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Axisymmetric spherical Couette flow between two concentric differentially rotating 
spheres is computed numerically as an initial-value problem. The time-independent 
spherical Couette flows with zero, one and two Taylor vortices computed in our 
simulations are found to be reflection-symmetric about the equator despite the fact 
that our pseudospectral numerical method did not impose these properties. Our 
solutions are examined for self-consistency, compared with other numerical 
calculations, and tested against laboratory experiments. At present, the most precise 
laboratory measurements are those that measure Taylor-vortex size as a function of 
Reynolds number, and our agreement with these results is within a few per cent. We 
analyse our flows by plotting their meridional circulations, azimuthal angular 
velocities, and energy spectra. At  Reynolds numbers just less than the critical value 
for the onset of Taylor vortices, we find that pinches develop in the flow in which the 
meridional velocity redistributes the angular momentum. Taylor vortices are easily 
differentiated from pinches because the fluid in a Taylor vortex is isolated from the 
rest of the fluid by a streamline that extends from the inner to the outer sphere, 
whereas the fluid in a pinch mixes with the rest of the flow. 

1. Introduction 
1.1. Motivation 

In this paper we examine numerically the steady-state, axisymmetric incompressible 
flow between two concentrically rotating spheres. In many ways, this ‘spherical 
Couette ’ flow resembles the Taylor-Couette flow between differentially rotating 
cylinders, especially in the equatorial regions of the sphere where the centrifugal 
force on the flow is greatest. For example, spherical Couette flow, like Taylor-Couette 
flow has a critical Reynolds number, Re,, such that for Re 2 Re, Taylor vortices are 
formed. However, the number of vortices depends on the gap width between the 
inner and outer spheres, though the vortices are always confined to the equatorial 
region. (For very wide gaps they may not occur at all.) There are other qualitative 
differences between rotating flows in cylinders and spheres due to the strong Ekman 
pumping in the latter at the poles. In  fact, near the poles spherical Couette flow looks 
more similar to the flow between two differentially rotating, parallel plates than it 
does to Taylor-Couette flow. We shall show that spherical Couette flow has a large 
number of allowable states and an intriguing variety of transitions among them. 

Although spherical Couette flow is more relevant than Taylor-Couette flow to 
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most astrophysical, geophysical, and engineering applications, it  has been studied 
less because it is more difficult to treat analytically and because precision laboratory 
experiments in rotating spheres (where the inner sphere must be suspended and 
prevented from wobbling by fine wires) are much more unwieldly than the 
experiments with rotating cylinders. Yet, spherical Couette flow is no more difficult 
to simulate numerically than is Taylor-Couette flow in an ‘infinitely long cylinder 
(i.e. in a flow where axial periodicity is imposed arbitrarily). In fact, it is easier to 
simulate spherical Couette flow than to simulate Taylor-Couette flow in finite-length 
cylinders due to the discontinuity in the boundary conditions of the latter flow at the 
axial end plates. Taylor-Couette flow in finite cylinders has become of increasing 
interest recently because it has been shown that the bifurcation/stability diagrams 
and pattern selection (or axial wavelength selection) mechanisms are different in 
infinite and in finite-length geometries (Benjamin 1978a, b ;  Benjamin & Mullin 1981, 
1982; Mullin 1982; Cliffe 1983). In many respects, spherical Couette flow, with its 
finite boundaries in all directions, more closely resembles Taylor-Couette experi- 
ments in finite-length cylinders than do the studies of infinite-length Taylor-Couette 
flows. 

In this study of spherical Couette flow, we limit ourselves to the case where the 
outer sphere is held stationary. For this flow, there are only two control parameters 
that describe the experiments : a dimensionless gap width between the spheres 
(T = (R , -R , ) /R ,  and a Reynolds number Re = (RiO,) /v ,  where R,  and R,  are the 
inner and outer radii, 0, is the angular velocity of the inner sphere, and v is the 
kinematic viscosity. Spherical Couette flow has fewer control parameters than 
cylindrical Taylor-Couette flow which has the additional control parameter of 
the dimensionless axial length of the cylinders, or with infinitely long cylinders, the 
imposed axial wavelength. 

In this paper we consider axisymmetric steady-state flows, and in Part 2 we 
consider the time-dependent transitions among the steady-state equilibria. It is the 
purpose of this paper to describe the physics and mathematics of the steady states. 
This provides the framework needed to understand the time-dependent transitions 
described in Part 2. 

A brief discussion of the laboratory observations and the previous numerical and 
analytic calculations of steady-state spherical Couette flows appears in $ 1. In $2 we 
review our method of calculation, highlighting its novel techniques, and in $3 we give 
evidence that it is an accurate numerical procedure by performing self-consistency 
tests and by comparing our calculations with other numerical computations and with 
laboratory experiments. The body of the paper focuses on the detailed descriptions 
of our simulations of three axisymmetric steady states which are characterized 
respectively by zero, one and two Taylor vortices on either side of the equatorial 
plane, which we shall refer to as the 0-, 1-  and 2-Taylor-vortex flows. Presentations 
of the two-dimensional projections of the velocity, bifurcation diagrams, torque 
calculations, energy spectra, and an analysis of the physically important features of 
these three flows are presented. Our conclusions are in $5. 

1.2. Review of previous laboratory results 
In this section we review the previous experimental studies of steady-state spherical 
Couette flow in ‘medium-gap’ geometries, i.e. those with 0.12 < u < 0.24. A 
thorough review of wide- and narrow-gap flows is given by Tuckerman (1983). We 
define the upper bound of the medium-gap regime at  u = 0.24 due to the laboratory 
observation of Belyaev, Monokhov & Yavorskaya (1978) that Taylor vortices never 
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form in flows with u > 0.24. Our definition of the lower bound of the medium-gap 
regime is predicated on Khlebutin's (1968) empirical finding that the torque- 
Reynolds number relationship of Taylor-vortex flows changes at cr = 0.12. In 
medium gaps, Khlebutin was the first to discover the existence of a critical Reynolds 
number, Re,, below which he could not visually detect Taylor vortices and above 
which he found vortices symmetrically arranged on both sides of the equator. 

Sawatzki & Zierep (1970), Zierep & Sawatzki (1970) and Wimmer (1976), 
examined the medium-gap regime in more detail by studying flows in several 
geometries including one with u = 0.18. They found that below Re,, the non- 
dimensional torque r exerted on the outer stationary sphere by the flow (with no 
Taylor vortices) is proportional to Re-'. (Here, and throughout the remainder of the 
paper, we non-dimensionalize by choosing the unit of length as R,, time as 52;' and 
mass as pR:, where p is the fluid density.) By contrast, for flows with Taylor vortices, 
they found that 7ccRe-t in good agreement with Khlebutin and also with the 
experiments of Munson & Menguturk (1975). 

Although Wimmer observed non-axisymmetric and time-dependent flows for 
u = 0.18, he did not find any axisymmetric equilibria that were not reflection- 
symmetric about the equator. Sawatzki & Zierep, along with Wimmer found that the 
spherical Couette flows are non-unique ; that is, the state of the flow not only depends 
on Re and u, but also on the past history of the flow. In particular, the final state is a 
function of the acceleration rate of the inner sphere to its final value (see Part 2). 

1.3. Analytics and numerics 
We note that very few calculations have been done in the medium-gap regime. This 
is due to the fact that unlike Taylor-Couette flow in infinite-length cylinders, the flow 
between two rotating spheres has no closed-form (subcritical), O-vortex solution 
about which to perform linear perturbation theory. Approximate 0-vortex solutions 
calculated with finite sums of Legendre polynomials converge fastest (Walton 1978) 
at small values of u (narrow-gap). The wide-gap regime can be studied in the limit 
R,+ 00, which corresponds to a sphere rotating in an unbounded fluid (Howarth 
1954). Most analytic or quasi-analytic calculations are therefore in the narrow- and 
wide-gap regimes (Munson & Joseph 1971 a, b ; Soward & Jones 1983). 

