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Methods are presented for t ime evolution, steady-state solving and 
linear stability analysis for the incompressible Navier-Stokes equations 
at low to moderate Reynolds numbers. The methods use Krylov sub- 
spaces constructed by the Arnoldi process from actions of the explicit 
Navier-Stokes right-hand side and of its Jacobian, wi thout  inversion 
of the viscous operator. Time evolut ion is performed by a nonlinear 
extension of the method of exponential propagation. Steady states are 
calculated by inexact Kry lov-Newton iteration using ORTHORES and 
GMRES. Linear stability analysis is carried out using an implicitly 
restarted Arnoldi process with implicit polynomial filters. A detailed 
implementation is described for a pseudospectral calculation of  the 
stability of Taylor vortices wi th respect to wavy vortices in the 
Couette-Taylor problem. �9 1994 Academic Press, Inc. 
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1. I N T R O D U C T I O N  

The Navier-Stokes equations pose many challenges to 
computational physicists. They are three-dimensional non- 
linear PDEs, and they are stiff. This stiffness has consequen- 
ces for the three kinds of calculations typically carried out in 
computational fluid dynamics--i.e., time evolution, steady- 
state solving, and linear stability analysis. In this article, we 
describe and test Krylov methods for these three types of 
calculations in the context of the Couette-Taylor problem, 
in particular, the transition from Taylor vortices to wavy 
vortices. 

The key concept which unifies our three methods is the 
use of Krylov subspaees. If we write the time-dependent 
Navier-Stokes equations in the form 

O,U=F(U)= -(U.V) U+vV2U-VP (1.1) 

then our methods rely on explicit evaluations of the function 
F(U), essentially via the right-hand side of (1.1), and 
repeated evaluations of its Jacobian DF(U) defined by 

DF(U) u= - ( U . V )  u - ( u . V )  U+ vVZu-Vp. (1.2) 



KRYLOV METHODS FOR NAVIER-STOKES 83 

(The handling of the pressure terms VP and Vp to enforce 
incompressibility, and of boundary conditions, will be 
explained in the next section.) 

Krylov methods for the Navier-Stokes equations are 
motivated by the following considerations. If we wish to 
achieve high accuracy at low or moderate Reynolds num- 
bers, computational difficulties arise predominantly from 
the viscous terms v V2U. The discrete vector Laplacian v V 2 
has a wide range of eigenvalues, which causes the time- 
dependent nonlinear equations to be stiff, and the Jacobian 
DF(U) to be poorly conditioned. This has prompted the 
development of specialized strategies for each of the three 
types of computational fluid dynamical calculations, but 
these strategies generally involve the exact solution of large 
linear systems. 

In time evolution, semi-implicit methods are used, in 
which the viscous operator v V 2 (or a similar operator such 
as [ I -  Jtv V 2] for a backwards-Euler scheme) is inverted, 
directly or iteratively. Direct inversion usually requires a 
regular geometry and grid in order to take advantage of the 
concomitant special structure of the Laplacian. However, 
the constraint of incompressibility, which couples the three 
velocity components, means that the viscous problem 
cannot be solved without also solving for the pressure 
[8-10,31], except via some approximation. For large 
problems where construction of the matrix form of the 
viscous/pressure system is not feasible, exact solution 
requires an elaborate strategy, such as an influence matrix 
method [35, 42, 59] to decouple the components and to 
determine correct pressure boundary conditions. None- 
theless, such methods have been efficiently implemented in 
many cases. 

However, direct inversion of the viscous operator becomes 
prohibitively expensive for nonstandard geometries or 
meshes. Iterative-inversion--via conjugate gradients, for 
example--is feasible, but it can converge slowly since the 
Laplacian becomes increasingly ill-conditioned as the 
spatial grid is refined. In addition, when the advective term 
is handled explicitly, as is usually the case, numerical 
stability is still limited by the CFL condition. Furthermore, 
the algorithms which immediately suggest themselves for 
the calculation of steady states (e.g., Newton's method) and 
for linear stability analysis (the inverse power method), 
require the manipulation of a matrix, the Jacobian DF(U), 
whose structure for a general velocity field U is considerably 
less regular that that of v V 2. 

In most situations, however, it is neither difficult nor 
expensive to explicitly compute the viscous term v V2U as 
well as the advective term - ( U. V) U. In finite difference or 
finite element methods, the discrete matrix forms of differen- 
tial operators are sparse, while in the pseudospectral 
method I-4, 26], the action of differential operators can 
be computed quickly via fast Fourier transforms and 
recurrence relations. Methods of time evolution, steady- 

state solving, and linear stability analysis requiring only 
explicit evaluation and not inversion are, therefore, 
potentially advantageous. 

The idea behind Krylov methods is to use repeated action 
of the Jacobian DF(U) on some initial velocity field to 
generate a set of fields that spans a relatively small Krylov 
subspace, in which a good approximate solution of a large 
linear problem can be found. Such methods are increasingly 
employed to solve the two major problems of numerical 
linear algebra: calculating eigenvectors [ 1, 24, 38, 47, 49, 52, 
56, 57] and solving linear equations [48, 50, 51, 61]. A 
more recent innovation is the use of Krylov methods to 
solve systems of differential equations 1,22, 23, 39, 45, 54]. 

Each Krylov subspace we employ is typically of dimen- 
sion K~20,  which means that we require storage for 20 
velocity fields with which to span the subspace. Large 
matrix representations of the Jacobian, however, are not 
needed; only small K x K  matrices, which approximate 
its action in the K-dimensional subspace, must be 
manipulated. Due to their small size, these matrices can 
be directly diagonalized, exponentiated or inverted as 
appropriate. 

