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We report the numerical realization of robust two-component structures in 2D and 3D Bose-Einstein

condensates with nontrivial topological charge in one component. We identify a stable symbiotic state in

which a higher-dimensional bright soliton exists even in a homogeneous setting with defocusing

interactions, due to the effective potential created by a stable vortex in the other component. The resulting

vortex–bright-solitons, generalizations of the recently experimentally observed dark-bright solitons, are

found to be very robust both in the homogeneous medium and in the presence of external confinement.
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Introduction.—Vortices in nonlinear field theory have a
time-honored history [1]. They are among the most striking
features of superfluids, play a role in critical current den-
sities and resistances of type-II superconductors through
their transport properties, and are associated with quantum
turbulence in superfluid helium [2]. The advent of Bose-
Einstein condensates (BECs) 15 years ago [3,4] has pro-
duced an ideal setting for exploring relevant phenomena.
Since the experimental observation of matter-wave vortices
[5], by using a phase-imprinting method between two hy-
perfine spin states of a 87RbBEC [6], the road opened for an
extensive examination of vortex formation, dynamics, and
interactions. Stirring the BECs [7] above a certain critical
angular speed [8–11] led to the production of a few vortices
[11] and even of very robust vortex lattices [12]. These
structures have been produced by other experimental tech-
niques, such as dragging obstacles through the BEC [13] or
the nonlinear interference of condensate fragments [14].
Later, not only unit-charged but also higher-charged struc-
tures were produced [15] and their dynamical (in)stability
was examined. This field also has strong similarities and
overlap with the emergence of vortices and even vortex
lattices in nonlinear optical settings; see, e.g., [16,17].

Another remarkable possibility in both BECs [18–20]
and in nonlinear optics, e.g., [21], is that of multicompo-
nent settings. Matter waves exhibit rich phase separation
dynamics driven by the nonlinear interatomic interactions
between different species or states that make up the BECs.
Longitudinal spin waves [22], transitions between triangu-
lar and interlaced square vortex lattices [23], striated mag-
netic domains [24,25], and robust target patterns [26] have
all been observed, as well as tunable interspecies interac-
tions [27] and transitions between miscible and immiscible
dynamics [28].

We interweave these two settings, motivated by
Ref. [29] in which dark-bright solitons have been created
in a quasi-1D two-component BEC, also per the original
relevant suggestion of Ref. [30]. These are often termed

‘‘symbiotic solitons,’’ as the bright component would
be impossible to sustain under repulsive interatomic inter-
actions (i.e., defocusing nonlinearities, as considered here),
unless the dark component creates an ‘‘effective potential,’’
of which the bright soliton is a bound state. The coupled
bright solitary waves [31] and the gap ones of Ref. [32]
constitute additional examples of symbiotic structures. We
consider higher-dimensional realizations [30], i.e.,
vortex–bright-soliton states of various topological charge
in 2D as well as in 3D [33]. We find these symbiotic
configurations to be robust, with or without parabolic
external confinement. In an optical lattice, the unstable
vortex may in fact be stabilized by the bright soliton. The
stability persists in 3D, while for traps elongated in the
direction of the vortex core, additional negative energy
(potentially instability-bearing) modes [34] emerge, as in
the single-component vortex [35]. The work of Ref. [5] has
already offered a prototypical dynamical realization of
such states (analogous to their quasi-1D counterparts of
Ref. [30] by Ref. [29]) and attests to their experimental
relevance.
Physical setup.—The nondimensional Hamiltonian for a

two-component condensate in the mean-field approxima-
tion reads [36]

H ¼
Z

drðr�Þyðr�Þ þ�yVðrÞ�

þ 1

2
j�j2yUj�j2 ��yM�; (1)

where �ðrÞ 2 C2 is the pseudospinor order parameter,
j�j2 ¼ ðj�1j2; j�2j2Þy, and M ¼ diagf�1; �2g is the di-
agonal matrix of chemical potentials associated with the
conservation of the number of atoms N1 ¼

R
drj�1j2

and N2 ¼
R
drj�2j2; a related useful diagnostic is R ¼

N1=ðN1 þ N2Þ ¼ N1=N. U is a 2� 2 matrix accounting
for the effectively nonlinear interatomic interactions. For
the j1;�1i and j2; 1i components of 87Rb, we can use [26]
U11 ¼ 1:03, U12 ¼ U21 ¼ 1, and U22 ¼ 0:97. These
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determine, through the negative sign of detðUÞ ¼ jUj, the
immiscible nature of the interactions leading to phase
separation [19,26]. The dimensional confining potential is

Vðr; zÞ ¼ !2
r

4
jrj2 þ!2

z

4
z2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
VMT

þ A½sin2ð2!rxÞ þ sin2ð2!ryÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VOL

