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We examine the transitions among the steady-state axisymmetric spherical Couette 
flows with zero, one, and two vortices per hemisphere. The steady flows are reflection 
symmetric with respect to the equator, but some of the transitions that we find break 
this symmetry. This is the fist study to reproduce numerically the transitions to the 
one-vortex flow from the zero- and two-vortex flows. In  our study, we use a 
numerical initial-value code to: (i) compute the bifurcation diagrams of the steady 
(stable and unstable) states, (ii) solve for the most unstable or least stable linear 
eigenmode and eigenvalue of a steady state, (iii) calculate the velocity field as a 
function of time during both the linear and nonlinear stages of the transitions, and 
(iv) determine the energy transfer mechanism into and out of the antireflection- 
symmetric components of the flow during the transitions. 

Our study provides the explanation of the laboratory observation that some 
transitions occur only when the inner sphere of the Couette-flow apparatus is 
accelerated or decelerated quickly, whereas other transitions occur only when the 
acceleration is slow. 

1. Introduction 
In this paper we examine the time-dependent transitions among steady-state 

axisymmetric spherical Couette flows. The steady-state solutions were examined by 
Marcus & Tuckerman in Part 1 (1987). Spherical Couette flows are the equilibria that 
result when an incompressible, constant-density fluid is constrained between two 
concentric spheres in which the outer is held stationary and the inner is rotated at 
an angular velocity A?,. There are two non-dimensional control parameters for 
spherical Couette flow: the Reynolds number Re = A?,R:/v and the gap width 
between the inner and outer constraining spheres, cr = (R2-Rl)/Rl, where v is the 
kinematic viscosity and R, and R, are the radii of the inner and outer spheres. At low 
Reynolds numbers spherical Couette flows are found experimentally to be both 
axisyrnmetric and reflection-symmetric about the equator (Khlebutin 1968 ; 
Sawatzki & Zierep 1970). Three types of spherical Couette flow that exist at medium- 
gap geometries (i.e. 0.12 < CT < 0.24) are characterized by zero, one, and two Taylor 
vortices on each side of the equator. Wimmer’s laboratory experiments (1976) were 
the first to show that the flows are not unique functions of cr and Re and that the final 
equilibrium state of the fluid depends also on the history of the fluid - particularly 
on the rate of acceleration of the inner sphere b, during the transition to a final state. 
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In this paper we discuss the transitions among the low Re 0-, 1- and 2-vortex flows 
for the medium gap u = 0.18 and for Re < 1000. (At u = 0.18 there are other steady- 
state spherical Couette flows. See Schrauf (1983 a, b )  and Part 1 for a discussion of 
these separate solutions.) 

Axisymmetric medium-gap 0-, 1- and 2-vortex flows have been previously 
simulated numerically by other authors using initial-value codes (Bonnet & Alziary 
de Roquefort 1976; Astafeva, Vvdenskaya & Yavorskaya 1978 ; Bartels 1982 ; 
Dennis & Quartapelle 1984). Although these authors have observed numerically the 
transition from the O-vortex to the 2-vortex flow (referred to throughout the 
remainder of this paper as the 0 --f 2 transition) and the 1 + 0 transition, the details 
of the transitions have never been reported in the literature. Furthermore, despite 
the fact that’ Wimmer observed the 0-t 1 transition in his laboratory experiments 
with medium- and narrow-gap flows, the transition has never been produced 
numerically. For example, Astaf eva et al. successfully simulated several spherical 
Couette flows in the narrow-gap regime at u = 0.11 by expanding the flow in the 0- 
direction in a truncated 90-term Legendre series and by finite-differencing in the 
radial direction with 10 grid points. The terms in the Legendre series were chosen so 
that flow was reflection-symmetric about the equator. Their numerically calculated 
values of the critical Reynolds numbers for transitions in which the number of Taylor 
vortices decrease agree with the corresponding experimenal values measured by 
Yavorskaya, Belyaev & Monakhov (1977) to within 3 YO. However, Astafeva et al. 
were unable to reproduce the O +  1 transition at all. Because their code imposed 
axisymmetry as well as reflection-symmetry about the equator, they were led to 
the conclusion that the O +  1 transition breaks one or both of these symmetries. 
Astaf eva et al. were only able to simulate the steady-state l-vortex spherical Couette 
flow by starting their initial-value code with a O-vortex flow and artificially adding 
a large perturbation with one Taylor vortex on either side of the equator. Bartels 
simulated spherical Couette flows for a range of medium-gap sizes by using a high- 
resolution finite-difference code. He also noted that he was unable to produce the 
O +  1 transition. His initial-value code computed the flow in the domain 0 < 0 < in, 
and he imposed reflection symmetry about the equator. With = 0.17647, he could 
only simulate the steady-state l-vortex flow by modifying his code so that a 
‘reflection symmetry ’ was artificially imposed about the 0 = (in + 0.0122) plane. Once 
he simulated the l-vortex flow he was able to produce the 1 + 0 transition in accord 
with the laboratory experiments of Wimmer. Speculating that the 0 + 1 transition 
was caused by velocity perturbations that were asymmetric with respect to the 
equator, Bartels conducted simulations in the whole 0 < 0 < K domain and allowed 
round-off errors to produce asymmetric velocity perturbations. However, he was still 
unable to produce the O +  1 transition. 

In this paper we produce the 0 + 1 transition that was found experimentally by 
Wimmer by using an axisymmetric pseudospectral code in which the velocity is 
computed in the entire 0 < 0 < K domain. We describe this transition as well as the 
1 + 0, 0+2, and 2+ 1 transitions in $3 of this paper. The 2+ 1 transition at  low 
Reynolds number (i.e. for Re < 1300, not to be confused with the 2+ 1 transition at  
Re = 3950 observed by Wimmer 1976) not only has never been simulated prior to 
this paper but also until very recently had never been observed in the laboratory 
(K. Biihler, private communication 1983). Our calculations of the transitions are 
carried out by solving the Navier-Stokes equation as an initial-value problem. The 
details of the numerical procedure are given in Part 1. 

In $2 we present a global view of the transitions by examining the torque-Re 
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curves of the steady-state equilibria (i.e. the bifurcation diagrams). These curves are 
very useful for showing which flows arc members of the same family of equilibria and 
which are totally disjoint. Bifurcation diagrams illustrate succinctly the upper and 
lower bounds in Reynolds number where an equilibrium solution exists and where 
transitions, both linear and finite-amplitude, are permitted. Schrauf (1983a, b and 
private communication) used a numerical steady-state solver to compute bifurcation 
diagrams for spherical Couette flows with u = 0.17647 over a much wider range of 
Reynolds number than we present in this paper, and he has determined many 
independent families of solutions. The advantage of a steady-state solver over an 
initial-value code is that the former converges to an equilibrium solution even when it 
is unstable. Our initial solver cannot usually converge to unstable solutions. (In 
general, we can only converge to an unstable equilibrium if the unstable modes of 
the equilibrium can be suppressed by artificially imposing a spatial symmetry.) A 
disadvantage of a steady-state solver is that as the user increases the spatial 
resolution, the computational cost usually increases much faster than it does with an 
initial-value code. In the Reynolds-number regime where our results and Schrauf s 
overlap, there is good agreement between the bifurcation diagrams with one 
important exception that is discussed in $2. 

In $3  we compute the time-dependent transitions using our initial-value solver, 
and illustrate the evolution of the flow during transition by plotting temporal 
sequences of the meridional streamlines and profiles of the azimuthal component of 
the velocity. We also plot the torques on the inner and outer spheres. 

Many authors have previously examined transitions in spherical Couette flows by 
first numerically calculating a O-vortex equilibrium and then determining its linear 
eigenmodes (Bratukhin 1961 ; Yakushin 1969; Munson & Menguturk 1975; Walton 
1978 ; Soward & Jones 1983). These calculations were restricted to narrow- and wide- 
gap geometries. The calculations determined critical Reynolds numbers for linear 
instability of O-vortex flow to a secondary flow. Munson & Joseph (1971) used an 
energy method that allowed them to examine finite-amplitude instabilities as 
well. Examining wide-gap flows with u = 1, Munson & Menguturk found that the 
eigenmode of the linear instability associated with the critical Re was axisymmetric 
and antisymmetric with respect to the equator. In contrast to that linear analyses, 
Munson & Joseph’s energy analyses of the same flow showed that the instability was 
not only asymmetric with respect to the equator but also not axisymmetric. 
Examining narrow-gap flows, Yakushin determined the critical Re for the onset of 
Taylor vortices at  u = 0.1, and Walton and Soward & Jones determined the value in 
the limit a + O .  Their results agree with the experimentally measured values to 
within 3 YO. The linear instabilities that they found correspond to transitions from 
the O-vortex flow to flows with many (i.e. more than 30) Taylor vortices. Not 
surprisingly, the critical Reynolds numbers for the onset of Taylor vortices in 
spherical Couette flows with narrow gaps is close to the value for the onset of Taylor 
vortex flow in cylindrical geometries. 