To explain the application of these ideas in the context of 
the incompressible Navier-Stokes equations, we describe 
calculations that we have performed to determine the 
stability of Taylor vortices in the Couette-Taylor problem 
and to study the instability which gives rise to wavy vortices. 
Although we limit our study to a pseudospectral discretiza- 
tion, our solution strategies should also be compatible with 
spatial discretizations based on finite differences, finite 
elements, or spectral elements. We expect that our methods 
will be applicable to low t o  moderate Reynolds number 
calculations, for which numerical stability poses a major 
problem, rather than to large-scale turbulence calculations. 

In the next section we will describe this linear stability 
problem, our pseudospectral method, and the operators we 
use to compute the action of each term in the Navier-Stokes 
equations. Subsequent sections will describe our time- 
evolution, steady state, and linear stability methods and 
explore their efficiency and stability. 

2. DESCRIPTION OF THE COUETTE-TAYLOR 
TEST PROBLEM 

The Couette-Taylor problem is a classic hydrodynamic 
stability problem 1"17, 58]. An incompressible fluid of 
kinematic viscosity v occupies the annular region between 
long coaxial cylinders. With the outer cylinder at rest and 
the inner cylinder rotating, the flow undergoes a sequence of 
transitions as the rotation speed is slowly increased from 
zero. At the primary transition the basic circular Couette 
flow bifurcates to an axisymmetric pattern of Taylor vor- 
tices. At the secondary transition the Taylor vortex flow 
bifurcates to a time-dependent rotating-wave state known 
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as wavy vortices. Our goal is to predict parameter values at 
which wavy vortices will appear on the basis of a numerical 
linear stability analysis. Our strategy is to compute the fully 
nonlinear steady-state axisymmetric Taylor-vortex flow, to 
linearize the Navier-Stokes equations around this state, and 
to seek eigenmodes of the linearized equations which break 
the axisymmetry. Similar calculations have been performed 
by Jones [32, 33] using other numerical methods. 

The radii of the two cylinders are r~. and rout, with 
rou t > rin. The cylinders are assumed to be infinitely long 
and the velocity field is periodic in the axial direction with 
wavelength ~. The inner cylinder angular speed is g2. Three 
dimensionless numbers, the radius ratio q=rin/rout, 
the Reynolds number Re=~2ri~(ro~t-r~)/v, and the 
dimensionless wavelength o~/(rout-rio), are sufficient to 
parameterize the system. 

The remainder of this section 2 describes how we spatially 
discretize the fields and compute the function F(U) and the 
action of its Jacob\an DF(U) as defined in Eqs. (1.1)-(1.2). 
Because subsequent sections, which describe our solution 
strategies, make few references to this material, some 
readers may prefer to bypass it on first reading. Its main 
importance is to demonstrate how the boundary conditions 
and divergence-free constraint are incorporated into our 
methods. 

Since this article is primarily concerned with solution 
strategies for the spatially discretized problem and not with 
the discretization itself, we will use the notation of the 
continuum problem to refer also to the spatially discrete 
operators, for example, using V 2 for the discrete Laplacian. 
Note, however, that the discretization of F(U) is the same as 
that of U, which is to say that F(U) is computed on the same 
grid, or expanded in the same set of basis functions, as the 
velocity field. 
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FIG. 1. Computational (r, z) collocation grid and computed non- 
linear Taylor-vortex velocity field, for the radius ratio ~/= 0.8703, axial 
wavelength ~=2.0076(ro~t-ri.), and Reynolds number Re= 131.025. 
Each velocity vector refers to the collocation point located at the midpoint 
of the arrow. 

and of N~ from 27 to 72. Conversion to and from a real- 
space representation is accomplished by mixed-radix fast 
Fourier transforms. The associated collocation grid is the 
set of points (G, zj) defined by x ( r , )= -cos ( ton iNg)  and 
z j=je /N~.  Figure 1 shows a computed Taylor  vortex 
velocity field plotted on this grid. 

2.2. Explicit Viscous and Advective Terms 

The incompressible Navier-Stokes equations in cylin- 
drical coordinates are 

2.1. Geometry and D&cretization 

We use a cylindrical coordinate system (r, 0, z). All of our 
calculations are performed on a two-dimensional (r, z) 
plane, with 0 ~< z < ct, periodic in z, and with rm ~< r ~< rou t. 
The velocity field U has three components ( U ,  Uo, U~). If 
f = f(r ,  z mod ~) is any one of these three, or the pressure P, 
then our discrete approximation is the Chebyshev-Fourier 
series 

Nr N z / 2  

f ( r , z ) .~  ~ T,(x(r))  ~ e2~iJ~/~f~j+c.c. (2.1) 
n = O  j =  -- N z / 2  

Here T n is the n th Chebyshev polynomial, the function 
x(r) =- (2r - ri, - rout)/(ro~t - rin) simply maps the interval 
rin ~< r ~< rou t onto - 1 ~< x(r) ~< + 1, and the coefficients f , j  
are real for the Taylor vortex calculation and complex for 
the wavy-vortex eigenproblem (this latter point will be 
explained in Section 5). Values of N, range from 24 to 32 

O, U r = { - U r a r U r - U o r - a  OoUr+Uo r 1Uo-UzOzUr} 

q- v[V2Ur - r-2Ur -- 2r-2 ~0 Uo] -- O~P 

OtUo = { - U r C , U o - U o r  l OoUo_U,r- lUo -U=OzUo} 

+ v[V2Uo - r-2Uo + 2r-2 8o Ur] -- r -  1 doP 

~3tUz= { - U ,  6~rgz - Uo r-1 ~oUz - Uz~zUz} 

+ v [ V 2 U z ] - & ~ P  

r -I  O~rU~+r -1 doUo+O~U==O, (2.2) 

where the scalar Laplacian operator is 

V Z = r  l ~ r r ~ r + r - 2 ~ + O 2 .  

