
Algorithm 2 for different ω.

Time integration Inverse power method

ω T cost G(ω) cost G(ω)

0.0 29.00 261,000 1.987883 533 1.987877

1.0 31.42 471,240 1.029109 3,764 1.029304

3.0 14.66 425,140 0.454935 7,208 0.454855

5.0 7.54 452,400 0.275763 15,020 0.275634
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Figure 7: Frequency response of the lid-driven cavity at Re= 8015. The leading eigenvalues of the lid-driven
cavity and the ε-pseudospectrum (logarithmically spaced colored contours) are plotted in frame (a) (the region
of instability is colored in gray). The energy amplification for different frequencies is shown in frame (b).

As a final example, we increase the Reynolds number to Re=8015, which is very close
to the critical Reynolds number Rec∈ [8017.6,8018.8) at which the flow undergoes a Hopf
bifurcation [3]. Since the flow is asymptotically stable, but close to the first bifurcation
point, we expect a large energy amplification in the presence of harmonic forcing, which
makes this configuration a suitable prototype problem for studying optimal forcing. The
streamfunction of the baseflow, visualized with black contours in Figs. 8 and 9, shows a
large primary vortex in the center of the cavity and a weaker secondary vortex in each
corner. (The secondary vortex in the upper right corner stems from the treatment of the
corner singularities, see Appendix A.2.) There is also a tertiary vortex in each lower
corner of the cavity, as well as the sign of a very weak quaternary vortex (not visible
in the figures) in the lower right corner. The eigenvalue spectra for this case, shown in
Fig. 7(a), reveals that the least stable eigenvalue is λ=−3.3681×10−3±i 2.6935, which
corresponds to a temporal frequency of 0.4287. This is comparable with the frequency
0.4496 of the limit cycle at Re=8018.8, reported by [3].

A convergence study similar to that presented in Figs. 1(a) and 3(a) suggests that good
convergence for this case is obtained with ∆t=103. The computed energy amplification
is plotted in Fig. 7(b). Since the flow is so close to the first bifurcation point, all computed
eigenvalues are weakly damped, causing a strong energy amplification ranging between
10 and 1000 for every forcing frequency. From the gain curve, several local maxima cor-
responding to forcing frequencies ω≈{0.0,0.91,1.66,2.17,2.69,3.25,3.70,4.34,4.88} can be
identified. For most of these peaks, the bandwidth of the resonance frequency is very nar-
row, which is common for weakly damped systems. The sharp transition between a peak
and a valley is also reflected in the ε-pseudospectrum, plotted in Fig. 7(a). The present
pseudospectrum is not evaluated for the full operator, but for the low-dimensional Hes-
senberg matrix arising from the Arnoldi-factorization used to compute the eigenvalue
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spectra in Fig. 7(a) [36]. As seen, the ε-pseudospectrum consists of several regions of al-
ternating sensitivity, which roughly coincide with the peaks and valleys of the gain curve
in Fig. 7(b).

The largest response is obtained for ω=2.6875, which is very close to the frequency of
the least stable eigenvalue. This is the optimal forcing of the system and the amplification
at this point is G(ω)≈ 1100. The streamfunction of the corresponding optimal forcing
profile is visualized in Figs. 8(a) and 8(b). As can be seen, the profile is localized on the
shear layers of the right side of the cavity immediately above the lower secondary vortex
and around the primary vortex located in the center of the cavity. Since the velocity of the
lid is in the positive x-direction, the primary vortex assumes a clockwise rotation. Hence,
the flow response due to this forcing (evaluated by solving (3.9)) is emphasized towards
the left side of the cavity, and the shear layers separating the primary vortex from the
secondary ones (see Figs. 8(c) and 8(d)). The reason for this strong amplification can be
understood by comparing the forcing profile in Fig. 8 to the forcing profile corresponding
to ω = 2.9375 shown in Fig. 9. This frequency represents a valley in the gain curve in
Fig. 7(b), and as can be seen, the profile is entirely localized to the shear layers on the right
side of the cavity (the color scale of Figs. 8(a), 8(b), and 9 is the same). Inspection of the
forcing profiles corresponding to the other peaks and valleys, shows that most of these
(except those corresponding to low frequencies, ω<1.0) resemble the structure visualized
in Fig. 9, and attain their maximum on the right side of the cavity immediately above the
lower secondary vortex. One may thus conclude that the strong system response around
ω=2.6875 is mainly caused by excitation of the primary vortex, which appears to be very
receptive to this frequency and insensitive to other driving frequencies.