Because of the wealth of laboratory data available from the experiments of 
Wimmer, we restrict the numerical study in this paper to (T = 0.18. For the same 
reason, the flows with cr~O.18  have been studies as initial-value problems by 
Bonnet & Alziary de Roquefort (1976), Bartels (1982) and Dennis & Quartapelle 
(1984), and as a steady (not necessarily stable) solution of the time-independent 
equations by Schrauf (19834. Frequent comparisons between these numerical 
studies and ours will be made throughout this paper, but because these earlier papers 
were primarily concerned with stability or transitions we defer a more thorough 
discussion of them to Part 2. 

2. Method of solution 
2.1. Basic equatiom and Stokes solution 

The velocity, u, of a constant-density fluid between two concentric spheres at R, and 
R, where the outer one a t  R, is held fixed and the inner is rotated at angular velocity 
52, is determined by the NavierStokes equation: 

au 1 
-+(u.V) u = -VP+- VZu, 
at Re 
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the equation of incompressibility : 

v.u = 0, 

and the no-slip boundary conditions a t  the inner rotating and outer fixed radii: 

u(r = 1,0,#) = sinOic, u(r = 1+a,0,#) = 0. (2.3) 

We have non-dimensionalized equations (2.1)-(2.3) by the choice of units given in 

We shall refer to  the #-component of the velocity uc as the azimuthal flow and to  
the remaining components of the velocity as the meridional flow urn. The Stokes flow 
u* is the time-independent solution to  (2.1)-(2.3) in the limit Re+O: 

01. 

where a and /3 depend on a. Although the Stokes solution is exclusively azimuthal, 
it is a function of 0. Note that the angular velocity u*/r sin0 is not a function of 8 
so that each radial shell moves with a constant velocity. 

Due to  a fortuitous cancellation of the pressure gradient with the nonlinear terms, 
the Stokes solution to the equations of motion in cylindrical geometries (with infinite 
aspect ratio) happens also to  be a solution to the full nonlinear equations (i.e. circular 
Couette flow). It should not be surprising that fortuitous cancellations do not also 
occur in spherical geometries. In  spherical Couette flow a small meridional velocity 
is generated from the nonlinear interaction of the Stokes solution with itself via the 
advective terms in the Navier-Stokes equation. This causes the true flow to deviate 
from the Stokes solution a t  all finite Reynolds numbers. At very small Re, the flow 
is still mostly azimuthal and does not depart greatly from Stokes flow. The 
meridional motion which is driven by Ekman pumping, expels fluids out from the 
poles along the surface of the rotating inner sphere. The streamlines resulting from 
the superposition of the azimuthal and the weaker meridional motion are helices. 
Despite being three-dimensional, the flow remains axisymmetric (i.e. axisymmetric 
with swirl). 

2.2. Stream function formalism 

With the assumption of axisymmetry, (2.2) and the three components of (2.1) reduce 
to  two scalar equations. Using the stream function-vorticity formulation, we define 
a scalar function $(r ,  0, t )  such that the meridional flow is 

or equivalently, 

We also define a scalar function w(r,  0, r )  by 

uc ic = u* + Ute ,  (2.8) 

where u* is the Stokes flow defined in (2.4). The two scalar equations that we seek 
will contain a Laplacian-like operator, A2, which we define by 
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Note that the axisymmetry of + implies that the $ component of the vorticity is 

6+*V X [V x +4+]= -Az+. (2.10) 

In terms of Az, w ,  and +, we have the following equations for the 4 equations of the 
velocity and of the vorticity: 

aw 1 
- = &+-u x (V x u)+- A%, 
at Re 

1 
at Re 

-- 8A2+ --&+.VX[UXVXU]+-A'+. 

(2.11) 

(2.12) 

No-slip boundary conditions (2.3) along the spherical boundaries and the 
assumption of axisymmetry imply the following boundary conditions for w and 

u,+ = o  at 8 = 0 ,  8 =  K, (2.13) 

w , $ = O  a t r = 1 ,  r = l + c r ,  (2.14) 

IjT: 

_ -  a+ - 0 
ar 

at r = 1 ,  r =  l+c.  (2.15) 

2.3. Numerical representation 
We use the pseudospectral or collocation method in our calculations; functions are 
represented both in spectral space, as a finite series of basis functions and in physical 
space at grid points (Lanczos 1956). Derivatives are taken in spectral space, and 
multiplications are done in physical space ; in the appropriate spaces both operations 
are exact and inexpensive. The transforms between spectral and physical space are 
numerically cheap (but not exact due to aliasing and truncation) and are done by fast 
Fourier transforms. Each term in the spectral sum is a product of a basis function in 
6' and a basis function in r .  In the radial direction, we use Chebyshev polynomials, 
which are well known for their fast convergence properties and ability to resolve thin 
boundary layers (Gottlieb & Orszag 1977). In the 8-direction (0 < 8 < x )  we use sine 
functions. 

Because each sine term in the expansion satisfies the homogeneous 0 boundary 
conditions (2.13) exactly, the &expansion is a Galerkin expansion and no further 0 
boundary conditions need to be applied. In contrast, the radial Chebyshev 
polynomials do not satisfy the radial boundary conditions (equations (2.14) and 
(2.15)) and further constraints must be imposed on the radial expansions (see 
below). 

Note that we are not restricting the &expansion in a way such that the fluid 
velocity must be reflection-symmetric about the equator. That restriction is 
equivalent to including only the sine terms, sin (d), with n odd in the CZ expansion, 
and n even in the $ expansion. 

Previous authors (e.g. Bratukhin 1961 ; Yakushin 1969; Munson & Joseph 
1971 a, b ; Astaf eva, Vvedenskaya & Yavorskaya 1978) have used Legendre 
polynomials in the &direction because they are the natural basis functions for a 
spherical geometry, in that they are the eigenfunctions of the &part of the Laplacian. 
(The associated Legendre polynomials P i  are the eigenfunctions of the &part of the 
operator Az defined above.) We have chosen to expand w and + in Fourier series to 
take advantage of fast Fourier transforms. Although analogous fast Legendre 
transforms exist, at present they are not as fast as their Fourier counterparts. 
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Although A2 is not diagonal when written with a Fourier series basis, it is upper 
triangular, and therefore easy to invert (see below). 

Although convenient to work with, sine series have the disadvantage of equally 
spaced collocation points in 6, whereas spherical Couette flow has most of its spatial 
structure near the equator. Legendre series expansions are not an improvement since 
their collocation points are also nearly equally spaced in 6. It is probable that the 
most economical spatial representation of the flow would be to first map 6 from the 
interval 0 < 6 < i w  to the interval [0,1] and i w  < 6 < w to the interval [ - 1, 01. Then 
one would expand each of the two intervals as odd Chebyshev series (which are 
complete in the specified intervals, converge exponentially, and satisfy exactly the 
boundary conditions (2.13) and match the two series at the equator). With this 
method, most of the collocation points would be near the equator. 

To integrate in time, we use the Adams-Bashforth method with the nonlinear 
terms and the implicit Crank-Nicholson method with the viscous terms. The 
temporal fmite-difference equations that are produced from (2.1 1) and (2.12) are: 

and 

where 

At 
2Re 

C’W( t + At) = ~ ( t )  + iAt[3J,(t) - J,,,(t - At)] + - A 2 W ( t ) ,  

At 
2Re 

C2E(t + At) = E(t) + +At[3J&t) - J,(t - At)] +- A2t(t), 

(2.16) 

(2.17) 

A2@(t+At) = E(t+At), (2.18) 

J,,, C?+-[U x (V x u)], 
J, -C?+*{V[U x (V XU)]}. 

(2.19) 

(2.20) 

(2.21) 

2.4. Inversion of the elliptic equations 
The only difficulty in the numerical implementation of these equations is the 
inversion of the operators C2 and A2 that appear on the left-hand side of equations 
(2.16)-(2.18) while imposing the radial boundary conditions. We will show that this 
can be done using time and storage proportional to the number of sine modes in 
6. 