; (2)

where VMT is the parabolic component (often created
magnetically) and VOL the periodic (optical) lattice com-

ponent. The time and length scales are 1=!n and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!n

p
,

respectively, where m is the atomic mass and !n is an
arbitrary frequency in hertz. For 87Rb with a scattering
length of a12 ¼ 5:5 nm, ð!r;!zÞ ¼ 2�� ð8; 40Þ Hz,
and by choosing!n ¼ 5=4!z, the ratio between the actual

and nondimensional number of atoms is Nfac;3D ¼
ð@=2m!nÞ3=2ð@!n=g3DÞ ¼ 10, where g3D ¼ ð4�@2a12=mÞ
is the dimensional interaction parameter. For a 2D reduc-

tion, the interaction parameter is g2D ¼ g3Dðm!z=2�@Þ1=2
(e.g., [37]), and by taking !n ¼ !r, the amplification
factor is Nfac;2D ¼ 30. The equations of motion

ð _�; c:c:ÞT ¼ J�ð�H=��; c:c:ÞT ¼ J�DH, where J ¼
diagð�iI; iIÞ and � interchanges rows (3,4) with (1,2),
for this infinite-dimensional Hamiltonian system are

i _� ¼ �r2�þ VðrÞ�þUj�j2��M�: (3)

The stability of stationary solutions is determined by
the eigenvalues of the Hessian of the Hamiltonian, �D2H,
and of J�D2H. The linear stability is examined through
the eigenvalues � of the latter, with instability arising when
Reð�Þ � 0. A linearly stable solution may become un-
stable if its linearization has eigenmodes with a negative
projection onto the Hessian. Non-negativity of the Hessian
precludes this and is an indication of energetic stability.

The variation can be posed in the f�;��g or
the f�real;�imagg basis. The former is useful when the

potential is axisymmetric, since then small excitations to
a stationary solution � ¼ ð�1ðrÞeiS1�;�2ðrÞeiS2�Þ of the
form c ¼ ða1; a2ÞTðrÞe�t þ ðb1; b2ÞTðrÞe��t will have defi-

nite angular momentum �jðr; �Þ ¼ ~�jðrÞei��j
�
. If we set

�a1 ¼ �, then �b1 ¼ �� 2S1, �a2 ¼ �� S1 þ S2, and

�b2 ¼ �� S1 � S2, so a single index � will indicate the

angular momentum of the excitation with given eigenvalue
�. Hence, the spectrum of eigenvalues f�g can be decom-
posed as the union of the spectra f��g pertaining to angular
momentum �. We will also assume S2 ¼ 0, so that S1 ¼ S
and �a2 ¼ �b2 . It has been shown numerically [34] and

analytically [38] that instability windows arise in a single
component with topological charge S only for wave num-
bers with j�j< S. The null eigenvalues corresponding to
gauge invariance appear in the spectrum of � ¼ S. For a
single component in a parabolic trap, an anomalous mode
for � ¼ S� 1 converges to zero as!r ! 0, accounting for

translational invariance and leading to the energetic stabil-
ity of the S ¼ 1 vortex without an external potential. For
each 0 � � < S� 1 (S > 1) an anomalous mode leads to
windows of instability [34,38]. We show that these can be
significantly suppressed, although the S� 1 spectrum oc-
casionally leads to small instability windows for a small
fraction bright-soliton component N2 � N1 for large N
with a parabolic trap (no windows were observed without
the trap).
Numerical methods.—Our methods extend those in,

e.g., Refs. [39,40]. The spatial discretization in ðr; �; zÞ
employs Chebyshev polynomials to represent r depen-
dence [41]. The Fourier modes representing � and z
make the Laplacian operators diagonal in these directions.
To identify stationary states of (3), we first obtain an initial
estimate via imaginary-time (i.e., replacing t ! it) inte-
gration by using a first-order mixed implicit-explicit Euler
scheme with �t ¼ 10�2. We then refine the solution by
using Newton’s method. The linear system arising at each
Newton step is solved by using the matrix-free induced
dimension reduction [IDR(s)] algorithm [42,43], which
requires only the action of the Hessian. To accelerate
inversion, we precondition the system with the inverse
Laplacian, by using its block diagonal structure. Hence,
we solve the system r�2D2Hð�nÞ�n ¼ r�2DHð�nÞ and
update �nþ1 ¼ �n � �n for n ¼ 0; 1; . . . . Fewer than 5
Newton iterations usually achieve an accuracy of
kr�2DHð�Þkl2=k�kl2 < 10�12.
For each stationary solution �, we use the matrix-free

implicitly restarted Arnoldi algorithm to iteratively
compute the eigenpairs of the linearization J�D2Hð�Þ to
a specified tolerance [44]. In order to find the desired
eigenvalues we use inverse iteration, with the IDR(s)
method and inverse Laplacian preconditioning to solve
the linear systems, as above. Here, the preconditioner is
taken to be ½J�ðr2Þ��1, so that each iteration solves
r�2D2Hð�Þvnþ1 ¼ �r�2�Jvn.
We used a resolution in ðr; �; zÞ of 40� 64� 80 to

represent nonaxisymmetric solutions and eigenvectors.
For axisymmetric solutions, quantitative accuracy requires
only 30 radial modes forN < 1000 but up to 200 modes for
larger N. For eigenvectors, we use only Sþ 1 modes in �
(see the introduction) and identify quantitatively all ex-
pected invariant and negative directions and windows of
instability from Ref. [34].
Results.—In 2D (!z ! 1) for !r ¼ A ¼ 0, we first

demonstrate in Fig. 1 the existence of an energetically
stable (and hence also dynamically stable) vortex–bright-
soliton state. This is so for all of the R andN values that we
have sampled. A similar state exists for vortices of higher
topological charge S, as shown in Fig. 1 for S � 5. The
logarithmic scale shows that the soliton is more localized
for larger S. In this case, the negative energy modes [34] in
the spectra associated to 0 � � < S� 1 may lead to dy-
namical instability from complex quartets of eigenvalues
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as a result of Hamiltonian-Hopf bifurcations which can
occur upon collision with positive modes [45].