Furthermore, as was the case for the Ginzburg-Landau equation, Figs. 8(a) and 8(b)
have a structure similar to that of the adjoint eigenfunction corresponding to the least
stable eigenmode (not shown). It can be shown that in order to optimally excite an eigen-
mode with eigenvalue λ, the forcing frequency should be ω≈ℑ(λ) and the shape of
the forcing function be close to the adjoint eigenfunction corresponding to this mode
(see [35]).

The accuracy of these results is estimated a posteriori by substituting the computed
eigenpairs into the eigenvalue relation ‖((A−iωI)(A†+iωI))−1 f (k)−G(ω)2 f (k)‖, which
can be evaluated using the operators PA, P and their adjoints. The magnitude of this
residual is ∼10−3−10−5 for all the frequencies.

4 Summary and conclusions

We have presented a method for calculating the optimal input for a harmonically forced
linear problem, and its resulting flow response. The core of the method is the classic
inverse power method applied on the resolvent, which is in turn preconditioned by the
inverse Laplacian. The method can readily be implemented by adapting a pre-existing
time integration code. It can therefore be used in the same circumstances as time inte-
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(a) (b)

(c) (d)

Figure 8: Optimal forcing profile at ω = 2.6875 for the two-dimensional lid-driven cavity, Re= 8015. Real and
imaginary parts of the optimal forcing profile are shown in (a) and (b), respectively, together with real and
imaginary part of the resulting flow response shown in (c) and (d). The color shows the streamfunction of the
optimal forcing and response, with red and blue indicating positive and negative values, respectively. The solid
and dashed lines represent negative and positive values, respectively, of logarithmically distributed contours of
the baseflow streamfunction.

(a) (b)

Figure 9: Streamfunction of the forcing profile corresponding to ω=2.9375 for the two-dimensional lid-driven
cavity, Re=8015. Real and imaginary parts of the forcing profile are shown in (a) and (b). The color shows the
optimal forcing with red and blue indicating positive and negative values, respectively. The solid and dashed
lines represent negative and positive values, respectively, of logarithmically distributed contours of the baseflow
streamfunction.



M. Brynjell-Rahkola et al. / Commun. Comput. Phys., 22 (2017), pp. 1508-1532 1527

gration, and can take advantage of all of the computational advances developed for time
integration for various spatial discretizations, including finite differences, finite elements,
spectral and spectral elements.

Versions of this method have already been used to calculate steady states and eigen-
values [6, 7, 9, 22, 23, 25, 38, 39]. In this exploratory paper, we have investigated the one-
dimensional linear Ginzburg-Landau equation, which is a common model for the Navier-
Stokes equations; and the two-dimensional lid-driven cavity flow, which is a simple
Navier-Stokes case that is suitable for testing novel computational methods.