We begin by defining the operators A: and A; by 

a i  
sin 6 

A;=-- i a  
sin 6 a6 a6 sin26’ 

(2.22) 

(2.23) 

so that r2Az = A,2+A;. (2.24) 

Note that r2A2 is separable in r and 6, whereas A2 is not. Therefore it is easier to solve 
an elliptic equation of the form 

r2A2F(r, 6) = r2G(r, 6) .  (2.25) 

When the operator A$ is represented as a matrix (which acts upon vectors whose 
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elements are the sine Fourier components), it is upper triangular. The (j,k)th 
element of A; is 

A;(j,  k) = 1 sin (jfl) A; sin (kfl)  do. (2.26) 

The only non-zero elements of A; are 

- j ( j+1)  = b, for k = j, 
for k >j, (j+k) even. 

(2.27) A;(j,k) =( -2j ~ 6, 

Due to the Dirichlet boundary conditions that must be imposed at  r = 1 and at  
r = 1 + (T, A: is not an upper triangular matrix when represented in Chebyshev space. 
For this reason, and because of our continual need to multiply and divide by r2, we 
construct the A: matrix in physical r-space by fist computing its action on 
Chebyshev polynomials and then performing the similarity transform that takes the 
Chebyshev space into physical r-space. 

The full operator raA2 can be written as a block matrix in (physical-r)-(sine-8) 
space : 

(2.28) K2/ ... 
0 

0 0 
0 0 A:+b,l 0 ... 

with N, x N, blocks, where each block is of size N, x N,, where N, is the number of 
radial collocation points, where N, is the number of sine modes in the expansion, 
where / is the identity matrix, and where b, and 6, are defined by (2.27). The 
vector F(r, 0) on which this matrix operates is made up of the N ,  vectorsf,(r), with 
k = 1, . . . , N B  and each fk has length N,. Similarly, r2G(r, 0) is composed of vectors 

Because r2Aa is block upper triangular, (2.25) can be solved for F(r,8) by a 
submatrix back-solve. Using the representation of (2.28), the equation can be 
reduced to N ,  equations for thef, where each equation is an N ,  x N ,  matrix equation. 
The equation for fNE is 

( A : + b N E I ) f N E  = 8NE,  (2.29) 
the equation forfNE-l is 

(A:+bNE-l/)fNg-l = gNE-l, (2.30) 

the equation for f,, j < No-2 is 

g&)- 

(2.31) 

Because the values of 6, are independent of k, the sum in (2.31) need not be evaluated 
afresh for each value of j. The submatrix back-solve therefore requires o d y  O(N,) 
operations per radial collocation point rather than the usual O(N;) needed for an 
arbitrary upper triangular matrix. 

To solve (2.29)-(2.31) with homogeneous Dirichlet radial boundary conditions 
requires a trivial replacement of the top and bottom rows in each of the N, matrix 
equations. The operators, (A: + b k / )  (with appropriate replacements for the top and 
bottom rows) that must be inverted for each of the N ,  equations are identical up to 
the addition of a constant times 1. We therefore solve for fk by inverting each of the 
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(N, x N,) operators with the eigenvector method (Haidvogel & Zang 1979). The total 
work needed to solve for all of the f k  is O(N,Nf) and the total storage needed to 
implement the Zang-Haidvogel factorization is O(Nf + N,). 

An upper-triangular matrix is stable with respect to back-solving if i t  is diagonally 
dominant. The analogous requirement for our block upper-triangular matrix is that 
IA + akkl must be greater than lak,l for all eigenvalues A of A: and for all j =+ k. Our 
matrices in (2.28) satisfy this stability criterion. 

The C2 operator that appears in (2.16)-(2.17) is inverted in a manner analogous to 
the one used to invert A2. 

2.5. BQzLndary conditions 
When w(t+  At) and $(t + At) are determined from (2.16)-(2.18) by inverting the C2 
and A2 matrices (with the appropriate row substitutions) we are guaranteed that $ 
and w obey homogeneous Dirichlet boundary conditions in r .  However, the Neumann 
radial boundary condition on $ (equation (2.15)) is, in general, not satisfied. The 
easiest and computationally least expensive method of inverting C2 with the correct 
Neumann boundary conditions on $ is to use a Green function method, discussed in 
detail by Marcus ( 1 9 8 4 ~ ) .  A particular solution, cp(t+At) and $-,(t+At) is found at  
each timestep by inverting the C2 operator with arbitrary (in practice, with 
homogeneous Dirichlet) boundary conditions, and then inverting the A2 operator in 
equation (2.18) with the usual homogeneous Dirichlet boundary conditions. The 
homogenous solution $-,(t + At) is found easily at  each timestep : 

2 N e  

t-1 3-1 
$h( t+  At) = C C dtj(t + At) hij(r, O), (2.32) 

where d,(t+At) is a scalar equal to the j t h  sine Fourier component of a$-,/ar at 
r = ri = 1 + (i- 1) (r for i = 1,2.  The hi, are a set of linearly independent Green 
functions and are evaluated only once in a pre-processing step to satisfy 

C2A2htj(r, 6) = 0, (2.33) 

h,(r ,O) = 0 at r = r1 , r2 ,  (2.34) 

ah {;sinj8 at r = r t ,  
2 ( r ,  6) = 
ar at r = rgPi. 

(2.35) 

Evaluation of the homogeneous solution is inexpensive (since it requires calculating 
only two radial derivatives of kP for each sine Fourier mode or 0(2N,N,) operations 
and the accumulation of the sum in (2.32) which requires O(N,N:) operations). The 
2N, Green functions are quite sparse so that the total storage needed for the set of 
Green functions is $V;N, (real) words. This is by far the largest block of storage used 
in solving our initial-value problem. We typically set N, = 128 and N, = 16. 
Although we have not encountered storage problems, we note that i t  is possible to 
reduce the storage at the expense, as usual, of an increase in computational time. 
Rather than store the Green functions we can re-evaluate them at every timestep. 
This procedure requires two additional block matrix back-solves per timestep and 
increases the overall computer time by approximately 20 %. 

2.6. Eigenmodes and eigenvalues 
An original use we have made of our code is to use i t  to calculate the eigenmodes and 
eigenvalues of an equilibrium solution. Surprisingly, this task is readily accomplished 
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with only a slight modification of our initial-value code. We write the linearized 
Navier-Stokes equations, governing the evolution of a perturbation u to a given 
equilibrium U as 

1 (2.36) (&(U)) (u)  = - ( u . V )  u-(U.V)u-VP+-vv"u,  

v - u  = 0, Re I 
The initial-value equation, (2.36), is then solved in the same manner as we solved the 
fully nonlinear initial-value equations, (2.16)-(2.18), except that the operators J, 
and J, are replaced with J: and J; 

(2.37) 

J ; E - & $ - [ V X ( U X ( V X U ) ) + V X ( U X ( V X  U))]. (2.38) 

By evolving equation (2.36) forward in time, u converges to the most unstable 
eigenmode of &( U). To prevent u from growing too large or too small, we normalize 
u after each timestep, using the inner product 

J: &$* [( U X  (V x u)) + (U x (V x U ) ) ] ,  

(u;u,> = z w,(n, m) wv"(n, m) + $1(n,m) $An, 4 ,  (2.39) 

where w(n,m) and $(n,m) are the nth radial Chebyshev and mth azimuthal sine 
components of the w(r,  8, t)  and $(r,  8, t) corresponding to u(r, 8, t). 

Note that by finding the eigenvectors of &( U) with the power method (Dahlquist, 
Bjorck & Anderson, 1974, chapter 5) we would converge to the eigenvector of &( U) 
with the largest absolute eigenvalue. Generally this eigenmode is uninteresting 
because i t  corresponds to the highly dissipative, high spatial frequency mode whose 
eigenvalue is approximately equal to ( -  1/Re) (N,2 + N i ) .  The initial-value equation 
(2.36) is equivalent to the power method for determining the eigenmode u 
corresponding to the largest absolute eigenvalue of the operator exp [&( U) At] .  This 
eigenmode is, of course, the eigenmode of &(U) with the most positive (or least 
negative) eigenvalue. The eigenvalue h of the most unstable mode is determined from 
(2.36) by calculating the Rayleigh quotient 

n. m 

(2.40) 
1 

At 
h = -ln(u(t)-u(t+At)), 

with the inner product defined by (2.39). 