In $4 we present our calculations of the linear eigenmodes that produce the O +  1 
and 2 + 1 transition. Using the results of our linear stability calculations we show 
why it is easy to miss these transitions in both the numerical simulations and also in 
the laboratory measurements. In $5 we plot the time-development of the energy and 
examine how the kinetic energy is transferred among the different modes during 
transitions ; this transfer is particularly helpful in understanding the role of 
symmetry and nonlinearity in the transitions. Our conclusions appear in $6. 
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Reynolds number 

FIQURE 1.  Bifurcation diagram showing the torques of the -, O-vortex, - - -, l-vortex, and 
_ _ _  , 2-vortex flows as a function of Re with u = 0.18. The meeting of the l-vortex and 0- and 
2-vortex curves at Re x 790 is a projection effect and not a bifurcation. The 0- and &-vortex 
equilibria are linearly unstable for 651 < Re < 775. 

2. Bifurcation diagram 

Figure 1 shows the torque 7 as a function of Re for our numerically computed steady- 
state equilibrium flows at  cr = 0.18. (We have non-dimensionalized the torque and all 
other quantities throughout this paper unless stated otherwise, with R, as the unit 
of length, L?;l as time, and pR: as mass, where p is the fluid density. The torques of 
the O-vortex (solid curve), the l-vortex (short-dashed curve), and the 2-vortex (long- 
dashed curve) flows were computed in increments of 10 in the Reynolds number 
except in regions of rapid change (see below) where the increments were finer. (The 
curves in figure 1 are drawn as straight line segments between our numerically 
computed data points.) 

A striking feature of the bifurcation diagram, discovered independently by 
Schrauf (19838) and by ourselves, is that the O-vortex and 2-vortex flows lie on the 
same curve and are therefore part of the same equilibrium family. The O-vortex flow 
evolves smoothly into the 2-vortex flow (with the critical Re for the onset of 2-vortex 
flow defined to be the Re at which pinched streamlines close to form recirculation 
vortices -see $3). We have found that the critical Re is 740+(0.05). As we showed 
in Part 1, one of two pairs of Taylor vortices in 2-vortex flow (the pair farther from 
the equator) has zero diameter at  the critical Re. As Re increases, the small vortex 
pair rapidly grows in size (and intensity) and increases the torque. Because of the 

2.1.  The 0- and 2-vortex equilibrium and the l-vortex equilibrium curve8 
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large change in T near the critical Re, we have computed equilibria for seven values 
of Re in the range 730 < Re < 745. 

Schrauf (1983a, b) discovered that the l-vortex flows lie on a curve distinct from 
that of the 0- and 2-vortex flows, and the two curves never intersect. The fact that 
figure 1 shows that two curves cross near Re = 785 is a two-dimensional projection 
effect due to the fact that we have represented each flow by only one parameter, the 
torque. If we had plotted the torques and the vortex size (for example) for each of 
the flows as a function of Re, we would find that the two equilibrium curves (which 
would now be imbedded in a three-dimensional space) never intersect. 

The 0- and 2-vortex equilibrium curve extends beyond the left- and right-hand 
boundaries of figure 1. It extends to the left to Re = 0 where it becomes the Stokes 
solution. The l-vortex curve extends to the right beyond the border of figure 2 but 
not to the left. At Re = 645+0.05 we find that the l-vortex curve has a turning point 
(or one-sided bifurcation) where the slope becomes infinite. To calculate Re at the 
turning point, we computed four equilibria in the interval 645 < Re < 650. (The 
turning point is also shown dramatically in figure 3 of Part 1 where we plotted the 
sizes of the vortex in the l-vortex flow as a function of Re). At Re % 645 the l-vortex 
equilibrium curve cannot end abruptly but must turn around and continue back 
towards the right-hand side of the figure. At the present time we are unable to 
compute this half of the curve with our initial-value code, since it represents an 
unstable equilibrium, but Schrauf (1983 b), working with a steady-state solving code 
and a gap width close to 0.18 (a = 0.17647) not only computed the unstable half of 
the l-vortex curve but also found that it never intersects the 0- and 2-vortex 
curve. Although they have not been observed by experimentalists, Schrauf calculated 
additional equilibria that exist for Re 2 800 and consist of stable 0- and 2-vortex 
states. 

Convergence of our initial-value code does not necessarily imply the linear stability 
of the solution. (For example, our code can converge to an equilibrium that is 
unstable to anti-reflection-symmetric modes if these modes are excluded from the 
computational domain.) In  fact, we show in $4 that the portion of the 0- and 2-vortex 
equilibrium curve for 651 < Re < 775 is linearly unstable. 

2.2. Turning points and other bifurcations 
Figure 1 shows that the stable equilibria are non-unique for 645 < Re < 651 and 
775 < Re < 900. Non-uniqueness of solutions is a well-established property of the 
Navier-Stokes equation, but it is also well known that for low values of Re the flow 
is unique (Serrin 1959). Uniqueness at Re = 0 implies that except for the one 
equilibrium curve that becomes the Stokes solution all other equilibrium curves must 
have (one or more) one-sided bifurcations, where the slopes become infinite and the 
curves turn around. The turning point of the l-vortex curve at Re = 645 can be 
thought of as a consequence of the uniqueness of the Navier-Stokes equation at low 
Re. 

The feature of figure 1 that may seem somewhat surprising is that there are no true 
intersections of the equilibrium curves. The equilibria of many classical flows, such as 
Rayleigh-BBnard convection or Taylor-Couette flow in infinitely long cylinders, do 
intersect, and due to the symmetry of the flows the intersections result in symmetric 
bifurcations in the sense that the point of intersection is coincident with the turning 
point of one of the equilibrium curves (i.e. pitchfork bifurcations). Consider, for 
example the transition from circular Couette flow (between infinitely long cylinders) 
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to axially periodic Taylor vortex flow (Kirchgassner & Sorger 1968; Kogelman & Di 
Prima 1970). Each wavelength of such a flow contains two Taylor vortices of 
opposite circulation. Two Taylor vortex states can be chosen by setting the phases 
such that the inflow or outflow boundaries of the vortices coincide with the 
boundaries of the periodic domain. These flows are physically equivalent. The 
bifurcation associated with the onset of Taylor vortices is therefore a pitchfork 
bifurcation. (Actually, if we could draw a three-dimensional bifurcation curve we 
would show the pitchfork as a paraboloid of revolution with the angle around the 
paraboloid equal to the axial phase of the Taylor vortices.) 

Suppose now that we impose finite axial-length boundary conditions but make the 
unphysical assumption that the axial endplates rotate differentially with the same 
velocity as circular Couette flow (so that circular Couette flow is still an exact 
solution). This serves the purpose of breaking the equivalence between states with an 
even number of Taylor vortices, since states with inflow near the axial boundaries are 
now physically distinct from those with outflow near the boundaries. Transitions to 
such states are now associated with transcritical rather than pitchfork bifurcations. 
Finite axial-length boundaries also introduce a second class of solutions. These are 
the antisymmetric states or those with an odd number of vortices. Antisymmetric 
states with outflow near the top axial boundary and with inflow near the bottom are 
equivalent to states with inflow near the top and outflow near the bottom. This 
equivalence is associated with a symmetric pitchfork bifurcation. Considerations of 
symmetry have been extensively discussed by Benjamin (1978a, b), and we shall 
return to them presently. 

2.3. Decoupling of bifurcation diagrams 

Bifurcations can do more than change character : they can disappear altogether. For 
example, figure 2 (a) shows schematically a transcritical bifurcation between two 
curves. One curve (the straight horizontal line) is stable (indicated by the solid curve) 
for 0 < Re < Re, and unstable (indicated by a dotted line) for Re, < Re < 00. The 
second curve drawn as a horizontal parabola has a turning point at  Re, ; it contains 
one unstable and two stable portions. The bifurcation for the transition from the 
circular Couette flow discussed above (with the finite axial-length but artificial 
boundary conditions) to a Taylor-vortex flow with an even number of vortices looks 
like figure 2 (a). The straight horizontal line represents qualitatively the primary 
circular Cou4:tte flow, and the parabolic curve with the turning point represents the 
secondary Taylor-vortex flow. When the endplates are stationary or rotate with 
uniform angular velocity as in real experiments, Ekman pumping produces a 
meridional flow. This causes the bifurcation to be decoupled (Benjamin 1978a, b), &s 

in figure 2(b). Intuitively, we expect spherical Couette flow to be more similar to 
Taylor-Couette flow with stationary or uniformly rotating endplates. Our bifurcation 
diagram of spherical Couette flow in figure 1 looks qualitatively like figure 2 (b), with 
the solid lower curve of the latter figure representing the 0- and 2-vortex flow branch 
and the solid or stable half of the upper curve with the turning point representing the 
stable part of the l-vortex flow (which has an even number of Taylor vortices). 