By convention the partial differential operators C ,  O0, and 
Oz act on everything to their right within the same term, 
so that, for example, r-13~rdrU,  is the same as 
r 1 8,(r O,(U~)). We have used braces and square brackets 
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to indicate the advective { - ( U . V )  U} and viscous 
[v V2U] terms. 

The spatial operators appearing in these equations are 
the derivatives t3r, ~30, 0= and the curvature factors r and r 1, 
as well as product and powers of these operators. For  the 
Taylor vortex calculation, 0 0 ~ 0  because the flow is 
axisymmetric. In the spectral representation, 0~ simply 
multiplies each fnj in (2.1) by 2n/j/a. The operator 0r may 
be evaluated in Chebyshev space via recurrence relations 
[4, 26-]; however, it is often faster to use matrix multiplica- 
tions for c~ r, r -1  0r r and other such strictly radial operators 
due to the very efficient implementation of small matrix 
multiplications on many computers. These matrices are of 
size (Nr + 1 ) x (Nr + 1 ), with real entries. Since it is equally 
efficient to act with such a matrix on either the real-space or 
Chebyshev-space representation, we often choose to store 
our fields in a mixed spatial representation in which the r 
dependence is in real space (at the radial collocation points), 
and the z dependence is spectral (Fourier modes). In this 
representation the matrices r and r-1 are diagonal. No-slip 
boundary conditions are imposed at collocation points tin 
and rout. 

To evaluate the nonlinear advective terms we compute 
derivatives in the mixed representation and then convert to 
real space to perform the multiplications pointwise at each 
collocation grid point. The result is transformed back to the 
mixed representation without de-aliasing [4, 26]. 

2.3. Pressure and Boundary Conditions 

The no-slip boundary conditions on the cylinder walls at 
rin and rout are 

U r = U z = 0 a t  r = r i n ,  rou  t 

U 0 = gr2rin a t  r = r in  

Uo = 0 at r = rou t. 

(2.3) 

With t'2 constant in time this implies that all three com- 
ponents of F(U) should be set to zero at the boundaries. Let 
us define the operator B which sets the boundary values of 
a velocity field to zero. That is, for any U, 

f 0 
BU(r, z) = t {U(r,z) 

a t  r ~ Fin, rou t 

elsewhere. 

which in effect says that the momentum equations are 
satisfied only in the interior. To derive the consistent 
pressure Poisson equation [8, 10, 27-30-], we require that 
V. F(U) = 0 everywhere, including at the walls. From (2.4), 
we obtain 

V . B V P = V . B [ - ( U . V )  U+vVZU] (2.5) 

Equation (2.5) differs from the usual pressure Poisson equa- 
tion, but which ensures that 0tU is (to roundoff error) 
simultaneously incompressible and zero at the walls; this 
equation has been used in explicit time-stepping algorithms 
[30, 37]. Articles by Chorin [8-10]  and by Gresho and 
co-authors [27-30-] analyze some of the issues surrounding 
the pressure Poisson equation. 

Equation (2.5) requires no explicit boundary conditions 
for the pressure; they are built-in. For our discretization 
there is one spurious null mode of the operator V - B V  
associated with the j = 0  Fourier mode; however, this 
problem may be easily bypassed if we note that for this 
Fourier mode the divergence-free condition (2.2) and the 
impermeability conditions Ur = 0  at r =  rin , rou t together 
imply that there can be no mean (i.e., j = 0) radial velocity 
at any radial position, and thus the j = 0 radial component 
of F(U) may simply be set to zero for all r, without ever 
having computed the j = 0  component of the pressure. 
For  j :A0 equation (2.5) is solved by a fast direct method 
(operation count O(N~Nz)) which takes advantage of the 
decoupling of the problem by Fourier modes. 

To summarize, given a velocity field U we evaluate F(U) 
by the following steps: 

1. Compute and sum together - ( U . V )  U and v V2U. 

2. Solve (2.5) for the pressure and subtract its gradient 
from the result of step 1. 

3. Apply the operator B; that is, set the boundary values 
to zero. 

To be more concise, we will say that there exists an idem- 
potent linear operator H which projects any velocity field U 
onto a divergence-free field I1U which is zero on the walls. 
This operator H is loosely defined by the expression 

HU=-B[I -V(V �9 BV) - 1 V .  ] BU, (2.6) 

(We note that the discrete form of B for the mixed-space 
representation of U is simply an N, • Nr identity matrix 
except that the first and last diagonal entries are zero.) The 
statement that F(U) satisfies the no-slip conditions is 
equivalent to F(U) = BF(U), that is, 

c?,U= F(U)= B [ - ( U . V )  U + v V2U ] -  BVP (2.4) 

where it should be understood that the "inversion" in (2.6) 
is accomplished by solving the pressure Poisson problem 

V . B V P = V . B U  (2.7) 

by the fast direct method previously alluded to and with the 
j = 0 radial component of the projected field/-/U set to zero 
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at all r. The p r o j e c t o r / / h a s  the desired properties that for 
any U, 

V . H U = 0  

[ I - -  B ]  l l U  = O, 

which are the incompressibility and no-slip conditions for 
the projected field. A single subroutine implements /7 in 
such a manner that P is defined only within the subroutine. 

The operator /7  allows us to formally remove the pressure 
from the equations of motion. The right-hand side of (1.1) 
and the action of the Jacobian defined by (1.2) may now be 
written concisely as 

F(U) = / 7 [  - ( U. V) U + v V 2 U] (2.8) 

D F ( U ) u = I I [ - ( U . V ) u - ( u . V )  U + v V 2 u ] .  (2.9) 

Here we have used the fact that / - / is  linear and thus has no 
effect on the linearization of (2.8) to obtain (2.9). 