In the Ginzburg-Landau case, all operators can be stored, inverted, and diagonalized
explicitly. This has enabled us to study the properties and conditioning of the operators in
great detail, as well as to validate the results obtained with the proposed method against
SVD. With the final goal of studying the optimal forcing of large three-dimensional com-
plex flow problems that are governed by the Navier-Stokes equations, we have imple-
mented the proposed method in the spectral element code Nek5000 [20]. Since matrices
cannot be stored and decomposed for a large flow case, the alternative to SVD that has
been used is to integrate the direct and adjoint Navier-Stokes equations in time, which
upon convergence yields a stationary point of the corresponding Lagrangian functional.
As a proof of concept, the two-dimensional lid-driven cavity flow at Re={100,300,500}
is studied. This simple test case shows convergence behavior that is consistent with
that of the Ginzburg-Landau equation. A comparison of the optimal forcing computed
with the novel method to that obtained through time-integration for Re=100 shows that
the proposed method gives similar results but requires one to two orders of magnitude
fewer operator evaluations. In order to further demonstrate its applicability to higher
Reynolds number flows, the forcing of a marginally stable lid-driven cavity at Re=8015
is investigated. The results show that the flow is susceptible to a wide range of forcing
frequencies, but that the largest energy amplification (G(ω)≈1100) is obtained for a har-
monic forcing with frequency ω=±2.6875, corresponding to the least stable eigenvalues
λ=−3.3681·10−3±i 2.6935. It is shown that this strong energy gain is due to excitation of
the primary vortex, which is very receptive to a driving frequency close to the frequency
of these eigenvalues.

In order to keep the discussion general, we have deliberately chosen to omit technical
details associated with the solution and spatial discretization of the selected model prob-
lems. Such issues, and application of the method to larger problems involving complex
geometries, will be covered in future publications.
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A Test problems

A.1 Ginzburg-Landau equation

The one-dimensional linear Ginzburg-Landau equation reads

∂q

∂t
=

(

−ν
∂

∂x
+γ

∂2

∂x2
+µ(x)

)

q, x∈ [−∞,∞], (A.1)

with boundary conditions q(x,t)→ 0 as x→±∞. The corresponding adjoint equation
derived with the L2-inner product is

−∂g

∂t
=

(

ν∗
∂

∂x
+γ∗

∂2

∂x2
+µ∗(x)

)

g, x∈ [−∞,∞], (A.2)

and is subject to boundary conditions g(x,t)→ 0 as x→±∞. Eq. (A.1) is of advection-
diffusion-reaction type, where the function µ(x) can be considered to be a spatially-
dependent reaction rate. Depending on the form of µ(x), (A.1) may exhibit stability,
or instability [17], which makes it a suitable model for the Navier-Stokes equations.

The reaction term is chosen to be µ(x)=(µ0−c2
u)+µ2(x2/2) [15]. The coefficient µ0 is

a bifurcation parameter analogous to the Reynolds number and µ2 determines the degree
of non-parallelism. The quadratic form of µ(x) results in an unstable region bounded by
±((−2/µ2)(µ0−c2

u))
1/2 (see the shaded regions in Fig. 4(b)). The advection coefficient

is ν = U+2icu and the most unstable wave number is cu. The diffusion coefficient is
γ=1+icd, where cd is the dispersion coefficient. The significance of cu and cd can be un-
derstood through the dispersion relation D(k,ω,µ0)=0, by neglecting the dependence on
x and expressing q as a superposition of normal modes (see Bagheri et al. [4] for details).
If dµ(x)/dx 6= 0, i.e. µ2 6= 0, and if either U 6= 0 or cd 6= 0, the Ginzburg-Landau operator
can be shown to be non-normal and to have non-orthogonal eigenfunctions.

In order to compute optimal forcing, a stable flow case is necessary. We have there-
fore chosen the set of numerical parameters U = 2.0, cu = 0.2, cd =−1.0, µ0 = 0.38 and
µ2=−0.01, which corresponds to the sub-critical case of [4]. Eqs. (A.1) and (A.2) are dis-
cretized using Hermite polynomials and the differentiation suite provided by Weideman
and Reddy [41].