3. Tests of the numerical calculations 
We present two types of tests of our calculations. First, we demonstrate that the 

calculated solutions are self-consistent. Then we show that our computations agree 
with other numerical calculations and with laboratory experiments. 

3.1. Self-consistency tests 
We can easily test how well our calculated solutions obey angular-momentum and 
energy-balance equations. We adopt the notation that for any quantity F :  

AF = F(t") - F(t'), JF = F(t) dt. 
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JA-AA JE-hE 
t‘ t” AA JA-AA 1-1 AE JE-M 1-1 
0 4x -6 x - 1 x lo-” 2 x -4 x - 1 x 3 x 
4n 1 4 ~  3~ 10-4 - I X  10-10 5~ 10-7 9 x z x 10-6 3 x 10-4 

1 4 ~  54x - 3  x 10-5 - 3  x 10-10 9 x 10-6 - i x 10-3 -5 x 10-7 4 x 10-4 
54rr 160x - 6 ~ l O - ~  - 6 x  10-lo l x  - 1 x 10-1 4 x 3 x 10-6 

TABLE 1. Test of angular momentum and energy balance. During each time interval [t’,t”], the 
exact solution satisfies AA = J A  and hE = JE. Data is computed from a numerical experiment in 
which a 0- to 1-vortex transition occurs. 

The change in angular momentum, A,  

A = r sine uOd3x, (3.1) I 
of the fluid is due to the torque exerted on the fluid by the rotating inner sphere 
T~ minus the torque that fluid exerts on the stationary outer sphere, T~ 

and where the surface element ds, is evaluated at r,. (For a steady state, 7, = T~ 

which we denote by 7 . )  We have calculated the ~ ~ ( t )  at every timestep, and integrated 
them from time t’ to t” to @At2) accuracy. The quantity s [ T ~ - T ~ ]  should be equal [to 
O(At)’] to AA, where AA is computed directly by subtracting the angular momenta 
of our numerically computed solutions at  time t” and t’. We have found numerically 
that (AA -JA) and the error in A itself are both proportional to (At) ,  (as they should 
be for a code that is second-order accurate in time). In addition, we have found that 
the fractional error (AA - J A ) / U  is small. It is a more stringent test of our code if 
we evaluate the fractional error when the velocity field changes a great deal between 
time t’ and t”. In table 1 we present AA, ( U - S A ) ,  and the fractional error for 
several pairs of time t’ and t” computed from an initial-value experiment (fully 
described in Part 2) in which the flow starts as a 0-vortex flow and ends as a 1-vortex 
flow. The numerical calculations are computed with At = inner rotation period/70, 
No = 128, and N ,  = 32. 

The initial state for the data in table 1 is the equilibrium 0-vortex flow at Re = 650. 
At time t = 0 the Reynolds number is set abruptly to Re = 700 by lowering the 
viscosity. From time 0 to 14x there is a systematic undershoot and overshoot of A 
as a mildly unstable 0-vortex equilibrium is reached. From time 14x to 54x there is 
hardly any change in the flow field or in A. From time 547~ to 160x the change from 
a 0- to a 1-vortex flow takes place. Since the angular momentum oscillates in time, 
we have chosen each pair of times, t’ and t”, so that A changes monotonically for 
times between t’ and t”. Table 1 shows that the fractional error, I (AA-JA) /U l ,  is 
less than 10-O. 

Using the same initial-value experiment, we have also calculated the numerical 
errors associated with the energy balance. Energy should be balanced in the sense 
that AE= E ,  I (3.4) 
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where E = Ein-Eout, where E,, is the rate at  which energy is pumped into the fluid 
by the rotating inner cylinder 

gin = $2, 71 (in dimensional units), (3.5) 

and where E,,, is the rate at which energy is viscously dissipated 

Re 

= 5 (E+ I (V x u) d3x). 
Re 3 

We have found numerically that the errors in AE and AE - s E are proportional to 
(At)z. We have also calculated E at each timestep, integrated it (to second order in 
At) from time t' to t", and then compared it to the value of AE computed directly from 
the difference in energies of the numerically simulated flow at times t' and t". The 
results appear in table 1. The fractional error in the energy I(AE-j&)/AEI, is less 
than While this error is quite small, it is not as small m I(A.4 -SA)/A.41. The 
larger error in the energy is due to the fact that the angular momentum is transferred 
into, resides in, and is transferred out of the large spatial modes, whereas the energy 
is produced in the large spatial modes and is dissipated in the small modes. Therefore 
the balance of energy is a more stringent test of the nonlinear dynamics of the 
Navier-Stokes equation that couples the large scales to the small scales. 

We have determined that our spatial resolution is adequate and that we are free 
of deleterious truncation and aliasing errors by examining the energy spectrum (see, 
for example, Marcus (1984a) for a discussion of the relationship between spatial 
resolution and the energy spectrum) and by comparing initial-value, and eigenvalue 
experiments at different spatial resolutions. 

It has been noted that the transition sequence among flows is especially sensitive 
to the resolution in 8 (Bartels 1982). We have found that the transition sequence with 
N ,  = 256, and N, = 32 is the same as that with No = 128 and N, = 16 for Re C 1200. 
Eigenvalues calculated with these two different spatial resolutions agree to five 
significant digits. We therefore conclude that N ,  = 128, N, = 16 is adequate for our 
studies with Re < 1200. In contrast, calculations with No = 64 and N, = 16 are 
qualitatively different from the high-resolution calculations (see Part 2). 

3.2. Comparison with other calculations and experiments 
We have used three quantities to compare our results with those of others: (i) the 
critical Taylor numbers for transitions among the 0-, 1-, and 2-vortex flows, (ii) the 
torques 7 exerted on the outer sphere, and (iii) the sizes of the Taylor vortices. 

3.2.1. Critical Taylor numbers 
Strictly speaking, we should only compare our results at u = 0.18 with other 

numerical calculations and experiments at  u = 0.18. However, Khlebutin (1968) 
noted that to a first approximation the critical Taylor number T a  = R e d  for the 
onset of Taylor vortices was approximately independent of u. Therefore, we have 
included in table 2 a number of numerical and experimental measurements that span 
a range of u. We have included four types of transitions : the 0- to l-vortex transition 
denoted as 0 -+ 1 (more frequently called the transition for the onset of Taylor-vortex 
formation), the reverse transition or 1 +0, the transition from 0- to 2-vortex flow or 
0-t 2, and the reverse transition or 2 + 0. Because transitions may exhibit hysteresis, 
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This study 
G. Schrauf (private 
communication) 

Bartels (1982) 
Bonnet & Alziary de 
Roquefort (1976) 

Wimmer (1983) 
K. Buhler (1983, 

Munson & Menguturk 

Khlebutin (1968) 

private communication) 

(1975) 

U 0+1 1+0 0+2 2 + 0  

0.18 
0.17647 

0.17647 
0.176 47 

0.18 
0.154 

0.135 

0.19 
Average t 

Numerical 
49.8 
- 

Experimental 
49. -9.9 - 48.3 

- 48.1 

44.7 f 1.6 
49.0 

49.2 56.5 56.5 
48.4 - 55.6 - 55.6 

50.9 55.c59.3 55.6-59.3 
51.M6.7 51.9-66.7 - 

47.748.5 61.141.9 57.3-57.9 - 54.4 - - 48.3 

- - 47.8 - 47.8 

-f Khlebutin’s average value of the critical Taylor number determined from 5 different gap 
sizes. 

TABLE 2. Critical Taylor numbers for the transition from a flow with m vortex pairs to a flow with 
n vortex pairs ; - indicates that the uncertainties in the measurement were not reported and that 
the Taylor number was obtained from graphical presentation of the author’s data 

the critical Taylor number for m + n is not necessarily the same as the one for n + m. 
In particular, we have found from our calculations that the O e  1 transitions have 
hysteresis but not the O e  2 transitions. Some experimental studies (Yavorskaya 
et al. 1977) have specifically stated that hysteresis did not occur in the O e l  
transitions. This is not surprising because the measurements of Yavorskaya, Belyaev 
& Monakhov (1977) were not fine enough to detect the small amount of hysteresis 
that we observed. We note that when reporting critical Taylor numbers some 
experimentalists failed to specify whether the observed transition was 0 + 1 or 1 + 0. 
In these cases we have assumed in table 2 that it  is the O +  1 transition. Not all 
numerical studies can measure the critical Taylor number for all types of transitions. 
For example, a linear stability analysis of the 0-vortex flow will determine the critical 
Taylor number of the O+m =t= 0 transition but not for the m+O transition. 
Furthermore, previous initial-value codes (Bartels 1982 ; Astafeva et al. 1978; 
Bonnet & Alziary de Roquefort 1976), which sought to measure the critical Ta  of the 
O +  1 transition were unable to produce this transition at all. 