2.4. Removal  o f  Couette Flow 

Circular Couette flow, which is described by the closed- 
form expression 

U c =  Uc(r )  2 r2 n - -r  + eo, 
rou t -- 

where 60 is the azimuthal unit vector, is a steady solution of 
the full equations which satisfies the boundary conditions 
(2.3), even though it is an unstable solution at the 
parameters we are investigating. We find it convenient, 
however, to redefine U to be the total velocity field minus 
Couette flow. With this redefinition, dt(Uc + U ) =  ~, U and 
(2.8) and (2.9) become 

F ( U ) = I I [ - ( ( U c +  U ) . V ) ( U c +  U ) + v V 2 U ]  (2.10) 

D F ( U )  u = H [ - ( ( U c +  U ) . V )  u 

- (u �9 V)(Uc + U) + v Wu] .  (2.11) 

In (2.10) we have also used the fact that V2Uc = 0, as can be 
verified analytically. The newly defined U is subject to the 
homogeneous boundary conditions 

U = 0 at r = rin, rou t 

rather than (2.3). This allows us to use the projector H to 
prepare an initial U which satisfies boundary conditions and 
the divergence-free constraint, for example, by applying H 
to a random field. 

Our three methods are based on Krylov subspaces 
spanned by velocity fields made numerically divergence-free 
by the action of/7. This is not, however, sufficient to prevent 
the slow accumulation of divergence from round-off error. 
Thus at the end of each major iteration (e.g., each time step 
in the time-evolution method, each Newton step in the 
steady-state method, each restart of the Arnoldi sequence in 
the linear stability method), we apply the projector once 
more to each velocity field that is carried forward to the next 
major iteration. This is a subtle point which perhaps will not 
become clear until the various methods are discussed more 
fully. 

2.5. Sum m ary  

The subroutines which compute F(U),  D F ( U )  u, and H U  
are elementary fluid dynamical routines exercised by our 
various Krylov methods. An additional subroutine, G(u), is 
used in time evolution, and it will be defined and described 
in Section 3. A modified Jacobian OFmq(U ) u and a 
modified projector Hmq U are used in the linear stability 
calculations, where m and q refer to the azimuthal 
wavenumber and axial Floquet exponent, respectively, of 
the wavy vortex eigenmode; this will be explained in 
Section 5. For completeness these six subroutines are 
summarized in Table I. Essentially all information related 
to the fluid dynamical problem is contained within these 
subroutines, which are used as black boxes by the driver 

TABLE I 

The Elementary Subroutines Used by Our Krylov Methods 

Name Description Definition CPU 

F(U) Right-hand side 17[ - ( (U  c + U). V)(Uc + U) + v V2U] 0.013 

DF(U) u Jacobian II[--((Uc+ U).V) u - ( u  'V)(Uc+ U) + v V~u] 0.014 
IIU Projector B[ U-- VP ], where V . B VP = V . BU 0.003 

G(u) Remainder //[ - (u. V) u ] 0.009 

DFmq( U) u Wavy vortex Jacobian ll,,q [ - (( Uc + U) . V,,w) u - (u. V)(Uc + U) + v V2q u ] 0.014 

l-lr~U Wavy vortex projector B[u-VmqP], where Vmq.BV,,~p=V,,q.Bu 0.003 

Note. All information about the fluid dynamical problem, its boundary conditions, the divergence-free constraint, and the spatial discretization, is 
contained within these routines. They are treated essentially as black boxes by the various drivers that implement our solution strategies. CPU timings 
are for a single Cray YMP processor and truncation parameters N= 24 and J=  27. Total CPU usage shown in figures is dominated by actions of 
DF(U) u; hence estimates of the total number of invocations of DF(U) u are obtained with the conversion factor 0.014 CP U seconds per subroutine call. 
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routines which implement our solution strategies. The three 
computational fluid dynamical problems to be solved in the 
remainder of this article are written succinctly in terms of 
these functions and operators as 

1. the time-dependent nonlinear problem for Taylor 
vortices 

~,U= F(U) 

2. the steady-state problem for Taylor vortices 

F(U)  = 0  

which leads to the Newton iteration 

D F ( U )  u = F(U)  

3.1. Exponential Propagation for  Linear Differential Equa- 
tions 

Consider the linear initial-value problem: 

~ , U = A U  (3.1) 

U(to) = Uo (3.2) 

for an arbitrary linear operator  A. The exact solution of 
(3.1)-(3.2) is 

U(t o + t) = etAUo . (3.3) 

Suppose that U(t) is represented in discrete form by N 
unknowns. An operator such as tA may be exponentiated if 
the N • N matrix form of A can be decomposed as 

A = E A E  1 (3.4) 

and 

3. the linear stability eigenproblem for wavy vortices 

O F m q  ( U )  u = ,~u. 

3. TIME EVOLUTION BY EXPONENTIAL 
PROPAGATION 

The first major computational fluid dynamical problem 
we address is time evolution. One seeks to obtain the time 
history of the evolving velocity field U(t) by solving the 
time-dependent problem 0, U =  F(U)  beginning with some 
suitable initial condition U(0). In this section 3 we describe 
and test a method of time evolution based on the use 
of Krylov subspaces. We begin with the case of a 
homogeneous linear system in order to set notation and 
establish basic ideas and results. We describe how an 
approximation to the exponential of a large linear operator 
can be constructed using the exact exponential of a small 
matrix which approximates the action of the operator in a 
K-dimensional Krylov subspace. Use of this approximate 
exponential allows integration from time to to to + t with 
O(t K) accuracy. Furthermore, in our numerical experiments 
with the Navier-Stokes operators, the method appears to be 
numerically stable for all t (although we cannot prove this 
in general). We then extend the method to the nonlinear 
case, incorporating nonlinear corrections via a functional 
iteration method. We test the nonlinear time-evolution 
method using F(U) and DF(U)  as defined for the Couet te-  
Taylor problem. Our test case will be the evolution of the 
axisymmetric Taylor-vortex flow from a suitable initial con- 
dition to the time-asymptotic steady state. After presenting 
our timings, we will compare the Krylov methods to 
standard methods of time evolution. 