Benjamin & Mullin’s (1982) study of finite-length cylindrical Couette flow showed 
that the transition from a primary circular-Couette-like (i.e. O-vortex) flow takes 
place continuously as a function of Re. They found that for large Re, axisymmetric 
Taylor-vortex flows are non-unique, and that flows with the ‘preferred number’ of 
vortices lie on the same equilibrium curve as the primary O-vortex circular-Couette- 
like flow. Equilibrium flows with different numbers of Taylor vortices lie on distinct 
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FIQURE 2. (a)  Schematic diagram showing a transcritical bifurcation. There are two equilibrium 
curves, one represented by a horizontal straight line and the other by a parabola lying on its side. 
At the turning point of the parabola Re, and at the bifurcation point Re, (where the two stable 
curves intersect) the solutions change from being stable (solid curve) to unstable (dotted curve). 
( b )  Decoupling of the bifurcation diagram of (a )  showing no intersection. Solutions lying on the 
straight horizontal line at low and high Re are no longer part of the same equilibrium family. 
Re, still exists but Re, does not. 

curves that do not intersect the curve of the primary flow. Benjamin & Mullin’s 
finding is analogous to what we find in spherical Couette flow for cr = 0.18: the 
2-vortex flow is the ‘preferred’ flow that is part of the primary O-vortex equilibrium 
curve, and the l-vortex flow equilibrium (with a non-preferred number of vortices) 
lies along a distinct, non-intersecting curve. 

Another possible way in which perturbations can change a bifurcation is shown 
schematically in figure 3. In figure 3 (a) there are two distinct curves; one stable, the 
other unstable. Neither curve has a turning point, and a stable solution exists for all 
Re. We have found that numerically induced perturbations can change figure 3(a) 
into figure 3(b) .  The two curves in figure 3(b) have turning points Re,, and Re,,. No 
solution (stable or unstable) exists for Re,, < Re < Rt2. In particular we have found 
that the l-vortex flow at B = 0.18 lies on a stable, continuous equilibrium curve like 
the lower solid curve in figure 3(a) for 1300 2 Re 2 645. (We have not explored 
Re > 1300.) Using finite-differences with 11 radial and 121 azimuthal grid points per 
hemisphere, Schrauf (19833 and private communication) found that the l-vortex 
flow equilibrium with B = 0.17647 and with Re near 1200 lies along a curve that 
looks qualitatively like figure 3(3). He found two turning points with Re,, = 1065 and 
Re,, = 1300 and concluded that there was a range of Reynolds numbers between the 
two turning points for which there was no l-vortex flow solution. 

To resolve this inconsistency, we computed stable l-vortex flows at Re = 1200 (i.e. 
between Schrauf s two turning points where the equilibrium should not exist) using 
32 radial and 256 azimuthal collocation points and again with 16 radial and 128 
azimuthal points. Both of our computed flows were stable and nearly identical to 
each other. When the numerical resolution was then reduced to 8 radial and 64 
azimuthal collocation points the flow changed from the l-vortex flow to the 2-vortex 
flow indicating that the stable l-vortex equilibrium ceased to exist. The results of 
this numerical experiment are consistent with the bifurcation diagram changing 
from figure 3(a) to figure 3(b) due to numerical spatial resolution errors. 
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FIGURE 3 .  (a)  Schematic diagram showing two equilibrium curves, -, stable and - - -, unstable. 
Both curves exist for all Re. ( b )  Decoupling and merging of the two equilibrium curves of 
figure 3(a) .  At the turning points Re,, and Re,, the stability of the equilibria change. For 
Re,, < Re < Re,, there are no equilibrium solutions. 

2.4. Bifurcation in the presence of symmetry 
A necessary condition for an equilibrium curve to change from stable to unstable (or 
vice versa) is the presence of a turning point or an intersection. Since the 0- and 2- 
vortex equilibrium curve changes from stable to unstable at Re = 651 and regains 
stability at Re = 775 (as we shall discuss in $4), and since there are clearly no turning 
points, there must be bifurcation points caused by intersection with other equilibrium 
curves. 

If the bifurcation at  Re = 651 were transcritical or supercritical (or a t  Re = 775 
transcritical or subcritical) there would be additional stable equilibrium branches 
intersecting the 0- and 2-vortex equilibrium curve. Experiments and initial-value 
calculations should be able to find these branches a t  Re just greater than 651 (and Re 
just! less than 775); the absence of such stable equilibria (as we shall discuss in $3) 
leads to the conclusion that the bifurcation at Re = 651 is a subcritical pitchfork and 
that at Re = 775 a supercritical pitchfork. 

There is another reason for the necessity of symmetric pitchfork bifurcations at  
Re = 651 and 775 which is related to our earlier discussion of the role of symmetry. 
The geometry of spherical Couette flow is, of course, equatorially symmetric. Any 
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asymmetric state can be written as the sum of a reflection-symmetric piece uR and an 
antireflection-symmetric piece u,. If (uR + u,) is an equilibrium, then equatorial 
symmetry implies that (uR-uA) is also an equilibrium. This is the condition necessary 
for the existence of a pitchfork bifurcation. 

We show in $4 that the eigenmodes to which the 0- and 2-vortex flows are unstable 
at  Re = 651 and Re = 775 are antireflection-symmetric. The corresponding unstable 
equilibria that intersect the 0- and 2-vortex as subcritical and supercritical pitchfork 
bifurcations respectively must therefore be asymmetric with respect to the equator. 
These asymmetric equilibria could not, of course, be detected by Schrauf (19833) 
with this equatorially reflection-symmetric steady-state finding code. When made 
aware of the existence of the antireflection-symmetric eigenmodes (Tuckerman 
1983), Schrauf & Krause (1984) subsequently found the subcritical bifurcation near 
Re = 651 by generalizing their code to allow for asymmetric equilibria. 

2.5. Transitbn.8 allowed by the bifurcation diagram 

Without understanding any of the details of the physics of the spherical Couette 
flows we can still determine where transitions between flows are allowed and 
expected by using the bifurcation diagram in figure 1 (disregarding the possible 
presence of stable equilibrium curves other than the two shown in the figure for 
Re < 900). For example, for Re < 645 all initial conditions no matter how contrived 
lead to the O-vortex flow because O-vortex flow is the unique stable solution for 
Re < 645. This means that if a l-vortex flow is created at Re = 645 and if Re is then 
lowered to 644 a 1 + O  transition must occur. For 645 < Re < 651 an initial 
condition can lead to either the 0- or the l-vortex flow. Each of the two linearly 
stable equilibria has its own basin of attraction, and all initial conditions belong to 
one of the two attracting basins. The flows are stable to finite-amplitude disturbances 
if and only if the nonlinear disturbance keeps the flows inside their original basins of 
attraction. However, the relative size of the two basins can be determined only by 
performing large numbers of initial-value experiments. 

For 651 < Re < 775, the 0- and 2-vortex equilibria are linearly unstable, as we 
show in $4, but the growth rate of the linear instability is slow. By varying Re rapidly 
compared to the instability’s growth rate, the flow can therefore be made to march 
along the entire length of the 0- and 2-vortex equilibrium curve in figure 1. Another 
way of creating the 0 + 2 transition is to start with a stable 0-vortex flow (i.e. Re < 
651) and then suddenly change Re to Re,, with Re, >, 775 (where the 2-vortex flow 
is stable), provided that the flow does not stumble into the basin of attraction of the 
1-vortex equilibrium flow at Re,. However, this transition will not proceed along the 
path of the 0- and 2-vortex equilibrium curve in figure 1 (see $3). 

If the 0- or 2-vortex equilibria are created with 651 < Re < 775 and if we wait long 
enough a transition to a l-vortex state should be observed. In particular, if a 0- 
vortex flow is created a t  651 and Re is changed to 652 a O +  1 transition occurs. If 
a 2-vortex flow is created at 775 and Re is then reduced to 774, a 2+  1 transition 
occurs. For Re Z 775 the 2-vortex and l-vortex flows are both stable to linear 
perturbations, and each has its own basin of attraction which determines its stability 
with respect to nonlinear perturbations. The l-vortex flow for Re < 900 is always 
linearly stable, and for 651 < Re < 775 it is stable to nonlinear perturbations as well. 
We therefore do not expect to see a 1 + 2 transition, except for Re > 775 and then 
if and only if a finite amplitude perturbation is introduced that is sufficiently large 
to take the l-vortex flow out of its attracting basin. 

We note that the 1 + O  and O +  1 transitions that are caused by infinitesimal 



40 P. S. Marcus and L. S. Tuckerman 

changes in Re occur respectively at Re = 645 and Re = 651. This type of hysteresis 
is a common feature of hydrodynamic flows whose transitions are not due to 
supercritical bifurcations. 

3. Physical description of the transitions 
3.1. 0 + 2 transition 

We have shown in $2 that the 0 + 2 transition can be produced by starting with a 
stable O-vortex equilibrium (Re < 651) and then suddenly increasing Re to a value 
greater then 775 where the 2-vortex equilibrium is stable. We illustrate this 
transition here by starting with a flow a t  Re = 0 (the Stokes flow) and suddenly 
increasing Re to 800. In figures 4 and 5 we show a time-sequence of projections of the 
velocity that illustrate the temporal evolution of the flow during the 0 + 2 transition. 
Although the flows that we show are not equilibria, the evolution of the flow with 
increasing time qualitatively resembles the succession of steady states along the 0- 
and 2-vortex curve with increasing Reynolds number. 