A.2 Navier-Stokes equations (lid-driven cavity flow)

The non-dimensionalized linear incompressible Navier-Stokes equations are given by
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∂q

∂t
=−∇p−(q̄·∇)q−(q·∇)q̄+Re−1∇2q, (A.3a)

∇·q=0, (A.3b)

where the perturbation field is denoted q=(u,v)T, and the steady base flow around
which the stability analysis is performed is denoted q̄=(ū,v̄)T. By following the
Helmholtz-Hodge decomposition theorem [16] and introducing an orthogonal projector
P∇(·) onto a divergence-free field, (A.3a) may be rewritten schematically as

∂q

∂t
=P∇ (−(q̄·∇)q−(q·∇)q̄)+P∇

(

Re−1∇2q
)

, (A.4)

which brings (A.3) into the same form as (2.1). In addition to the operators defined by
(A.4), we also consider the adjoint counterparts defined in a similar fashion as

−∂g

∂t
=P∇

(

(q̄·∇)g−(∇q̄)Tg
)

+P∇
(

Re−1∇2g
)

(A.5)

(see [5] for details on the derivation of the adjoint Navier-Stokes equations).
As a test case, the two-dimensional lid-driven square cavity is considered. The

method is incorporated into the Navier-Stokes solver Nek5000 [20], which is based on
the spectral element method [29] and uses the PN−PN−2 discretization for velocity and
pressure [24]. The base flow obeys homogeneous Dirichlet conditions on all the bound-
aries except at the top boundary, where the y-component is homogeneous and the x-
component is given by

ū(x̃)=















1, if |x̃|≤ (1/2−1/xrise),
(

1+exp
(

1
xrise(1/2−|x̃|)−1

+ 1
xrise(1/2−|x̃|)

))−1
, if (1/2−1/xrise)< |x̃|< (1/2−ǫ),

0, otherwise,

(A.6)
in which x̃= x−1/2 (x∈ [0,1]). Eq. (A.6) represents a two-sided symmetric step func-
tion [13] used to treat the singularities that arise in the top corners due to the discontinu-
ous boundary conditions (see e.g. [3] for another treatment of this issue). In order to have
a smooth velocity distribution along the boundaries, the tuning parameters of (A.6) are
chosen to be xrise =6.0, and ǫ=0.001. For the perturbation, homogeneous Dirichlet con-
ditions are imposed on all the boundaries for q and g. With these boundary conditions,
P(∆t) as defined in (2.5) will be self-adjoint.

B Derivation of the optimal forcing time integration method

Consider a dynamical system such as (1.2), ∂q/∂t=Aq+ f eiωt , and introduce the ansatz
function q(x,t)= s(x)eiωt . The Lagrangian governing the problem of determining the
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optimal forcing reads [26]

L (s,b,α, f )= 〈s,s〉−ℜ{〈b,(iωI−A)s− f 〉}−α(〈 f , f 〉−1) , (B.1)

where 〈s,s〉 is the energy of the response (the objective to be maximized), and the other
two terms represent linear equality constraints that must be satisfied by a feasible so-
lution, i.e. the solution must satisfy the governing equation, and the force should have
unit norm. The variables b(x) and α are Lagrange multipliers of these constraints, and
we assume that ω,α∈R and s(x),b(x), f (x)∈C. An optimal solution necessarily has to
be a stationary point of (B.1) in order to fulfill the first order optimality conditions. This
implies that the first variations of (B.1) with respect to its arguments must vanish simul-
taneously,

〈δL ,δs〉=ℜ
{

〈2s+(iωI+A†)b,δs〉
}

=0 ∀δs, (B.2a)

〈δL ,δb〉=ℜ{〈(iωI−A)s− f ,δb〉}=0 ∀δb, (B.2b)

〈δL ,δα〉=δα(〈 f , f 〉−1)=0 ∀δα, (B.2c)

〈δL ,δ f 〉=ℜ{〈b−2α f ,δ f 〉}=0 ∀δ f , (B.2d)

which gives

2s=−(A†+iωI)b, (B.3a)

f =(−A+iωI)s, (B.3b)

〈 f , f 〉=1, (B.3c)

b=2α f . (B.3d)

These equations represent in turn the adjoint and the direct equation, the normalization
and the optimality condition. From (B.3) the different steps of Algorithm 2 follows. Sub-
stituting (B.3a) and (B.3d) into (B.3b) gives

(

(A−iω I)(A†+iω I)
)−1

f =α f , (B.4)

where the operator on the left-hand side is equal to (3.4), and α=G(ω)2.
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