where E is a matrix of eigenvectors and A is a diagonal 
matrix of eigenvalues 21, 22 ..... 2s.  In this case 

eta = EetA E - 1, (3.5) 

where e 'A is the diagonal matrix with entries e t~l, e t22 . . . . .  e t~N. 
However, exponentiation of an operator A via exact 
diagonalization of its matrix form is quite expensive if N is 
large. For  the discretization defined for our Couette-Taylor 
problem, the number of unknowns in the expansions (2.1) 
of the three velocity components is N = (Nr + 1 ) x Nz x 3, 
which is 2025 for the typical values Nr = 24 and Nz = 27. We 
will often refer to the discrete representation of the velocity 
field U as a vector of length N, by which we mean a column 
vector of the expansion coefficients arranged in some fixed 
but otherwise arbitrary storage order. The matrix A would 
then be of size N x N. Even if such a large amount of storage 
were available, the computational cost of the diagonaliza- 
tion step (3.4) would make direct use of (3.5) uncompetitive 
with standard implicit multistep methods. Instead, we shall 
approximate the action of e t A  o n  an initial vector Uo by 
exponentiating a small matrix H which approximates the 
action of A in a Krylov subspace. 

We define the K-dimensional Krylov subspace to be the 
space spanned by the set of vectors { Uo, A Uo ..... A K- 1 U0 }. 
An orthonormal basis for this subspace is generated by the 
following Arnoldiprocess [ 1 ]. Setting wl = U0, we compute, 
for k =  1,2 ..... K, 

v~ - wk/llwkll (3.6) 

k 

Wk+ 1 =~Av k - -  ~ ,  v t ( v  t, A r k ) .  ( 3 . 7 )  
l = 1  

This is equivalent to the Gram-Schmidt  orthogonalization 
of the sequence of vectors { Uo, A Uo ..... A x 1Uo } and the 
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K resulting Krylov vectors vl,  v2 ..... vK are orthonormal 
vectors in ~N. Although finite precision arithmetic can 
sometimes lead to loss of orthogonality, we find empirically 
that for our Couette-Taylor  calculations, straightforward 
implementation of (3.6)-(3.7) results in an acceptably 
orthogonal basis set. 

We note that the Arnoldi process requires only the action 
of the linear operator A on each vector vk. Thus in the 
actual implementation it is sufficient to have available a 
subroutine which computes this action, by whatever means, 
but it is not necessary to have available any matrix represen- 
tation of A. In particular, the Jacobian DF(U) for our 
Couette-Taylor problem is a subroutine which computes 
the action of a linear operator. We note that only K actions 
with the operator A (that is, K subroutine calls) are suf- 
ficient to carry out the K steps of the Arnoldi process. Recall 
that K will be approximately 20 for our tests, so that the 
Krylov subspaces have dimension very much less than 
N =  2025, the typical problem size defined by the spatial 
discretization. 

Now that we have constructed the orthonormal basis, we 
assemble the Krylov vectors into an N x K matrix V whose 
columns are v~, v2, ..., VK. That  is, 

It will prove convenient for later sections to restate 
Eq. (3.7) in the standard matrix form of the Arnoldi 
decomposition, 

A V =  VH + weVx, (3.10) 

where w = wK+l. Equation (3.10) states that the product of 
A with any Krylov vector, except the last one, is in the 
Krylov subspace. Here, A is N • N, V is N x K, H is K x K, 
w is N x  1, and eXx is 1 xK,  so that each term in (3.10) is 
N x  K. We show that (3.10) holds by showing that each 
column of the left-hand side equals the corresponding 
column of the right-hand side; that is, 

A V e , = ( V H + w e X K )  ek, k = l  ..... jr(. (3.11) 

For  the case k = K, this becomes 

K 

AVK= Z VlHIK q-w 
1 = 1  

which follows from (3.7) and (3.9). For 1 <<,k<K, (3.11) 
becomes 

~ k ~ V k ,  k = l  ..... 

where ek is the k th unit vector of length K. Storage 
requirements for our methods are dominated by the size of 
V, which is the largest matrix that we explicitly construct. 
We note that the operator VV T, where V T is the transpose 
of V, is an N x N projection operator onto the Krylov space, 
and that V T V is the K x K identity matrix. 

The action of the operator A may be approximated in the 
Krylov subspace by 

A ~ VVTA VV T = V H V  T, 

where the K x K matrix 

K 

Ark = E vtHtk 
l = l  

k 

= ~ vzHtk+v~+lH~+l,k  
/ = 1  

k 

= E VlHlk-}-Wk+l 
l = 1  

(3.12) 

(3.13) 

which also follows from (3.7). In (3.12) we have used the fact 
that H is upper Hessenberg and in (3.13) we have used 
H ,  + 1.k = II w~ + 111 and then (3.6) for k + 1. 

In order to approximate the exponential of tA, we now 
diagonalize the small matrix H explicitly, for example by the 
QR algorithm, to yield 

H = VTA V (3.8) H = E A E  - 1, 

has elements 

Hzk -- (vl, Ark). (3.9) 

where A is a diagonal K •  matrix of eigenvalues 
21, 22 ..... 2~ and E is the K•  K matrix whose columns are 
the corresponding eigenvectors. The solution (3.3) at time 
t o + t is then approximated by 

By virtue of definition (3.6)-(3.7), vt is orthogonal to Avk 
for l > k +  1; thus H is upper Hessenberg. The scalar 
products that are subtracted from Ark to form Wk+l in 
(3.7) comprise most of the matrix elements of H. It can 
also be verified that Hk+ 1.k = IlWk+lll, so that the entire 
matrix H is generated automatically as a by-product of 
orthogonalization in the Arnoldi process. 