At time t = 0 we begin our transition with the O-vortex Stokes flow at Re = 0 .  The 
flow is purely azimuthal, and there is no meridional or ( r ,  8)-component of the flow 
(see Part 1, equation (2.5)). Re is raised instantaneously to 800 (by lowering the 
viscosity of the fluid), and the flow begins to evolve quickly. Figure 4 shows the 
meridional component of the velocity (which is always reflection-symmetric about 
the equator) a t  times t = 2n, 4n, 6n, 8 ~ ,  lox, and 4 h .  (In our dimensionless units the 
period of the inner rotating sphere is 2~ ; the viscous diffusion time from the inner to 
outer sphere is Re u2 = 25.92 and the diffusion time from pole to equator is in2 Re = 
1974). The quantities that we have plotted in figure 4 are the contours of constant 
stream function $r sin 8, where the meridional component of the velocity is derived 
from $ by 

The meridional component of the velocity is therefore tangent to the contours of 
constant [$r sin 81. 

The velocity that we have graphed in the figure is the solution of the Navier- 
Stokes equations that we compute numerically by the methods of Part 1. Solid 
contours represent counterclockwise, and short-dashed contours clockwise meri- 
dional flow. There is an outflow boundary a t  the equator in all of the flows in figure 4. 
We have only shown the flow in the domain near the equator En < 8 < En. The flow 
in the domain 0 < 8 < Ex and :R < 8 < R does not change qualitatively during the 
0 + 2 transition and is just the continuation of the two (large basic) vortices of figure 
4(a). (See figures 4, 7,  10, and 13 in Part 1 for examples of the meridional flow in the 
entire 0 < 8 < x domain.) The tick marks along the outer radius in figure 4 are 
equally spaced with the circumferential difference between ticks equal to u. 

Figure 4(a) shows that by time t = 2x the flow has a large basic vortex (unrelated 
to a Taylor vortex, see Part 1, $4) extending from the equator to the pole in each 
hemisphere. The flow looks qualitatively like the steady-state equilibrium flow at 
Re = 600 (see figure 4, Part 1). After two rotations of the inner sphere, the flow 
develops a pinch or stagnation point in each hemisphere as shown in figure 4(b) a t  
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FIGURE 4. Meridional flow during the O +  2 transition at Re = 800 and J = 0.18 at the six times 
indicated on the figure. Streamlines with counterclockwise circulation are shown by solid curves 
and those with clockwise circulation by dashed curves. The tick marks on the outer radius have 
circumferential spacings equal to the gap width. 

0 = &x and A x .  By t = 6x  the pinches have developed further and we see clearly that 
$r sin 0 has two local maxima or minima in each hemisphere. Figure 4 ( c )  shows a 
flow that looks similar to the steady-state equilibrium 0-vortex flow with pinches at 
Re = 650 (figure 7, Part 1). 

At a time between 6x and 8x the pinch in each hemisphere near the equator breaks 
off and forms a nearly straight radial streamline at 8 x &x (in fact, a zero-diameter 
Taylor vortex) that goes all the way from the inner to the outer sphere. This event 
is the delimiter between a 0-vortex flow with pinches and a 2-vortex flow. 
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FIQURE 5. Radial velocity u,(r = P ,  8, t )  profiles during the 0 + 2 transition where f = t(l +a). The 
profiles are labelled along the abscissa by the times at which they occur. The velocity profiles all 
have the same horizontal scale ; deviations to the right (left) indicate radially outward (inward) 
flow. The maximum radial velocity shown is 0.088 in dimensionless units. 

The diameter of this vortex increases monotonically with time and figure 4(d) 
shows that it grows to become a recirculation Taylor vortex, i.e. it has a circulation 
opposite to that of the large basic vortex and the newly formed larger Taylor vortex. 
The Taylor vortices are separated from each other at  the equator and from the large 
basic vortex by nearly straight radial streamlines that begin and end at the inner and 
outer spheres. By t = 10n the formation of the 2-vortex flow is nearly complete. This 
time corresponds to five inner sphere rotation periods or 1.212 diffusion times from 
the inner to outer sphere. Between t = 8x and lox  the recirculation Taylor vortex 
grows in size and strength in a manner that is analogous to its growth with increasing 
Re in the steady-state equilibria. A completely steady state is reached by t = 4011.. 
Note that the entire 0 + 2 transition shown in figure 4 is reflection-symmetric about 
the equator. 

Figure 5 shows the radial velocity u,(r = P, 8, t )  as a function of 0 and t for the 
0 -+ 2 transition of figure 4 where P = $( 1 +a). Each velocity profile is labelled along 
the abscissa by the time at which it occurs and along the ordinate by the distance 
from the equator in units of gap size (only the equatorial region is shown). Within 
each profile, the distance along the abscissa also measures the magnitude of U,(T = 
P ,  8, t ) .  All the profiles are plotted with the same velocity scale, so figure 5 provides 
a quantitative comparison of the magnitude of the meridional flow a t  different times 
and locations. The maximum velocity in the figure is 0.088 in our dimensionless 
units. Deviations of the velocity profile to the right (left) indicates radially outward 
(inward) flow; so, for example, the figure shows clearly that there is always an 
outward radial flow at the equator. The radial velocity profiles in figure 5 cannot 
distinguish between the Taylor vortices of the 2-vortex flow and the pinches of the 
0-vortex flow. For example, at a distance of 1 . 7 ~  from the equator, the velocity is 
radially outward along the boundary between the large basic vortex and either the 
recirculating Taylor vortex in the case of the 2-vortex flow, or the velocity on the 
poleward side of the stagnation point in the case of the 0-vortex flow. These cannot 
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FIQURE 6. (a) Torque at the inner sphere T~ as a function of time during the 0+2  transition. (b) 
Difference between the torques at the inner and outer spheres ( ~ ~ - 7 ~ )  during the 0+2 transition. 
( ~ ~ - 7 ~ )  is equal to the time derivative of the fluids angular momentum. Note that the vertical 
scales on (a) and (b) are different. 

be distinguished from each other in figure 5.  Note that the characteristic Re of the 
meridional velocity based on the gap size, the maximum value of u,, and u is about 
12. Recirculation vortices of the type shown in figure 4 generally form in two- 
dimensional flows at Reynolds numbers of about 12 (cf. Taneda 1979). 

The torque at the inner sphere 71(t)  and the difference in torque between the inner 
and outer spheres [ ~ ~ ( t ) - - ~ ( t ) ]  as a function of time are shown in figure 6. The 
difference between the torques is equal to the time rate of change of the flow's 
angular momentum. Note that figures 6 ( a )  and (b) do not have the same scale along 
the ordinate. The very rapid increase in 71 for 0 < t < x is due to the instantaneous 
change in Re. Interestingly, the plateau-like interval a t  x < t < 4x is also seen in 
Wimmer's experiments (private communication, 1983). For t > 4n the torque T~ 

increases rapidly with time as the pinches (and later, for t 2 8n, as the Taylor 
vortices) increase the radial flux of angular momentum outward from the inner 
sphere. Initially for t < 3x,  71 is greater than 72, but later the inequality reverses. This 
is consistent with a burst of angular momentum flux leaving the inner sphere at t = 
0 and arriving at the outer sphere at t = 3x.  The length of time is approximately 
equal to the gap width divided by the characteristic radial velocity at  early 
times. 

3.2. 1 - t O  transition 
The meridionial circulation of the 1 + 0 transition at four different times is shown in 
figure 7. At t = 0 the flow is the steady, stable 1-vortex flow at Re = 645. The 
transition is initiated a t  t = 0 by abruptly lowering Re to 644 (by increasing the 
viscosity) where the 1-vortex equilibrium no longer exists (see figure I ) .  For t > 0,  the 
recirculating Taylor vortices near the equator monotonically decrease their diameter 
and energy. The transition proceeds almost imperceptibly until about t = 1OOx. 
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FIGURE 7. Meridional flow plotted aa in figure 4 during the 1 + O  transition at Re = 644 at the 
four times indicated. 

Figure 7 (a )  shows that the flow at t = loOx is similar to the equilibrium flow at 
t = 0 in that each hemisphere has a recirculation vortex near the equator with 
circumferential size X ~ C T .  The large basic vortices in each hemisphere have 
stagnation points about two gap widths from the equator. At t = 14011. (figure 78) the 
recirculating equatorial Taylor-vortex pair has reduced its diameter and has 
vanished by t = 15271 (figure 7c), leaving a 0-vortex non-equilibrium flow without 
pinches or stagnation points. By t = 1607~ the flow has nearly reached a steady state, 
and pinches have reformed in the large basic vortex. The entire 1 + 0 transition is 
reflection-symmetric about the equator. It is slow-on the order of the viscous 
diffusion time between the equator and pole. 

The plots of the radial velocity u, ( r  = P ,  8, t )  in figure 8 make especially clear how 
the equator changes from an inflow to an outflow boundary. At t = 152x, when the 
Taylor vortices have just disappeared but the pinches in the large basic vortices 
have not yet formed, figure 7 ( c )  shows that there is a radial outflow boundary at the 
equator, but figure 8 shows that it is very weak. A strong outflow does not occur at 
the equator until the pinch has formed. For t 5 152x there is a radial outflow at  
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Radial velocity 

FIGURE 8. Radial velocity, plotted m in figure 5, during the 1 + O  transition. Note that the inflow 
radial boundary at the equator becomes an outflow boundary. The maximum radial velocity in the 
figure is 0.034. 

approximately 0.8 gap widths from the equator caused by the flow between the 
Taylor vortex and the large basic vortex. For t 2 152x there is an inflow at 
approximately 0.8 gap widths caused by the pinched flow on the equatorial side of 
the stagnation point. The maximum radial velocity in figure 8 is 0.034. 