It should be noted that although there is a wide scatter among both the numerical 
and the experimental values listed in table 2, the agreements between our numerical 
calculations and Wimmer’s experimental measurements at  g = 0.18 for the O +  1 and 
1 + 0 transitions are very good. The agreements between our calculations a t  (T = 0.18 
and those of Schrauf (1983a and personal communication) and Bartels (1982) at 
r~ = 0.17647 (which, along with ours, are the only high-spatial-resolution calcula- 
tions listed) are also quite good. 

3.2.2. Torques 

The most common experimental measurement in spherical Couette flow is the 
torque on the outer sphere r as a function of Reynolds numbers. We have reported 
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FIGURE 1. Torque/Stokes torque or T/?* for Re 6 Re, from, -, our numerical simulations, and 
0, from laboratory measurements. Note that the experimental points exceed unity by about 7 % 
as Re -+ 0. 

values of torque in units of the torque exerted on the outer sphere by the Stokes flow 
(equation (2.5)). This Stokes torque, T * ,  in our non-dimensional units is 

= 64.217 Re-’ for IT = 0.18, (3.7) 

and is, of course, a function of Re. 
Wimmer, Khlebutin and Munson BE Menguturk have all found experimentally that 

T cc Re-’ for subcritical spherical Couette flow. In  figure 1, we plot 7/7* for Re < 600 
calculated from our numerical simulations (solid curve) and from Wimmer’s (private 
communication, 1983) experimental measurements (denoted by the numeral 0). 
Wimmer’s measurements are consistently about 7 YO higher than our computed 
torques, but also 7% higher than that of the Stokes flow for Re as low as 176 (the 
lowest Reynolds number measured by Wimmer). At such a low Reynolds number 
(i.e. RelRe, z 0.27), such a large deviation from Stokes flow is not expected. We 
suggest that Wimmer’s torques contain a systematic excess of about 0.07 of the 
Stokes torque due to the presence of the rods necessary for turning the inner sphere 
(Zierep, private communication 1983) or due to the intrinsic difficulty in measuring 
torques to an accuracy of better than a few per cent (Koschmieder, private 
communication 1983). Although this 7% excess is not important for Wimmer’s 
comprehensive study which ranged over four decades of Re, it is important in our 
detailed study of the differences between the 0-, 1-, and 2-vortex flows since the 
torques of the different states usually differ by only a few per cent. 
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FIQURE 2. T/T* for 200 d Re d 1200 for the numerically computed, -, 0- , _ _ _ _  , 1- , and , _ _ _  2- 
vortex flows. Experimental measurements (with 0.07 subtracted) for each of the three flows are 
shown respectively by the numerals 0, 1 and 2. 

In  supercritical spherical-Couette flow, Wimmer found that 7 cc Re-;, which is in 
agreement with the laboratory results of Khlebutin and of Munson & Menguturk. In 
figure 2 we plot 7/7* for 200 < Re < 1200. Wimmer’s values (with 0.07 subtracted 
from each), are represented in the figure by the numerals 0, 1 and 2, which indicate 
the number of Taylor-vortex pairs in the flow. There is good agreement between 
Wimmer’s corrected experimental and our numerical values of the torques as a 
function of Re for these three flows. 

3.2.3. Sizes of vortices 
Taylor vortices are approximately circular, so that the ratio of their height to the 

gap width is near unity. Wimmer found that the exact size of the vortices is strongly 
dependent on Reynolds number. He measured the size (i.e. distance between the 
equator and the observed vortex boundary) of the vortex nearest the equator for 
both the 1- and 2-vortex flows. He found that the non-dimensional sizes varied from 
0.54 to 1.3. Unlike the torque, which is a property of the entire flow field (most of 
which has no Taylor vortices), the vortex size is a very local measurement. In figure 3, 
we have plotted the sizes of our numerically computed vortices for 600 < Re < 1200 
by graphing the distance from the equator to the inflow and outflow boundaries. 
To facilitate comparison with visual experimental observations (necessarily made 
from the exterior), these inflow and outflow locations are determined a t  the radial 
collocation point nearest to (but not at) the outer sphere. Wimmer’s values (1976, 
private communication, 1983) are indicated as before by the numerals 0, 1 and 2. The 
short-dashed curve is the size of the vortex of our numerically simulated l-vortex 
flows. In the same figure we have also plotted the size of both of the vortices present 
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in our 2-vortex flows. Wimmer’s measurements of the size of the vortex closer to the 
equator (denoted by 2) agrees reasonably well with our results (the long-dashed 
curve). For Re > 900 our curves exceed most of Wimmer’s data by 5-10 YO. However, 
we note that Wimmer performed two separate experiments to measure the size of the 
vortices in the 1-vortex flow. The experimental values from a very finely controlled 
experiment are denoted in figure 3 by a numeral 1 with a prime and from an 
experiment where the angular velocity of the inner sphere is less carefully controlled 
by an unprimed numeral. Our agreement with the carefully controlled experiment is 
quite good, whereas the values from Wimmer’s two different experiments agree only 
to within 10%. 

We note that in the 2-vortex flow, the sizes of both vortices change abruptly as Re 
approaches 740 (the lowest Reynolds number for which we have found the 2-vortex 
state to exist). The solid and long-dashed curves meet a t  Re x 740, indicating that 
the vortex farther from the equator is infinitesimal at onset. Note also that the short- 
dashed curve indicating vortex size in the 1-vortex state ends a t  Re % 650 (the lowest 
Reynolds number for which we have found the 1-vortex state to exist) with a near- 
vertical slope. This indicates that the measurement of vortex size as a function of Re 
is well suited for finding the turning point of a secondary branch in bifurcation 
diagrams (see Benjamin 19783 and Part 2). 
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FIGURE 4. (r ,  8)-projection of the meridional streamlines of the 0-vortex flow without pinches at 
Re = 600, Q = 0.18. The two large basic vortices rotate in opposite directions (-, counter- 
clockwise ; - - - -, clockwise). The circumferential distance between the tick marks on the outer 
sphere is u. The tick marks on the inner sphere are separated by &t radians. The gap width has 
been exaggerated by linearly mapping r from the interval [ 1 , i  + u] to [ 1,2]. 

4. Steady-state equilibria 
In this section, we present the numerical results and our analysis of the 

axisymmetric 0-vortex (subcritical) flow and the 1 - and 2-vortex (supercritical) 
flows. 