U(to + t) = etAUo ,~ Ve'UVXUo (3.14) 

= VEetAE -1VXUo, (3.15) 

w h e r e  e tA is the diagonal matrix with entries e ';q, e t22 . . . . .  e t~. 
In Eq. (3.14), the product VTUo need not actually be 
calculated, since Uo is used to generate the Krylov space. 
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That is, Uo = vl II Uoll, so 

VTUo = vTva II U011 = el II Uoll, 

where vl is the first Krylov vector and el is the first unit vec- 
tor of length K. We note that in our numerical experiments 
the cost of explicitly diagonalizing and exponentiating H is 
always much smaller than the cost .of the K steps of the 
Arnoldi sequence when A is DF(U). 

The error in approximation (3.14) can be shown to be of 
order O(t x) by the following calculation: 

V e m V T U o = V ( I + t H + ~ H 2 +  . . . ) V T U o  

= V  I + t V T A V + ~ V T A V V T A V + - . -  vTuo 

t 2 
_ _  

(3.~6) 

The operator VV r which appears repeatedly in (3.16) is the 
projection operator onto the Krylov space. Again, since Uo 
generates the Krylov space, it is in the Krylov space and 
vVTUo = Uo. Similarly, AUo is in the Krylov space, so 
VVTA Uo = A Uo. This reasoning can be continued up until 
the term VVTA K-1U o = AK I Uo" The end result is 

V e , H V T U o = ( I + .  (tA) z (tA) x- l ' ]  tA +---f--+ ... + (--~--~.] Uo 

t ~ tK+ 1 

"x VVTAKUo (3.17) 

which approximates e 'A to order t K. A more rigorous proof 
and upper bound for the error can be found in [23, 53]. 

Having discussed the accuracy of (3.14), we now address 
its stability. It can be shown that (3.14) is unconditionally 
stable when A is symmetric. By unconditionally stable we 
mean that if 

lim IIe'AUoH = 0  
t ~ o o  

then 

lim II VetHVTUo[I = 0 .  
t ~ c ~  

The above is equivalent to the statement that if the operator 
A is stable (i.e., if all of its eigenvalues have negative real 
parts), then the operator H is also stable. 

The proof follows from the fact that, for symmetric 
matrices, stability and negative definiteness are synony- 
mous. It is easy to show that if A is symmetric and negative 
definite, then so is H [21, 46]. The symmetry of H follows 
simply from 

H T = ( VTA V) T = v T A T v =  VTA V= H. 

The matrix H is negative definite since, for any y # 0 in R K, 

(y, Hy) = (y, VTA Vy) 

----(Vy, AVy)<O. 

This proof can be extended to apply to normal operators, 
i.e., A TA = AA T. That is, if A is normal, then stability of A 
implies stability of H. Gallopoulos and Saad [23] also 
prove that if the symmetric part of A (i.e., (A + AT)/2) is 
stable, then so is the symmetric part of H. For general non- 
symmetric A, however, unconditional stability cannot be 
proven, and in fact there exist stable operators A for which 
certain starting vectors Uo generate unstable matrices H. 

Although the Navier-Stokes Jacobian DF(U) is neither 
symmetric nor normal, for very low Reynolds numbers it 
is dominated by the Stokes operator / /v V 2. The Stokes 
operator is symmetric negative definite for certain prob- 
lems, for example, a centered finite-difference scheme in 
Cartesian coordinates with periodic boundary conditions. 
For  such a Stokes problem, therefore, unconditional 
stability can be shown rigorously. Furthermore, as the 
Reynolds number is increased from zero, the eigenvalues of 
DF(U) depart continuously from the Stokes eigenvalues, 
and thus for simple problems there must exist some range of  
Reynolds numbers for which the unconditional stability of 
(3.14) is still in effect. (We note also that no straightforward 
analog of the CFL stability restriction is apparent.) 

For  the Couette-Taylor  problem the Stokes operator 
/ /vW 2 as defined in cylindrical coordinates for the 
Chebyshev-Fourier basis is symmetric only with respect to a 
certain inner product, which is not the standard Euclidean 
inner product used in our Arnoldi process. Thus we know of 
no proof of the unconditional stability of (3.14) for the 
operator DF(U) corresponding to our discretization of, and 
choice of inner product for, the Couette-Taylor  problem 
(no matter how small the Reynolds number). In our 
numerical experiments, however, unconditional stability is 
often evident. We will return to this issue in Section 3.5 
when we discuss our timings. 

It may be noted that since exponential propagation 
approximates U(to + t) within a Krylov space spanned by 
AkUo, k = 0 ..... K -  1, the result is a linear combination of 
these vectors and must therefore be the sum of a certain 
K-term series in powers of A acting on Uo. Series 
approximations to the exponential of tA are also used by 
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explicit Taylor series methods, which are well known to be 
unstable at large t for the simple reason that polynomials 
are unbounded for sufficiently large arguments. In view of 
this, the unconditional stability of exponential propagation 
for the Stokes operator may seem surprising. The essential 
difference, however, is that explicit formulas depend on the 
product tA, so that the coefficient of A~Uo has the functional 
form t k. In contrast, in exponential propagation (3.14), the 
coefficient of each term AkUo is determined from the matrix 
A and the initial condition Uo via the Arnoldi process and 
the exponentiation of tH, and thus is not of the form t k. 
Thus the series approximation to the exponential may 
remain numerically stable unconditionally, as is in fact the 
case when all eigenvalues of H have negative real parts. 