Figure 9(a) shows that except for 140x < t < 165x the torque slowly decreases at 
the inner sphere. The sudden decrease for 140n < t < 152x is due to the disappearance 
of the Taylor-vortex pair which is a very efficient transporter of angular momentum. 
The sudden increase in T~ for t > 152x coincides with the formation of the pinch 
which is also efficient in carrying momentum flux. Note that the timescales for the 
rapid change in T~ are of the order of c /ur  (which is approximately f the viscous 
diffusion time between the inner and outer spheres). If we consider the angular 
momentum flux of the Taylor vortex and of the pinch to be indicative of their 
strengths, then figure 9(b )  shows that the Taylor vortex decreases in strength more 
rapidly in time at the outer boundary that it does at the inner boundary (i.e. T~ > T~ 
for t < 152x) and that the pinch grows in strength more rapidly at the outer 
boundary than it does at  the inner boundary (i.e. T~ > T~ for most t > 1527~). 

3.3. O +  1 transition 
We simulate the 0 + 1  transition by starting with the steady-state O-vortex 
equilibrium at Re = 650. At t = 0 we then reduce the viscosity so that Re = 700 
where the O-vortex equilibria is unstable. Figure 10(a) shows the approximate 
equilibrium O-vortex flow at t = 60x. Note that the flow is reflection-symmetric 
about the equator. Each hemisphere has a pinch in the large basic vortex ; there are 
closed streamlines (approximately one gap width in diameter on the equatorial side 
of the stagnation point) whose circulation is of the same sign as the large basic 
vortex. 

Before describing what does happen in the O +  1 transition let us first describe 
what does not happen. Suppose the flow in the small closed streamlines in the pinch 
broke off to become a Taylor vortex, as in the 0 + 2 transition of figure 4, but that this 
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break were not accompanied by the formation of a second recirculating Taylor 
vortex. Then the circulation of the newborn Taylor vortex would have the wrong 
sign; the large basic vortex and the abutting Taylor vortex would be rotating in the 
same direction with a stagnation point between them, whereas neighbouring Taylor 
vortices always have opposite signs. Furthermore, a l-vortex flow formed by 
pinching off the closed streamlines would have a radial outflow at the equator, but 
the observed l-vortex flows have radial inflows a t  the equator. We conclude that the 
O +  1 transition cannot occur by thia type of pinching process. 

An alternative scenario for the O +  1 transition is the time-reverse of the 1 + O  
transition shown in figure 7. If the O-+ 1 transition occurred by this route, it would 
require the spontaneous creation of a pair of recirculating Taylor vortices at the 
outflow boundary at the equator. Although this creation is allowed kinematically, we 
note that in our study of Couette flows in spheres and in cylinders (Marcus 1984) we 
have never observed the spontaneous creation of a pair of Taylor vortices. The only 
times vortices are created is when one recirculating Taylor vortex (not a pair of 
vortices) forms at  a stagnation point where the local Reynolds number is O(l0) .  (This 
observation is discussed further in $6.) In any case, the observed 0 + 1 transition does 
not proceed as the time-reverse of the 1 + O  transition. 

Instead, as figure 10 shows, the O +  1 transition is asymmetric with respect to 
reflection about the equator. In  the next section we shall show that the transition is 
due to a linear instability to an eigenmode that is antireflection-symmetric about the 
equator. Figure 10 (b) shows the first observable appearance of asymmetry with the 
outflow boundary between the two large basic vortices moving below the equator. 
The l-vortex flow begins in figure lO(c )  when two wedge-shaped recirculating regions 
form near the stagnation point at the inner and outer boundaries at  8 = 291t/64. The 
local Reynolds number of the instability in figure 10 ( c )  (based upon the gap width, 
v, and the energy of the antireflection-symmetric component of the velocity) is O( 10). 
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FIQURE 10. Meridional flow plotted as in figure 4 during the 0+1 transition at the six times 
indicated. The flows inside the two wedges at 6 = @t in figure 10 (c) are recirculating. If contours 
had been drawn for very low values of the streamfunction, there would be closed dashed 
streamlines inside the two wedges. 

The two recirculating regions in figure 10 (c) join together to form the recirculating 
Taylor vortex in figure 10 (d). When the recirculating Taylor vortex forms, what was 
formerly the pinch in the northern hemisphere’s large basic vortex becomes a 
separate Taylor vortex. This separate Taylor vortex moves south across the equator 
(figure 10e) and eventually becomes the Taylor vortex of the southern hemisphere in 
the equilibrium 1-vortex flow (figure lot). The recirculating vortex that formed at 
the stagnation point in the northern hemisphere becomes the northern hemisphere’s 
Taylor vortex. If the initial conditions are infinitesimally perturbed, the 0 + 1 
transition can occur by forming a recirculation vortex in the southern hemisphere 
(see $4). The formation of the recirculation vortex in the O +  1 transition shown in 
figures 10 (c) and 10 (d) is essentially the same phenomenon that occurs in the 0 + 2 
transition, but in the O +  1 transition the recirculation vortex forms only in one 
hemisphere. 

The timescales in figure 10 are somewhat misleading. It takes approximately 10 
inner sphere rotation periods for the transition from the equilibrium flow at Re = 650 
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FIQURE 11. Radial velocity, plotted as in figure 5 during the 0 + 1 transition. The maximum radial 
velocity shown is 0.066. The entire velocity profile slides southward during the transition and 
changes the equator from an outflow to an inflow boundary. 

to the (approximate) equilibrium flow at Re = 700. The subsequent timescales of the 
transition depend sensitively upon the amplitude spectrum of the initial per- 
turbations, which in turn depends on background noise and transients caused by 
acceleration in laboratory experiments or on the round-off, truncation, aliasing, and 
timestepping errors in numerical experiments. The one timescale associated with 
O +  1 transition that does not depend on initial conditions is the growth rate A of 
the linear instability to be discussed in $4. 

We summarize the scenario for the 0 3 1 transition : (i) for 0 < t < 20s the flow 
adjusts slowly from the stable equilibrium at Re = 650 to the unstable (approximate) 
equilibrium at Re = 700, and during this adjustment the angular momentum 
gradient is not steep enough to cause a linear instability (note that in $4 we show that 
the linear instability is indeed due to an adverse angular momentum gradient). (ii) 
At t z 20s the linear instability starts to grow as eAt. Approximately linear growth 
continues until the local Re exceeds O(10) where the local Re is based on the gap 
width, v, and the velocity of the antisymmetric eigenmode (which is approximately 
the value of u, a t  the latitude of the stagnation point). (iii) When the local 
Re 2 0(10), a recirculation vortex begins to form at the stagnation point. (iv) The 
recirculation vortex grows rapidly and nonlinearly to its final equilibrium strength 
and size in an advective timescale. (v) After this rapid growth the flow changes 
extremely slowly as it re-establishes reflection symmetry about the equator. The 
physics responsible for the long timescale associated with the decay of the 
antisymmetric part of the flow is discussed in $5. 

From figure 10 (and figure 21 in $5) and from the assumption that the linear 
instability does not begin to grow until time t = 20x, we see that the lapse of time 
between the start of linear instability and the time that the local Re of the eigenmode 
is O( 10) (i.e. a dimensionless radial velocity of 0.0794), is approximately 6 0 ~ .  A linear 
growth rate of A = 0.071 (see figure 16 in $4) implies that the initial amplitude of our 
unstable velocity eigenmode (in dimensionless units) is approximately lo-'. This 
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FIGURE 12. T~ and -TJ  plotted &s in figure 6 for the 0 + I transition. The length of time between 
t = 0 and the sudden change in T~ and ( T ~  -7,)  at t = 70x is a function of the initial amplitude of 
the unstable eigenmode. 

amplitude is consistent with the numerical round-off and aliasing errors produced by 
our code. 

Several of the laboratory observations (or lack thereof) of the 0-1 and 0+2 
transitions can be explained by the slow timescale of the linear instability. Wimmer's 
experimental findings are consistent with our numerical result : if one increases the 
Reynolds number by accelerating the inner sphere from the rest slowly (of the order 
of, or longer than the timescale associated with the linear instability) then there must 
be a O +  1 transition. 

The 0 + 2 transition occurs when the acceleration is quick but sufficiently smooth 
so that the flow is allowed to pass through a series of quasi-equilibria that closely 
follow the 0- and 2-vortex equilibrium curve. The passage through the unstable 
portion a t  651 < Re < 775 must be fast with respect to the growth time of the linear 
instability. 

The spontaneous symmetry breaking in the O +  1 transition is shown clearly in 
figure 11. The radial outflow boundary at the equator in the 0-vortex flow appears 
in figure 11 as the outward bulge at  the equator at t = 70x.  The bulge moves 
downward across the equator throughout the transition, and at t = 120x represents 
the outflow boundary between the recirculation Taylor vortex and the large basic 
vortex of the southern hemisphere. The radial inflow at 0.8a north of the equator is 
initially due to the flow in the pinch on the equatorial side of the stagnation point. 
During the transition it moves southward and it eventually becomes the radial inflow 
boundary at the equator. The maximum radial velocity in figure 11 is 0.066. 