4.1. 0- Vortex 
Figures 4 and 5 depict the three-dimensional 0-vortex flow at Re = 600 and u = 0.18. 
Both figures are two-dimensional projections of the flow on to the ( r ,  O)-plane at fixed 
0. In these figures (and all other (r,6)-projections in this paper) the gap width 
between the inner and outer spheres is exaggerated for clarity of the features (the 
radial interval [l, 1.181 is mapped linearly to [l, 21). To provide a guide to this 
scaling, we have placed tick marks along the outer sphere with a circumferential 
spacing between tick marks of one gap width. The tick marks along the inner sphere 
are spaced at  intervals of +r radians ; the long pair of tick marks denote the equator. 
Figure 4 shows the streamlines of the meridional (or ( r ,  @component of the) flow, i.e. 
contours of constant r sin8 $(r ,  6). The meridional velocity is everywhere tangent to 
these contours. Streamlines depicting positive (or counterclockwise) circulation are 
solid contours; those showing negative circulations are dashed. The flow is clearly 
reflection-symmetric about the equator. The solid (and dashed) streamline located 
exactly at the equator is the outflow boundary between the two large votices. Note 
that the spacing between contour lines is only a qualitative guide to the magnitude 
of the meridional flow since we have used a tanh mapping of the stream function to 
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FIGURE 5. Contours of constant angular azimuthal velocity of the O-vortex flow shown in figure 4. 
The tick marks and radial stretching are the same as those of figure 4. Except for a slight outward 
bulge at the equator due to the meridional outflow boundary, the angular velocity is approximately 
the Stokes flow and independent of 8. 

exaggerate weak flow features. The qualitative behaviour of the flow in figure 4 can 
be understood mathematically by expanding the solution to the NavierStokes 
equation in powers of the Reynolds number. The zeroth-order solution is the Stokes 
flow, and the first-order correction is a purely meridional velocity of the form 

u, = -f(r) [3 cos (28) + 11 (4.1) 

and uo = g(r)  sin (28), (4.2) 

where f ( r )  and g(r )  are functions that can be determined by the power series 
expansion. The exact forms off and g need not concern us here but we note that 
f(r) 3 0 for all r while g(r)  changes sign at least once in the interval 1 < r < 1 + g. The 
meridional flow in (4.1) and (4.2) is reflection-symmetric about the equator, obtains 
its maximum radial motion in a radially outward jet at the equator, has radially 
inward jets a t  the poles, and looks qualitatively like the flow in figure 4. 

The qualitative behaviour of the flow in figure 4 can be understood physically by 
considering the flow near the poles, where the geometry resembles that between 
parallel differentially rotating disks. Ekman pumping causes fluid to be thrown 
outward centrifugally along the rotating disk (inner sphere) and pulled from the 
centre of the stationary disk (outer sphere). This motion forms the inflow radial 
boundary jets at the poles. The fluid moving down from the north pole along the 
inner sphere meets fluid moving up from the south pole at the equator and forms the 
equatorial radial outflow boundary. The jet divides at the outer sphere and the fluid 
returns to the two poles along the outer sphere. The fluid in the northern and 
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FIQIJRE 6. -, the azimuthal EJL! and, - - - -, meridional E,(L) spectra of the 0-vortex flow shown 
in figures 4 and 5. The spectra are discrete ; the azimuthal spectrum exists only at the points where 
L is odd and the meridional spectrum exists only at the points where L is even because the 
flow is reflection-symmetric about the equator. The flat plateau around L = 15 reflects the 
lengthscale u. 

southern hemispheres do not mix. The inflow and outflow boundaries of the 
meridional flow are clearly visible in laboratory visualization studies. 

Note that in all spherical Couette flows at non-zero Reynolds numbers there is a 
large-scale meridional circulation present on either side of the equator similar to the 
flow in figure 4. We shall refer to this large-scale vortical flow as the ‘large basic 
vortex’. This circulation should not be confused with a Taylor vortex. We shall 
presently describe Taylor vortices ; they are qualitatively different from the large 
basic vortices. 

Figure 5 shows the contours of constant angular velocity, u+/r sin 8, for the flow 
in figure 4. The angular velocity decreases monotonically from the inner to the outer 
sphere. For low Re flows, the contours of constant angular velocity are nearly parallel 
to the spherical boundaries. In fact, they are nearly equal to the angular velocity 
contours of the Stokes flow (equation (2.5)) which are functions only of radius and 
not 8. We have stated that in an expansion of the solution of the Navier-Stokes 
equation in powers of Re, there is no first-order correction to the angular velocity; 
corrections to the azimuthal velocity come at higher (and even) orders. The effect of 
these higher-order corrections can be seen in the slight ‘wiggles ’ of the contours near 
the equator in figure 5. The wiggles are due physically to the redistribution of angular 
momentum in radius caused by the meridional velocity. We shall show presently how 
the wiggles increase with increasing Re. 

In figure 6 we plot the energy spectra of the flow depicted in figures 4 and 5. To 
produce figure 6 we decomposed u into vector spherical harmonics YL, L+l,  M(8 ,  #) 
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which (when multiplied by radial spherical Bessel functions) are eigenfunctions of the 
vector Laplacian. Using the notation of Edmonds (1960) : 

m L 1  

N r , 8 , # )  = UL,L.+r,dr) K , L + I , M ( 8 , $ ) .  (4.3) 
L-0 M--L I=-1 

For an axisymmetric flow field, (4.3) reduces to azimuthal and meridional 
components m 

m 

and *rn(r?8) = x [gL,L+1(r) K , L + i , o ( @  +gL,L-i(r) K,r,-i,o(8)1. (4.5) 
L-0 

To compute the spectrum the energy is decomposed as follows: 

E = E,+Em, (4.6) 

with 

and 

L-1 

m 

E6 = X E&L) = 
L-1 

(4.7) 

There is no L = 0 component in a divergence-free velocity field with homogeneous 
normal boundary conditions. 

For a flow that is reflection-symmetric (antireflection-symmetric) about the 
equator, the sums in (4.4) and (4.7) contain only terms with odd (even) L, and the 
sums in (4.5) and (4.8) contain only even (odd) L, or 

E,(L) if reflection-symmetric 1 
1 E,(L) if antireflection-symmetric J ' E(L = odd) = (4.9) 

1. (4.10) 
E,(L) if reflection-symmetric 

E,(L) if antireflection-symmetric J E ( L  = even) = 

For a general asymmetric flow, E(L) has contributions from both E&L) and E,(L). 
Since the E&L) and Em(L) spectra differ in form and magnitude, we have plotted 
them separately in figure 6. The solid curve is the azimuthal and the dashed curve 
the meridional spectrum. The spectra, of course, exist only at discrete points with 
L = odd for E, and with L = even for Em since our flow is reflection-symmetric. The 
continuous curves in figure 6 have been drawn by connecting the 64 & 1 points of each 
of the discrete spectra. 

The energy in figure 6 is non-dimensionalized by dividing by the energy of the 
Stokes flow E*. The salient feature of the spectra is that for large L they decrease 
exponentially. The flat plateau at  L 15 corresponds to the lengthscale of the gap 
width between the inner and outer spheres. (The non-dimensional length associated 
with any L is approximately n/L.) 

4.1.1. 0- Vortex $?ow with pinches 

As the Reynolds number is increased, the basic flow develops what Bonnet & 
Alziary de Roquefort (1976) have called a pinching of streamlines. This pinching is 
illustrated in figure 7 which is a plot of the meridional streamlines in the ( r ,  8)-plane 
(using the conventions of figure 4) of our numerically calculated flow a t  Re = 650, 
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FIGURE 7. The meridional velocity (plotted 88 in figure 4) of O-vortex flow with pinches at Re = 
650 and u = 0.18. Although the pinches near the equator have closed streamlines, they are not 
Taylor vortices. 

and r~ = 0.18. The pinch is characterized by a stagnation point (i.e. crossing of 
streamlines) in the (r,O)-component of the velocity. Although it is not explicitly 
shown in figure 7, it is obvious that there must be a crossing of streamlines in each 
hemisphere somewhere between the closed streamlines of the large basic vortex and 
the closed streamline of small diameter situated in the pinched part of the flow near 
the equator. In a pinched O-vortex flow, there are at  least two local maxima in the 
stream function in each hemisphere. 

The pinched O-vortex flow is reflection-symmetric, the pinch being located about 
one gap width away from either side of the equator. Figure 7 shows that the closed 
streamlines in the pinch are not separated from the large basic vortex by a radial 
inflow or outflow boundary (compare figure 7 with figure 10 below for Taylor 
vortices). A laboratory observer peering into the fluid through a transparent outer 
radial boundary would not see the closed streamlines of the pinch since the flow near 
the radial boundary (i.e. what the observer is most likely to see) differs little from the 
non-pinched flow. Indeed, from flow visualization alone, an experimentalist would be 
hard pressed to differentiate between the pinched flow in figure 7 and the non- 
pinched flow in figure 4. The circulation in the closed streamlines of the O-vortex pinch 
always have the same sign as that in the large basic vortex. Although the pinch has 
a strong radial flow, because it is not separated from the large basic vortex by an 
inflow or outflow boundary that extends from the inner to the outer sphere, it is not 
a Taylor vortex. We emphasize this distinction between O-vortex flow with pinches 
and flows with Taylor vortices because of confusion in the published literature (cf. 
the review article by Roesner 1977). 
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FIQURE 8. The contours of constant azimuthal angular velocity (plotted aa in figure 5) for the flow 
in figure I. The pinch increases the strength of the meridional outflow at the equator and thereby 
increases the outward bulge in the contours at the equator. 