For fixed K, the error in approximation (3.14-3.15) 
increases with t. In order to solve (3.1-3.2) to fixed accuracy 
for a given t, it is therefore necessary to incorporate 
(3.14-3.15) into a time-stepping method. A method of 
time-evolution based on exponential propagation via (3.15 ) 
was first suggested in [39, 45] for symmetric linear systems 
arising in the context of certain problems in computational 
chemistry and later adapted for nonsymmetric systems of 
differential equations in [22, 23]. Starting with an initial 
vector Uo = U(to), one obtains a vector UI ,~ U(to + t) for 
some time step t by carrying out the Arnoldi process, the 
construction and exponentiation of H and the computation 
of Ut via (3.14). The vector U~ then becomes the initial 
vector for the next time step, and it is used to generate a new 
Krylov subspace and to construct updated matrices H and 
V. Thus the approximate representation of the matrix A 
changes at each time step. The size t of the time step is deter- 
mined by accuracy requirements and is varied at each step 
by an automatic error-control mechanism. 

The basic difference between solving linear systems 
by exponential propagation and by standard multistep 
methods can be summarized as follows. Multistep methods 
approximate the exponential (e.g., by a polynomial as in 
forwards Euler, or by a rational function as in backwards 
Euler and Crank-Nicolson) of the exact operator tA. 
Exponential propagation instead uses the exact exponential 
of the approximate operator t V H V  r. 

3.2. Exponential Propagation for Nonlinear Differential 
Equations 

Exponential propagation has been adapted for solving 
nonlinear systems of differential equations by Friesner et al. 
[22]. Consider the general nonlinear initial-value problem: 

By defining 

a , U = F ( U )  

U(to) = Uo. 

u(t) - U(to + t) - U o (3.18) 

and Taylor expanding F about Uo, we obtain the problem 
for u, 

Otu = b + Au + G(u) (3.19) 

U(to) = 0, (3.20) 

where b=-F(Uo), the Jacobian A=DF(Uo) ,  and the 
remainder G(u) is defined by 

G(u) = F( Uo + u) - b - Au. (3.21) 

For our fluid dynamical problem, F(Uo) and DF(Uo) are as 
defined in (2.10)-(2.11 ) and Table I, and 

G(u) = 17[ - ( u  .V) u] (3.22) 

as can be verified from (3.21) and the definitions of F(U) 
and DF(U). The action of G(u) is computed by an elemen- 
tary fluid dynamical subroutine, similar to the subroutines 
F(U) and DF(U) previously described. The simple form of 
expression (3.22) results from the straightforward quadratic 
nonlinearity of the Navier-Stokes equations. (For other 
equations with more difficult nonlinearities, it would be 
necessary to use the original expression (3.21).) 

If G(u) were zero, then the exact solution to (3.19)-(3.20) 
would be 

e tA _ ] 

u ( t ) -  - -  b. (3.23) 
A 

There is, of course, no closed form solution to (3.19)-(3.20) 
when G(u)50 .  But we may write the equivalent integral 
equation: 

e'a- I b fo u(t)= A + dz e ('-~)AG(u(z)). (3.24) 

We solve (3.24) by the functional iteration 

e tA - I t 
u( '+l ) ( t )=  -~ b+fdre~ ' -~)aG(u( ' ) (~) ) ,  (3.25) 

Jo 

using (3.23) as the initial guess u(~ Equation (3.23) is 
approximated, by analogy to (3.15) as 

e tA - - I E _  1 
u(~ ~ VE VXb. (3.26) 

A 

Recall that A is diagonal, so that its inversion and exponen- 
tiation is straightforward. Expression (3.26) can be shown 
to be an O(t x§  accurate approximation to (3.23) by a 
calculation analogous to that leading to (3.17). 
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The convolution integral in (3.25) is evaluated by a com- 
bination of linear exponential propagation and quadrature, 
as follows. We calculate G(u(m)(z)) at several values of z in 
order to fit G(u(m)(T)) to a polynomial, 

J + l  

G(u(m)(z)) "~ E gJ~J, (3.27) 
j - - 2  

where each gj is a vector of length N. The polynomial has no 
constant or linear terms in ~ by virtue of the definition (3.21) 
of the remainder G(u). Typically the degree of the polyno- 
mial is fixed at three, so that only two values of z > 0 are 
needed and the polynomial (3.27) has only J =  2 terms. 

The integral in (3.25) can now be written as 

s e( '-  r)AG(u(m)('C)) 

I/ dz e (t-~)A E gJzJ (3.28) 
J 

= ~  & e  (' ~)AJC gj. (3.29) 
j "  

We act with the integral operator in square brackets in 
(3.29) on each of the vector coefficients g / b y  forming a 
separate Krylov subspace Vj and approximate operator  Hj 
for each j. This involves carrying out the Arnoldi process 
using g/as  the initial vector. However, here we find empiri- 
cally that much smaller Krylov spaces (Kj ~ 2) are optimal. 
After diagonalizing each small matrix H i =  EjA/Ej -~, the 
final approximation for the convolution integral (3.28) is 
assembled as 

o dr e (t- ~)AG(u(")(z)) 

, ~  VjE/( fodze  <' OAJz+)Ef'Vfgj,  (3.30) 
j " 

where the Aj are K/x  Kj diagonal matrices. The integrals in 
(3.30) enclosed in parentheses are evaluated in closed form 
via a recursion relation. We find that the functional iteration 
(3.25) via (3.26), (3.27), and (3.30) converges typically in 
m = 2 iterations. Although expression (3.30) looks com- 
putationally formidable, no purpose would be served in 
evaluating the integral more accurately than the linear term 
(3.26); it is for this reason that we use the minimal value of 
two for each of J, Kj, and m, since we find that the error 
in evaluating (3.30) is then comparable to the error in 
evaluating (3.26) with K =  20. 