Figure 12(a,b) shows an initial bump and overshoot in 71 and (71-72). These 
features are characteristics of the abrupt increase in Re at t = 0 and are not 
associated with the O +  1 transition. The long flat features of 71 and (71-72) a t  
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15n < t < 70n are the slow settling of the flow into the unstable 0-vortex equilibrium 
at Re = 700. The abrupt change near t = 80n happens on the timescale of the linear 
instability, l / A  x 5n (see figure 16). During this time the inner torque increases 
monotonically to nearly its final value, and the recirculation vortex forms. The 
torque is relatively insensitive to the re-establishment of reflection-symmetry at  
t > 9On ; angular momentum is transported by the vortices regardless of their 
position relative to the equator. Figure 12 (b)  can be interpreted as showing that the 
angular momentum flux carried by the recirculation vortex grows initially at  the 
outer boundary (i.e. for 70n< t < 82n, 72 > 7J and a t  later times, t > 82n, the 
angular momentum flux a t  the inner catches up to the flux at the outer boundary. 

3.4. 2 + 1 transition 
The 2- to 1-vortex transition is also asymmetric with respect to the equator. This 
transition has not received nearly as much attention as the O - t  1 transition, and in 
fact, has never been mentioned in either the published numerical or experimental 
literature. (Experimental evidence for its existence has been communicated to us 
privately by K. Buhler 1983.) The absence of the 2+ 1 vortex transition in the 
numerical literature can be explained easily by its asymmetry. The lack of mention 
in the experimental literature could be due to the fact that this transition occurs only 
in a small range of Reynolds number 740 < Re < 775, and like the O+ 1 transition, 
slow changes in the Re are needed for this transition to occur (see below). 

We speculate, in the same way as we did for the O +  1 vortex transition, how a 
2 -t 1 transition could take place symmetrically. It would not suffice for the two small 
recirculating Taylor vortices in figure 13 (a)  at k (r from the equator to disappear, 
since not only would this cause vortices of the same sign to abut each other but also 
the resulting 1-vortex flow would have a radial outflow boundary at  the equator 
which would be incorrect. Alternatively, a pair of Taylor vortices could be destroyed 
at the equator. This type of transition is allowed kinematically and results in a 1- 
vortex flow with the correct appearance. However, we note that whenever we have 
seen a Taylor-vortex pair disappear in our numerical experiments, the two vortices 
are recirculating and are joined together a t  an inflow boundary (e.g. the 1+0 
transition in figure 7).  To produce the 2+ 1 transition would require destroying a 
pair of strong non-recirculating vortices connected at an outflow boundary. 

Figure 13 shows the time evolution of the meridional velocity during our 
numerically simulated 2 -t 1 transition. The transition is produced by starting with 
the steady-state 2-vortex equilibrium at Re = 800. A t  t = 0 the viscosity is reduced 
so that Re = 750, and the 2-vortex flow is linearly unstable. The 2 -+ 1 transition is 
similar in many ways to the 0+1 transition. From t = 0 to t = 100n the flow slowly 
evolves into the approximate unstable 2-vortex equilibrium a t  Re = 750 (figure 13a). 
(Starting the flow a t  t = 1OOn with the exact unstable Re = 750 equilibrium does not 
qualitatively change our results.) The recirculating Taylor vortices in figure 13 (a)  are 
narrow ; their circumferential extent is less than f of the gap width. 

As the instability progresses, the recirculating Taylor vortex in the southern 
hemisphere shrinks, and the equatorial outflow boundary moves southward (figure 
13b). Unlike those in steady-state equilibria, the vortex boundaries in figure 13 (b )  are 
not straight radial lines. At t = 116n the southern recirculation vortex disappears 
and leaves two recirculating wedges. Between the wedges a stagnation point forms 
(figure 13d) allowing the fluid that was in the original southern large basic and non- 
recirculating Taylor vortices to merge together to form a single pinched large basic 
vortex. The recirculation vortex in the northern hemisphere grows in size and 
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FIQURE 13. Meridional flow plotted aa in figure 4 during the 2+ 1 transition. The flows in between 
the two solid streamlines at 8 = &t in ( b )  and the two wedges at the same latitude in (c) are 
recirculating. Additional contours would show that the flow in these regions would consist of solid 
closed contours. 

strength (figure 13 e) and moves southward where its southern boundary eventually 
forms the radial outflow of the equator (figure 13f). Equatorial symmetry is re- 
established by t = 180x. 

The radial velocity profiles in figure 14 are similar to those in figure 11. The radial 
inflows and outflows slide southward during the transition, causing the equator to 
change from an outflow to an inflow boundary. One reason that the 2 +- 1 transition 
appears so smooth and continuous in figure 14 is that the profiles of u,(r = P ,  8 ,  t )  
cannot distinguish between flows that are pinched with stagnation points and flows 
with recirculating Taylor vortices. The maximum value of u, in figure 14 is 0.078. 

Figure 15(a) shows the torque at the inner boundary adjust initially to the 
appropriate value for the 2-vortex unstable equilibrium at Re = 750. The torque 
changes abruptly from t k: 120x to 125tc. Note that 511 is the approximate timescale 
of the linear instability (see $4). The fact that the abrupt change occurs at t k: 120x 
is due only to the initial amplitude of the linearly unstable eigenmode. If the 
amplitude were greater, the transition would occur earlier. 
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FIGURE 14. Radial velocity plotted aa in figure 5 for the 2 + 1 transition. The maximum 
velocity shown in 0.078. 
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FIGURE 15. T~ and ( T ~  - T ~ )  plotted aa in figure 6 for the 2-t 1 transition. The length of time between 
t = 0 and t = 1 2 0 ~  where there is a sudden change in T~ and ( ~ ~ - 7 ~ )  is a function of the initial 
amplitude of the unstable eigenmode. 

Figure 15(a) shows that the abrupt changes in T~ do not begin until after t = 120x 
which indicates that the angular momentum flux is not greatly affected by the 
disappearance of the recirculating vortex in the southern hemisphere at t = 116x; 
recirculation vortices and pinches with stagnation points carry roughly the same 
angular momentum flux. It is the abrupt increase in size and strength of the 
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recirculation vortex of the northern hemisphere a t  t = 120x that causes 71 to 
increase. The t,cmporal evolution for (71-72) shown in figure 15(b )  is similar to the 
curve in figure 12(b). The initial rapid adjustment a t  t = 0 has opposite signs in these 
two figures bccause the transition in figure 12(b) is caused by decreasing Re. The 
downward dip in (71 -72)  at t = 124x can be interpreted as the northern recirculation 
vortex increasing in strength first at the outer boundary and then later catching up 
a t  the inner boundary. 

4. Linear eigenmodes 
Using the numerical methods described in Part 1 we have computed the unstable 

0- and 2-vortex equilibria and calculated the eigenmodes to which they are unstable 
and the corresponding eigenvalues. We have found that the 0- and 2-vortex 
equilibrium curve shown in figure 1 is unstable for 651 < Re < 775 to eigenmodes 
that are antireflection-symmetric with respect to the equator and that the eigenvalue 
of the most unstable or least stable eigenmode is always real. The neutral stability 
that we find at Re = 652 agrees with Wimmer’s experimental results (private 
communication, 1983) to three significant digits and that a t  Re = 775 agrees with 
Buhler’s experiments (private communication, 1983). Our numerical results show 
that the entire 0- and 2-vortex equilibrium curve is stable with respect to reflection- 
symmetric eigenmodes for all Re < 1300 (the extent of our numerical experiments). 

Since the NavierStokes equation, the boundary conditions for spherical Couette 
flow, and the nonlinear 0- and 2-vortex equilibria are all reflection-symmetric about 
the equator, the linear eigenmodes of these equilibria must have a definite parity and 
be either reflection- or antireflection-symmetric. Asymmetric eigenvectors (of neither 
parity) must be the sum of two (or more) eigenvectors of opposite parity and can 
occur only if there is an accidental degeneracy of two (or more) eigenvalues. 
Yakushin, in his study of the Stokes flow with narrow-gap widths found that the 
eigenfunctions occur as nearly degenerate pairs, with the growth rates of the 
antisymmetric and symmetric eigenmodes intertwined (1969). Blennerhassett & Hall 
found the same result for low Re Taylor-Couette flow with finite cylinders (1979). 

Our numerically computed eigenvalue h of the most unstable eigenmode of the 0- 
and 2-vortex equilibria as a function of Re is shown in figure 16 as the heavy solid 
curve. Because the curve is continuous at Re = 740 (where the 0 + 2  transition 
defined by the formation of recirculation vortices occurs), we conclude that the 
eigenmodes responsible for the 0 -+ 1 and the 2 -+ 1 transition are part of the same 
family (see below). The growth rate h reaches its maximum value at Re = 735 (not 
Re = 740). Re = 735 corresponds to the minimum of the torque along the 0- and 2- 
vortex equilibrium shown in figure 1. From this, we conjecture that the linear 
instability is due to the inability of the 0- and 2-vortex flows to effectively transport 
angular momentum. 