We have found numerically that pinches occur for Re 2 630, and that their 
development is not accompanied by large abrupt changes in any physical properties 
of the flow, such as the torque. Figure 8 shows the azimuthal angular velocity 
contours of the pinched flow in figure 7. The ‘wiggles’ at  the equator have increased 
in amplitude. The inward and outward bendings of azimuthal contours correspond 
to meridional flow in the pinch which is radially inward or outward, respectively. The 
fact that the pinches affect the azimuthal as well as the meridional velocity is also 
illustrated in the energy spectra in figure 9.  In this figure (where we use the 
conventions of figure 6 )  we see that both the Em and E,  spectra have local maxima 
at  the same place, L x 20, which is the wavenumber associated with the pinch. 

The physical reason for why and where pinches form is related to Taylor-vortex 
formation. Pinches, like Taylor vortices, have the property of exhibiting a strong 
correlation between the radial and the azimuthal components of the velocity (Marcus 
1984b), so both pinches and Taylor vortices are efficient transporters of angular 
momentum from the rotating inner boundary to the stationary outer boundary. The 
transport properties of pinches are not only revealed by the equatorial ‘wiggles’ of 
the angular velocity contours in figure 8, but also by the angular momentum flux (i.e. 
the torque) carried by the pinches shown in figure 2. This (7, Re)-diagram shows a 
gradual increase in slope at  Re = 630 (the Reynolds number for the onset of pinches). 
This increase indicates that the O-vortex flow with pinches is better at  transporting 
angular momentum than the flow without pinches. Although pinches are not seen in 
numerical simulations of Taylor-vortex flow in infinitely long cylinders, they have 
been observed in finite-length cylinders (Keller & Bolstead, private communication 
1983). It should not be surprising that in spherical-Couette flow the pinches form first 
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FIGURE 9. E,(L) and E m @ )  spectra (plotted as in figure 6) of the flow in figures 7 and 8. The 
local maximum at L x 20 is due to the pinch. 

at the equator since it is there that the centrifugal force and angular momentum 
gradient of the flow are greatest. 

4.2. 1-vortex jlow 

An example of the supercritical 1-vortex flow at Re = 900 and CT = 0.18 is shown in 
the meridional streamlines of figure 10, the contours of constant angular velocity in 
figure 11 and the energy spectra in figure 12. (All plots use the conventions of figures 
4-6.) This axisymmetric and equatorially reflection-symmetric flow corresponds to 
the Taylor-vortex flow experimentally observed in the laboratory by Sawatzki & 
Zierep (1970) and Wimmer (1976) and which they labelled 'Mode 111'. Figure 11 
shows clearly that in each hemisphere there is one Taylor vortex near the equator 
with a diameter that is approximately equal to a gap width. The Taylor vortex is 
separated from the large basic vortex by a nearly straight streamline that extends 
all the way from the inner to the outer radial boundary. This streamline is an outflow 
boundary and would be clearly visible to a laboratory observer. The circulation in the 
Taylor and the large basic vortex have the opposite sign. At the equator there is an 
inflow boundary. Notice that if the pinch of the 0-vortex flow in figure 7 were closed 
off, the resulting small vortex near the equator would be rotating in the opposite 
sense of the Taylor vortex in figure 10, and the equator would be an outflow 
boundary. The transition from a pinched 0-vortex flow with an outflow boundary at  
the equator to a 1-vortex flow with an inflow boundary a t  the equator is discussed 
extensively in Part 2. Stagnation points in the (r,O)-projection of the velocity in 
figure 10 occur where the Taylor vortices abut each other and where they abut the 
large basic vortices. However, these stagnation points are always located on the 
radial boundaries. In contrast, pinches have their stagnation points located in the 
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FIGURE 10. Meridional streamlines (plotted as in figure 4) for the Re = 900, Q = 0.18,l-vortex flow. 
The Taylor vortices are separated from the large basic vortices by nearly straight radial streamlines 
(an outflow boundary) that extends from the inner to the outer sphere. 

FIGURE 11. Contours of constant angular velocity (plotted as in figure 5) of the flow in figure 10. 
The inflow boundary at the equator produces an inward bulge there. 
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FIQURE 12. EJL)  and E,(L) (plotted as in figure 6) of the flow in figures 10 and 11. The nearly 
periodic and exponentially decreasing scallops (rounded local maxima, sharp local minima) are due 
to a small-scale flow localized at  the equator (the Taylor vortices) modulated by a large-scale global 
flow. 

fluid interior (see figure 7). The fact that Taylor vortices are more efficient than 
pinches at transporting angular momentum is shown in figure 2. For 645 < Re < 740 
both the 1-vortex flow and the 0-vortex flow with pinches are equilibria (though not 
necessarily stable, as will be seen in Part 2). The figure shows that the Taylor vortices 
in the 1-vortex flow have a greater angular momentum flux than the pinches in the 
0-vortex flow. 

As the Reynolds number becomes larger, the large basic vortex in the 1-vortex 
flow develops a pinch. The beginning of this pinch can be seen in figure 10 at 
approximately 2.5 gap widths away from the equator. Figure 11 shows that the 
equatorial wiggles in the contours of the azimuthal velocity are more pronounced 
than those of the pinched 0-vortex flow in figure 8;  more importantly, the figure 
shows that the distortions of the angular velocity contours due to the Taylor vortices 
are opposite in sign to those due to the pinches - the contours at the equator are 
pushed radially inward in figure 11 and outward in figure 8. 

The spectra of the 1-vortex flow are shown in figure 12. As usual, the azimuthal 
energy is greater than the meridional energy for almost all L. The most striking 
feature of figure 12 are the 'scallops' (i.e. the series of rounded local maxima 
interspersed with sharp local minima) that are spaced almost periodically in L and 
which decrease exponentially with increasing wavenumber. A scalloped spectrum 
appears to be a superposition of an infinite number of Gaussians all of the same width 
and equally spaced but with decreasing amplitude. To see why a scalloped spectrum 
is reasonable for 1-vortex flow, model the flow's velocity as the product of two parts: 
the velocity of a Taylor-vortex pair in cylindrical Couette flow (which is axially 
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periodic with fundamental wavenumber k,) and a n  envelope function which confines 
the Taylor votex to the equator (since spherical Couette flow differs from cylindrical 
Couette flow in that the former has its vortices confined locally to the equator where 
the centrifugal force is greatest). 

Rather than compute the spectrum of this three-dimensional velocity, we shall 
compute the energy spectrum, E ( k ) ,  of a model flow that is characterized by a scalar 
amplitude g(8). Like our axisymmetric velocity fields u4 and ug, g ( 0 )  is to be periodic 
in 8 and vanish at  0 and R (i.e. it is an odd periodic function with a natural 
representation as a sine series). We simplify further by no longer considering 8 to be 
the polar angle in a spherical geometry, dropping the factor of sin8 necessary for 
volume integration over a sphere to compute E ( k )  

2 

E ( k )  = I & r g(8) e-ike d8 I , (4.11) 

where k is a non-negative integer and where g ( 0 )  is extended antisymmetrically into 
R < 8 < 2 ~ .  For large wavenumbers, the spectrum defined by (4.11) and the 
spectrum based on the decomposition of the velocity into spherical harmonics 
defined by equations (4.4)-(4.8) will look qualitatively similar. We model the 
envelope function g,(8) as the odd periodic continuation of a Gaussian centred at  
8 = 4~ with width a. 