In a parabolic trap, the S ¼ 1 vortex–bright-solitons
remain dynamically stable. However, breaking of transla-
tional invariance produces a negative energy mode in the
� ¼ S� 1 spectrum. Thus, an additional control parameter
(through the atom number of the bright component) may
lead to collisions of this mode with positive energy modes
and, hence, rare isolated windows of instability arising for
large R< 1 and largeN; see Fig. 2 (left) for such a window
for S ¼ 1 as a function of R when N ¼ 4000. A similar
feature has recently been shown in the dark-bright 1D
analog of the vortex–bright-soliton states [46].

For higher-charge vortex–bright-solitons, the same situ-
ation holds for the � ¼ S� 1 spectrum, while for R ¼ 1
windows of instability arise from the negative modes in the
spectra of 0 � � < S� 1. As R decreases, however, these

windows of instability are generically suppressed by the
increasing presence of the second bright component.
Figure 2 (right) depicts the growth rate of the S� 2 spec-
trum for S ¼ 2 over R� N parameter space. An example
of the evolution of an unstable solution perturbed in the
growing excitation direction is depicted in Fig. 3. The
vortices first split from the center and begin to part and
precess, but once they are far enough and the bright com-
ponent is bimodal, they approach again and the bright
component resumes unimodality. The sequence repeats,
similarly to single-component S ¼ 2 vortices [47].
When we impose an additional sinusoidal lattice poten-

tial A > 0, the one-component (R ¼ 1) S ¼ 1 vortex may
become unstable (due to resonant eigenvalue collisions and
ensuing oscillatory instabilities), at least for A sufficiently
large [48]. The same holds for a large mass ratio R< 1.
However, below a critical R, once again the bright compo-
nent has a stabilizing influence.
The vortex–bright-soliton is stable in 3D without the

trap and with periodic boundary conditions in z. Indeed,
this is immediately clear upon Fourier transformation in z,
since the spectrum of the Hessian decouples into an infinite
family of subspectra equal to the 2D spectra shifted by k2z ,
and hence it remains non-negative. It is stable in the
trapped case as well for A ¼ 0 and !z ¼ 5!r and indeed
for !z > !r. When !z ¼ !r, the solution has another
rotational invariance, and additional negative energy
modes emerge for !z < !r. For 2!z ¼ !r there are at
least two additional negative energy modes, although this
may not lead to dynamical instability. Upon addition of the
lattice A > 0, the results are expected to be similar to 2D
(up to considerations of the aspect ratio of the harmonic
trapping). See Fig. 4 for an example with !z ¼ 5!r.
Discussion.—We have illustrated the vortex–bright-

soliton as a robust dynamical entity that emerges as a stable

FIG. 1 (color online). The energetically stable S ¼ 1
vortex-–bright-soliton without external potential for R ¼ 0:99,
rmax ¼ 60, and N ¼ 5900 (top row). The bottom row shows
radial profiles of unit and higher-charge vortex–bright-solitons in
a homogeneous medium on a regular (left) and logarithmic
(right) scale. All profiles are for N ¼ 10 000, R ¼ 0:99, and
rmax ¼ 80.

FIG. 2 (color online). Growth rate of the S� 1 mode as a
function of R with N ¼ 4000 for S ¼ 1 (left) and growth rate of
the S� 2 mode as a function of R� a1N for S ¼ 2 (right).

FIG. 3 (color online). The evolution in time of the unstable
S ¼ 2 solution for ðR;NÞ ¼ ð0:93; 200Þ perturbed in the direc-
tion of the growing excitation. Top: Approximate vorticity
density isocontours show trajectories of the two vortices.
Bottom: First splitting and rejoining.
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structure in both 2D and 3D condensates (although similar
concepts could be directly applicable to the nonlinear
optics of defocusing optical media). We also examined
relevant structures in the presence of parabolic (magnetic)
and periodic (optical) trapping and found that they remain
stable. While instabilities may arise (e.g., for higher topo-
logical charge S or as a result of the lattice), these are
usually alleviated or suppressed by the presence of the
second component in 2D and 3D.

It would be interesting to determine the robust existence
of such waveforms, which are well within the reach of
recent experiments, e.g., [26,28]. Our study suggests that
higher-charge vortices in a single component may be sta-
bilized by an external blue-detuned laser-beam potential
acting as the bright soliton here. Hence, the stability of
such vortices should be systematically examined in the
presence of external potentials. Other themes such as
multivortex–bright-soliton interactions and lattices would
also be natural extensions of the present work.
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