One way of determining whether the linear instability of the O-vortex flow is due 
to the adverse angular momentum gradient of the azimuthal flow or due to the 
stagnation point of the meridional flow is to consider the linear instabilities of Stokes 
flow which is purely azimuthal with no meridional circulation. The Stokes flow, u* 
is not an equilibrium solution, but nonetheless one can still formally define a 
d ( r , O , t )  such that 

1 _ -  - -u* V U f - U f  -u* --PI+- v=uf. 
at Re (4.1) 
auf 
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FIGURE 16. The growth rate A of the most unstable eigenmode of -, the 0- and 2-vortex 
equilibria, and of - - -, the Stokes flow. The dashed curve increases monotonically with Re, but the 
solid curve turns over at Re = 735 as the equilibrium flow become more efficient at transporting 
angular momentum away from the inner sphere. 

The growth rates of the most unstable (or least stable) eigenmodes of the Stokes 
flow are shown in figure 16 as the dashed line. The dashed and solid curves are very 
close for Re < 700. In  particular, the Re for neutral stability is 648 for Stokes flow 
and 652 for the true 0-vortex flow. We note that for Re < 700 the azimuthal 
component of the 0-vortex flow's and the Stokes flow's velocity are not very 
different, but that for Re > 700 the two velocities differ substantially due to the 
transport of angular momentum by the meridional flow (see Part 1). The good 
agreement between the solid and dashed curves for Re < 700 indicates that linear 
stability depends much more strongly on the azimuthal than on the meridional flow. 
The meridional part of the basic flow with its stagnation points and pinches does not 
play an important role in the onset of instability ; the linear instability of spherical 
Couette flow is driven by an adverse angular momentum gradient as is the linear 
instability of circular Couette flow in infinite cylinders. 

Because the Stokes flow has no meridional transport of angular momentum, the 
adverse angular momentum gradient continues to grow with Re and the growth rate 
shown by the dashed curve in figure 16 increases monotonically with Re. The 
neutrally stable point of the true flow at Re = 775 cannot be predicted by the study 
of eigenvalues of Stokes flow (cf. Yakushin 1969). 

The similarities and differences between the eigenmodes of the Stokes and of the 
0- and 2-vortex flows is best shown in the plots of the eigenvectors. Figure 17(a-c) 
shows the meridional streamfunction, the contours of constant azimuthal angular 
velocity, and the energy spectrum of the unstable eigenvector of Stokes flow at 
Re = 700. The eigenvector is composed of alternating Taylor vortices with the vortex 
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boundaries (inflow or outflow) appearing as solid radial streamlines in figure 17 (a) .  
The velocity is manifestly antisymmetric - there is flow across the equator which is 
forbidden in symmetric flows. The surfaces of constant azimuthal angular velocity 
are shown in figure 7 (b). Despite the similarity between figures 17 (a )  and 17 ( b )  they 
represent entirely different aspects of the flow. In  figure 17(a) the meridional 
component of the velocity is along the closed contours. In  figure 17 (b) the azimuthal 
flow is perpendicular to the closed contours - into the page a t  the broken curves and 
outward from the page at the solid curves. Surfaces of constant angular velocity in 
Stokes flow are independent of 8. The azimuthal velocity of the eigenmode alternates 
in direction as a function of 8 and has its amplitude maxima near the Taylor-vortex 
boundaries shown in figure 17 (a ) .  The solid straight radial lines in figure 17 (b) are the 
contours of zero azimuthal velocity and are near the Taylor-vortex centres. In  parts 
of the flow not shown, i.e. 8 > in and 8 < in the Taylor-vortex structure continues 
with the same periodicity but becomes progressively weaker as the poles are 
approached. 

The energy spectrum of the eigenfunction in figure 17 (c)  is plotted as a function of 
vector spherical harmonic number L as in Part 1. For an antisymmetric velocity the 
meridional velocity spectrum exists only at odd values of L and the azimuthal 
spectrum at even values and vice versa for reflection-symmetric flows. The 
continuous curves, (solid for azimuthal and dashed for meridional) in figure 17 ( c )  are 
drawn through the 32f 1 points of the discrete spectra. The spectra show that 
eigenmode of the Stokes flow have more energy in their azimuthal than in their 
meridional components. This is also a property of the linear eigenmodes that produce 
the Taylor vortices in circular Couette flow in infinite cylinders (Marcus 1984). The 
maximum amplitude in the spectrum is at L = 24 and corresponds to A8 cx O.O83n, 
where A = 2n/L. The angular size corresponds to the latitudinal extent of a Taylor- 
vortex pair (which is somewhat less than twice the gap width) shown in figure 
17 (a). 

The unstable eigenmodes of the O-vortex flow at Re = 700 and of the 2-vortex flow 
at 750 are shown in figures 18 and 19 respectively. (For the meridional and azimuthal 
velocities and energy spectra of 0- and 2-vortex equilibrium flows see Part 1.) The 
eigenfunctions in figures 18 and 19 are similar to each other and to the eigenfunction 
of the Stokes flow in figure 17, confirming our conjecture that the instabilities of the 
0- and 2-vortex flows are both due to tJhe azimuthal flow. Figures 18 and 19 show that 
the instability of 0- and 2-vortex flow is more concentrated at the equator, than it 
is for the Stokes flow. 

The contours of zero azimuthal velocity of the eigenfunction of the Stokes flow 
shown in figure 17 (b) are straight radial lines. In  the eigenfunctions of 0- and 2-vortex 
flows these contours become very distorted as shown in figures 18(b) and 19(b). 
However, these curved contours of the eigenfunction are nearly perpendicular to the 
contours of constant azimuthal angular velocity of the unstable equilibria. This 
property is illustrated in figure 20(a-c) where we have plotted the contours of 
constant angular velocity (thin solid lines) of the Stokes (a), 0-vortex (b), and 2- 
vortex (c) flows. Superposed on these figures are the contours of zero azimuthal 
velocity of their respective unstable eigenfunctions (thick solid curves). Note that 
although figures 20 (b) and 20 (c) represent the 0- and 2-vortex flows respectively, the 
azimuthal velocities of the two flows are qualitatively similar. 

We conclude this section by noting that the knowledge of the linearly unstable 
eigenfunctions of 0- or 2-vortex flows sheds no light at  all on the nonlinear evolution 
of the flow initiated by these instabilities or on the flow’s eventual steady-state 
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(a) \ 

In - 
E* 

FIGURE 19. aa in figure 17. 
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R, 
FIQURE 20. The constant contours of the azimuthal angular velocity (thin solid curves) of 
equilibrium (a) Stokes flow at Re = 700, (a) O-vortex flow at Re = 700, and (c) 2-vortex flow at 
Re = 750, superposed with the contours of zero azimuthal velocity of the corresponding unstable 
eigenmodes (thick solid curves). 

destination. To determine the final equilibria it is necessary to have knowledge of 
global information such as the bifurcation diagram in figure 1. Using figure 1 we 
know that a linear instability of the 0- and 2-vortex flows at 651 < Re < 775 must 
result eventually in the l-vortex flow (provided there are no stable equilibria missing 
from the figure). The drawback of a linear stability analysis becomes evident when 
we compare our results to the stability analyses of Yakushin (1969), Munson & 
Joseph (1971) and Munson & Menguturk (1975). These authors found that the 
eigenvectors with the lowest critical Reynolds number were antisymmetric (like our 
eigenmodes). They therefore suggested that the final equilibrium steady states would 
be asymmetric, in contradiction to the observed reflection-symmetric l-vortex 
flow. 

5. Energy transfer 
One way of studying the 0 -+ 1 or 2 + 1 transitions when they become nonlinear is 

to examine the energy transfer among different modes. Considering the fact that 
these transitions begin and end with reflection-symmetric flows, yet are initiated by 
antireflection-symmetric eigenmodes, it is most useful to examine the energy transfer 
between the reflection-symmetric and antireflection-symmetric components of the 
velocity. We separate the Navier-Stokes equation into two components : 

where 

3 FLM 185 
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and where the A subscript means antisymmetric and R means reflection-symmetric 
component. Taking the dot products of (5.1) and (5.2) with their respective velocities 
and integrating over the entire domain of the fluid, we obtain 

-ET - DR + EIN, aER - -- 
at 

-- - ET-  D,, aE, 
at 

(5.4) 

where E ,  and E ,  are the respective components of the kinetic energy of the fluid, 
E,, is the (necessarily reflection-symmetric) energy input rate due to the external 
torque driving the inner rotating sphere 

zIN = T~ (in dimensionless units), (5.6) 

D, is the symmetric component of the viscous dissipation 

D 

D, is the antisymmetric viscous dissipation 

D =- ( V X U , ) ~ ~ ~ Z > O ,  
A - Re ' I  

and ET is the energy transfer function 

8, UA [UR X (v X U A ) ]  d32, s 

(5.7) 

(5.9) 

and measures the rate of nonlinear energy transfer from the symmetric to the 
antisymmetric part of the flow. Note that the total energy E is E,+E, because the 
cross-terms u,*u, and uR*uA vanish upon integration over the volume. 