The Fourier transform G,(k )  of gl(8) is 

(4.12) 

(4.13) 

The amplitude g2(8)  of a Taylor vortex has an exponentially decreasing spectrum 
(cf. Marcus 19843). We therefore approximate g2 as 

a, 

g 2 ( @  C e-blmlh eimk,e (4.14) 
m--a, 

such that g2 has period 2n/k,.  The Fourier transform G2(k)  of g2(8) is 
m 

G2(k)  = C e-*lmlko amL,, L. (4.15) 

The energy spectrum E ( k )  of the amplitude of the total velocity g(0) = g1(8)g2(8) is 
equal to the square of the absolute value of the convolution of G ,  with G,:  

m--a, 

(4.16) 

= I 5 C,(k-k’)G,(k‘) (4.17) 
lc’--m 

= C C e x p { - ~ 2 [ ( k - n k , ) 2 + ( k - m k , ) 2 ] - b k , (  lnl +lml))(-l)Lt(m+n)ko, 
n m  (4.18) 

where k is an integer and where the sum in (4.18) is over all m and n such that 
(k -mk , )  and (k -nk , )  are odd integers. For ak, > d 2  (i.e. the spacing between 
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FIGURE 13. Meridional streamlines (plotted m in figure 4) of the 2-vortex flow at the same Re 
and c as the l-vortex flow in figures 10-12. 

Gaussians greater than their widths) the only significant terms in the double sum in 
(4.18) are those with n = m, so 

I0 

E(k)  x CI exp[-a2(k-nk,)2-2bk,Inl] ,  (4.19) 
n--cc 

where k-nk, is an odd integer. 

at k = nk, and sharp minima a t  
The spectrum E(k)  in (4.19) has exponentially decreasing rounded maxima located 

k = $k, f b/a2 + nk,, 

and looks very much like figure 12. From examining the separation between 
successive minima (or maxima) in figure 12, we find that k, x 17 x n / a  and from the 
width of the Gaussians we see that a x 0.14 x 0 . 8 ~ ~ .  Note that the scale of the spacing 
between the Gaussians and their widths are both set by cr. 

4.3. 2-Vortex flow 
The ( r ,  0 )  meridional velocity of the 2-vortex flow a t  Re = 900 is shown in figure 13. 
The flow is axisymmetric and reflection-symmetric about the equator and 
corresponds to  the ‘Mode IV  flow ’ observed in the laboratory by Sawatzki & Zierep 
(1970) and Wimmer (private communication 1976). Note that the %-vortex flow in 
figure 13 occurs a t  the same Re and a as the 1-vortex flow shown in figures 10-12. 
Both flows are stable equilibria, but figure 2 shows that at Re = 900 (and for all 
Re > 800) the 2-vortex has a greater torque than the l-vortex flow. Therefore, the 2- 
vortex flow is more efficient at transporting angular momentum for large Re. For 
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FIQURE 14. Contours of constant angular velocity (plotted aa in figure 5) of the flow in figure 13. 
The outflow boundary at the equator and between the fundamental meridional and the outer two 
Taylor vortices produces outward bulges in the contours. 

800 > Re > 740 (the lower Re limit of existence of the 2-vortex flow), the l-vortex 
flow is the more efficient of the two flows. The Taylor vortices in figure 13 each have 
a diameter approximately equal to cr although the pair closer to the equator (and 
subject to a greater centrifugal force) is larger and has a greater velocity. 

The signs of the circulations of the vortices in figure 13 alternate as 8 increases 
from 0 to R. Each vortex is separated from its neighbour by a nearly straight inflow 
or outflow that extends from the inner to the outer radial boundary. There are no 
stagnation points that do not lie on one of the radial boundaries. The 2-vortex flow 
is similar to the O-vortex flow in that the equator is an outflow boundary. Figure 2 
shows that the torque-Reynolds number relationship of the 2-vortex flow is a smooth 
continuation of the O-vortex flow. The implications of this fact with respect to 
transitions between the two flows is discussed in Part 2. The large bmic vortices in 
the 2-vortex flow are pinched at large Re. The flow in figure 13 shows the beginning 
of a pinch at  approximately 30. from the equator. The contours of constant azimuthal 
velocity shown in figure 14 bulge outward at the equator in accordance with the fact 
that the equator is an outflow boundary of the equatorial vortices. The outflow 
boundary between the Taylor vortex farther from the equator and the large basic 
vortex is also clearly visible in figure 14 as the outward bulge a t  a distance of 2cr from 
the equator. 

The energy spectra are shown in figure 15. The spectra of the 2-vortex flow are 
scalloped and similar to the l-vortex flow spectra. Notice that figure 15 shows a 
double scalloping with smaller, thinner scallops interspersed between the larger ones. 
The two types of scallops are due to the fact that there are two Taylor-vortex pairs 
near the equator. 

2 FLY 186 
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FIGURE 15. E&L) and Em@) (plotted aa in figure 6) of the How in figures 13 and 14. The double 
scallops - small thin scallops between large wide scallops - are due to the fact that there are two 
Taylor-vortex pairs close to the equator. 

5. Discussion 
We have shown that our initial-value code produces solutions that are self- 

consistent, agree with other numerical calculations, and are supported by laboratory 
experiments. The most rigorous internal numerical tests that we have performed are 
those that determine how well the angular momentum and kinetic energy balance 
equations are satisfied. During the rather complicated transition from 0- to 1-vortex 
flow (described in Part 2) the angular momentum balance is good to 0(10+) and the 
energy balance to O(10-4). Our numerical results are in good agreement with the 
steady-state solutions found by Schrauf (1983 and private communication) and by 
Bartels (1982). Considering the fact that the torques are difficult to measure in the 
laboratory to better than a few per cent, our numerically calculated torques of the 
0-, 1- and 2-vortex flows agree quite well with those measured by Wimmer (1976). 
However, we believe that Wimmer’s experimental values of the torque are 
systematically too large by approximately 7 YO. In the absence of laser-Doppler 
velocimetry measurements of the fluid velocity field as a function of position, we 
believe that the best comparison between numerical and laboratory findings is the 
measurement of Taylor-vortex size as a function of Reynolds number. Our agreement 
with Wimmer’s high-precision laboratory measurements of Taylor-vortex size are 
excellent. 

The three types of steady-state axisymmetric equilibria that we have found are 
reflection-symmetric about the equator. At present, we have been unable to find any 
non-reflection-symmetric steady flows. The 0-, 1- and 2-vortex flows (as well as 
TaylorXouette flow in finite cylinders) all show pinches in the large basic vortex at 
sufficiently large Reynolds number. Pinches are different from Taylor vortices, the 



Simulation of flow between concentric rotating spheres. Part 1 29 

latter being defined by the nearly straight inflow/outflow boundaries along 
streamlines that extend all the way from the inner to the outer spheres. Both pinches 
and Taylor vortices mix angular momentum among different radii, thereby 
decreasing the angular momentum gradient of the flow. The curious thing about 
pinches is this : In Taylor-vortex flow a fluid particle moves along a streamline near 
the inner spherical boundary, until i t  enters the Taylor vortex, where it finds itself 
thrown centrifugally outward. It is then carried to the outer boundary. In a pinched 
flow a fluid moves along the inner boundary until it  enters the pinch and is thrown 
radially outward. At  the centre of the pinch there is a restoring force, and the fluid 
particle is carried back to the inner sphere. The restoring force at the centre of the 
pinch is somewhat puzzling. The force is due to the increased pressure head 
associated with the stagnation point at  the centre of the pinch, but the exact 
dynamics of how the stagnation point forms, and what prevents the radially 
outward-moving, centrifugally accelerated fluid in the pinch from breaking through 
the stagnation point all the way to the outer spherical boundary (and thereby 
destroying the stagnation point) has not been explained. 

The 1- and 2-vortex flows that we have found both have strong radial velocities at 
the equator, but with opposite signs. The signs at the equator are determined by the 
fact that (i) meridional vortices alternate in the sign of their circulations (two 
vortices of the same sign cannot be next to each other) and (ii) the poles are always 
inflow boundaries. This means that during transitions between a flow with an odd 
number of Taylor-vortex pairs and a flow with an even number (or vice versa), the 
radial flow at the equator must change direction. This change of direction is discussed 
in Part 2. 

We thank K. Buhler, G. Schrauf and M. Wimmer for the private communication 
of their experimental or numerical results. We also thank L. Koschmieder, S. Orszag, 
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