A number of properties of spherical Couette becomes apparent from (5.1)-(5.9). 
For example : (i) Although there can be symmetric and asymmetric equilibria, there 
can be no purely antisymmetric equilibria since (5.5) shows that with ET = 0 it would 
be viscously dissipated. (ii) In an initial-value experiment (either in the laboratory 
or with the computer) a purely reflection-symmetric flow remains so indefinitely 
unless an antisymmetric perturbation is explicitly introduced, since (5.4) shows that 
the energy source for EA is ET, which is proportional to u,. 

Figure 21 shows the symmetric (long-dashed curve), the antisymmetric (short- 
dashed curve), and the total (solid curve) energy as a function of time during the 
0 --f 1 transition described in $3. The scale for the symmetric and total energy is given 
on the left-hand axis in units of the energy of the Stokes flow at Re = 700. The scale 
for the antisymmetric energy (which is much smaller than the symmetric energy) is 
on the right axis. The units between tick marks on the two axes are the same, but 
the origin on the right has been shifted so that all of the energies can be plotted on 
the same figure and so that the sum of the short- and long-dashed curves are equal 
to the solid curve. 

The antisymmetric energy is initially zero, grows to a maximum value of 0.0105, 
and decreases again to zero. The symmetric energy decreases sharply, then increases. 
Its final l-vortex state value is 0.999, less than the initial 2-vortex state value of 
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1.011. The total energy decreases monotonically from 1.011 to 0.999. The increase in 
antisymmetric energy a t  the beginning of the transition mirrors the decrease in 
symmetric energy and vice versa at the end of the transition. This suggests the 
hypothesis that : (i) energy is transferred from the symmetric to the antisymmetric 
modes a t  onset of the transition and (ii) from the antisymmetric to the symmetric 
modes as symmetry is re-established. This hypothesis is false. We show this by 
plotting 8, in figure 22. We see that the first part of our hypothesis was correct : For 
0 < t < 86x when E, > 0 figure 22 shows that E, > 0. This result is not surprising 
since the only energy source available to the antisymmetric flow is 8,. However, the 
second part of our hypothesis is incorrect because when E ,  < 0, figure 22 shows that 
ET is still greater than zero. In fact, 8, is always positive, and energy is never 
transferred from the antisymmetric to the symmetric part of the flow throughout 
the entire 0-t 1 transition (despite the fact that 8, is allowed kinematically to be 
negative). 

How then does the antisymmetric velocity decrease 1 From (5.5), we see that 8, 
is the difference between ET and D,. Throughout the transition, ET x D,  (the curves 
could not be distinguished from each other if both were plotted in figure 22). E ,  is 
always the difference of two much larger numbers: 

IE,I = IET- D,I < 8, z D,. (5.10) 

During the transition, the uR and u, velocities change such that ET becomes less than 
D,. At the beginning of the transition, E ,  grows because 8, is large and is slightly 
greater than D,; at the end E, decays because &, is large but is slightly less than 

3-2 
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FIGURE 22. ET, the nonlinear transfer rate of energy from the symmetric to the antisymmetric 
part of velocity during the 0 + 1 transition shown in figure 21. 

D,. Figure 22 also explains the slow re-establishment of reflection-symmetry at the 
enc of the 0-t 1 transition; the antisymmetric component of the velocity decays on 
a timescale of order EA/IET- D,I which is much longer than EJD, ,  (i.e. the viscous 
timescale). 

6. Discussion 
In this paper we have examined the allowable transitions among the 0-, 1-, and 2- 

vortex spherical Couette flows. The principle methods for studying the transitions 
are (i) the calculation of the bifurcation diagrams of the steady-state equilibria, (ii) 
the computation of the most unstable or least stable linear eigenmodes of the steady- 
state flows, and (iii) the numerical calculation of the velocity during the transitions 
with the initial-value code. We believe that this paper is the first to calculate the 
0 + 1 and the 2 + 1 transitions and also the first to present the details of the velocity 
field during the 1 + 0 and 0 + 2 transitions. 

Our initial-value experiments provide us with a set of empirical rules that govern 
transitions among spherical Couette flows. These rules appear also be be obeyed in 
transitions among Taylor-Couette flows in finite cylinders (Mullin 1982). The rules 
are : 

(i) A single Taylor vortex can form a t  a stagnation point in a vortex with a pinch. 
When it appears initially it has zero circumferential (or, for cylindrical flows, axial) 
length and has a circulation opposite to that of the flow in the original vortex. The 
newly created Taylor vortex divides the flow in the original vortex into two pieces, 
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each piece becoming a vortex with circulation in the same direction as the original 
vortex. In  this process one vortex with a stagnation point becomes transformed into 
three abutting vortices with circulations that alternate in sign. 

(ii) The reverse of rule (i) : A single Taylor vortex between two other vortices can 
decrease its circumferential (or axial) length to zero and disappear, being replaced by 
a pinch or stagnation point. 

(iii) A pair of abutting Taylor vortices separated by a radial inflow boundary can 
shrink their circumferential (or axial) length to zero, disappear, leaving a radial 
outflow boundary between two other vortices. 

The 0 + 2 transition is an example of the first rule with the process described in (i) 
occurring simultaneously in both hemispheres. 

The 0 + 1 transition uses rule (i) but only in one hemisphere and is therefore 
asymmetric. The 2 + 1 transition is also asymmetric and uses rule (ii) in just one 
hemisphere. The 1 + O  transition uses rule (iii) at the equator so that the 1 + O  
transition is also symmetric. Ignoring these three rules we could produce scenarios 
for several never-observed transitions. For example, we could produce a symmetric 
0 + 1 transition by creating a pair of Taylor vortices at the outflow radial boundary 
at  the equator. 

We know of no theoretical way of deriving our three rules, although the physics 
described by these rules is not very surprising. For example, rule (i) just describes the 
formation of recirculation vortices at  stagnation points. This is a very common 
hydrodynamical process when the local Re of a stagnation point is of order 10 (cf. 
Taneda 1979). What is surprising and hard to understand from a theorist’s point of 
view is the large number of ways that vortices could form that are not included in 
our set of rules. For example, there is no mathematical proof that the axisymmetric 
flow along an unstable outflow boundary cannot form a pair of axisymmetric Taylor 
vortices. However, we note that it has been observed numerically that an 
axisymmetric cylindrical TaylorXouette flow with a locally unstable outflow 
boundary produces non-axisymmetric waves rather than a new pair of axisymmetric 
Taylor vortices (Marcus 1984). Of course, we must also leave open the possibility that 
more rules will have to be added to our set when new transitions among cylindrical 
or spherical Couette flows are observed or simulated in the future. 

Our bifurcation diagrams along with the linear eigenmode calculations allow us to 
explain why the laboratory experiments of Wimmer (1976) and K. Buhler (private 
communication, 1983) can only produce the 0 + 2  (or 2+0) transition when the 
acceleration (or deceleration) of the inner sphere is rapid and always produces the 
O +  1 (or the 2+ 1) transition when the acceleration (or deceleration) is slow. Our 
explanation, given in $3, is based on the fact that the O-and 2-vortex flows lie 
along the same equilibrium curve and the l-vortex equilibrium is distinct. The 0 + 1 
and 2 -t 1 transitions are slow, and the Reynolds number regime where the 0- and 
2-vortex flows are unstable is very small. With fast accelerations of the inner sphere, 
it is possible for experimentalists to pass through the unstable part of the 0- and 
2-vortex equilibrium curve before the instability leading to the l-vortex flow has 
a chance to act. The agreement between our predictions of the critical Reynolds 
numbers for transition and the laboratory experiments is extremely good. 

Our linear calculations, including the stability analysis of the Stokes flow, provide 
us with strong evidence that the instabilities that cause the O - t l  and 2 + l  
transitions are due to the same physical mechanisms, and that it is the centrifugal 
instability of the azimuthal component of the velocity and not the meridional flow 
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associated with the stagnation points and recirculation vortices that initially cause 
the instability. 

One example of a finding of our study that uses all of our numerical tools is our 
prediction of the timescales associated with transition. The 0 + 1 transition proceeds 
slowly at first because the linearly unstable eigenmode must grow from its small 
initial amplitude (due to the antisymmetric noise present in both the laboratory and 
the numerical experiments) to an amplitude sufficiently large so that the 
characteristic Re of the eigenmode is greater than unity and nonlinear phenomena 
can occur. The time associated with this part of the transition is easily calculated 
with our eigenvalue solver. The nonlinear part of the transition where the stagnation 
point forms the recirculation vortex is best examined with our initial-value solver. 
Our analysis in $5  of how energy is transferred out of the antisymmetric composition 
of the velocity explains the long timescale for the re-establishment of the reflection- 
symmetry a t  the end of the transition. 

The breaking of symmetry (about the equatorial plane) is of some importance in 
this study, so it would be useful to have a direct comparison of the numerically 
predicted symmetry breaking and a laboratory measurement. Torque measurements 
(which are functions only of the reflection-symmetric component of the velocity) 
cannot be used. Perhaps the easiest laboratory observation would be to measure the 
correlation of the velocity between two points on opposite sides of the equator. The 
positions of the two velocity probes can be adjusted by requiring that the two 
velocities be equal for steady-state (reflection-symmetric) flows. The anti-symmetric 
component of the velocity during transition can then be measured directly and 
compared with numerical calculations. 
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