For each value of t, the final functional form for u(t) is set 
to be the sum of (3.26) and (3.30): 

e tA -- I 
u( t )=  VE-- - -~ -E  'VTb+ E ViE~ 

J 

• J) E f lV fg j .  (3.31) 

3.3. Automatic Error Control 

Equation (3.31) can be used to approximate u(t), and 
thus to recover U(to + t) via (3.18), for various values of t. 
Our automatic error  control  technique makes use of the 
observation that the time derivative of this expression may 
also be evaluated at negligible cost for various t's, as a by- 
product of the computations performed during the final 
functional iteration step. Since the exact time derivative may 
also be obtained by evaluating F(U(to+t)) with a sub- 
routine call, a reliable measure for the error in the time 
derivative is obtained. We may then select a posteriori, that 
is, after the final functional iteration step, the largest value 
of t for which the solution is acceptable according to a 
preestablished accuracy criterion. The solution U(t o + t) for 
this maximum t is carried forward to become the initial 
condition for the next time ste p . 

The evaluation of the time derivative of (3.31) is 
performed as follows. The equation can be differentiated 
analytically to yield 

atu(t) = VEetAE - '  VTb + ~ V/EjA/ 
J 

X(fO dze(t-~)AjzJ)E}-lVTgj 

+ E VjE/tJEf I Vfg/. 
J 

(3.32) 

The first two terms in the above expression are easily 
evaluated at various t's as by-products of the evaluation of 
the linear solution (3.26) and the integral (3.30). Referring 
to Eq. (3.27), the last term in (3.32) is seen to be merely 
G( u( t ) ), since 

gjgjtJg f 1 V f gj = gj Vf  gjt j = gjt j. 

(Recall that Vj V f  projects onto the Krylov subspace which, 
in this case, contains gj because the subspace is generated by 
starting the Arnoldi sequence with gj.) 

Given values for u(t), we can also compute F(Uo + u(t)) 
and compare this with the evaluation of Eq. (3.32). We 
define a residual field via 

Au(t)=-t[Otu(t)--F(Uo+u(t))]. (3.33) 

In test cases for which closed-form solutions were available 
[22],  it was found that the residual field Au calculated via 
(3.33) corresponded well to the actual error in u. 

As a scalar criterion for acceptable accuracy, we have 
chosen to use the relative error tolerance condition 

IIAu(t)ll 

[IUoH2 
< e, (3.34) 
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where 

Ilull ~ ~- m a x  lu, l  ( 3 . 3 5 )  
i 

Ilull=---- u ff , ( 3 . 3 6 )  

where i ranges from 1 to N. Norms other than (3.35)-(3.36) 
have been found to yield comparable results. 

3.4. Taylor Vortex Test Computations 

Figure 2 shows the time evolution of the axisymmetric 
Taylor vortex problem for a specific set of parameters. The 
initial small-amplitude velocity field (a) was produced by 
solving the linear stability problem for Couette flow at the 
same parameters and selecting the leading eigenmode. (This 
two-point boundary eigenproblem in r was solved by a 
straightforward method described in 1-19, 36, 40, 42, 44].) 
The initial field is sinusoidal in z and vortex centers are 
equidistant from inflow and outflow jets, which are of 
equal strength. The faint vortex structure grows until its 
amplitude approaches an asymptotic limit. This nonlinearly 
saturated flow (c) has vortex centers noticeably displaced 
toward the outflow jet, which is stronger and more localized 
than the inflow jet. A transient velocity field, which we will 
use in Section 4 to initiate our Krylov-Newton method, is 
shown in (b). 

Figure 3 shows the expenditure of CPU time for the time 
evolution of Fig. 2. The horizontal axis displays what we 
call the model time, i.e., the fluid dynamical time in units of 

a b 
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time = 0.0 time = 0.289 time = 10.0 

FIG.  2. Time evolution of the Taylor vortex flow of Fig. l: (a) shows 
the initial condition; (b) shows the field at time = 0.289; and (c) shows the 
asymptotic field at time = 10. Times are in units of  the viscous diffusion 
time defined by ( rou t -  ri.)2/v. The field in (b) will be used as the initial 
condition for our steady-state solver in the following section; (c) is the 
same as Fig. 1. 
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FIG.  3. Efficiency of time evolution. The C P U  time required to evolve 
the axisymmetric Taylor vortex flow is plotted as a function of  model time 
in units of  the viscous diffusion time ( ro , t - r i , )Z / v .  These results are for 
K = 2 0  and E= l0 -4. Each time step of the exponential propagation 
method consumes an approximately constant  amount  of  C P U  time, which 
for this case is about.0.43 s; 196 such time steps were required for this run. 
The increment of  model time t accomplished by each step increases as the 
steady-state solution is approached, apparently without bound.  The varia- 
tion in t results from the adaptive error control technique, which at each 
time step seeks to maximize t while keeping the solution at all times within 
the relative error tolerance of l0 -4. The dashed line is an  estimate of the 
performance that  would be achieved by a semi-implicit multistep method 
with fLxed timestep t. 

the viscous diffusion time (ro,t - r in )2 /v .  The CPU time per 
model time, i.e., the slope of the curve, becomes very small 
as the asymptotic steady state is approached. In this regime, 
the automatic error control algorithm described by Eqs. 
(3.33)-(3.34) determines that increasingly large timesteps t 
are allowable without exceeding the specified relative error 
tolerance e. The selected timesteps increase apparently 
without bound. This demonstrates the unusual stability of 
the exponential propagation method, since the very large 
negative eigenvalues of the Jacobian DF(U), due to v V 2, 
persist regardless of U. In this regime we have found that the 
eigenvalues of the Hessenberg matrix H used in the evalua- 
tion of (3.26) have negative real parts, so that (3.26) is in 
fact unconditionally stable. Thus we see that the allowable 
timesteps are determined exclusively by the accuracy 
requirements, which is the hallmark of a stiff-equation 
solver. 

Figures 4 and 5 explore the efficiency of the method as the 
two most important parameters, K and e, are varied. 
Figure 4 varies the Krylov-space dimension K, keeping e 
fixed at 10 4; we learn that there is a value of K which 
results in the least expenditure of CPU time for any given 
evolution time of the model and that this value is about 20. 
We also see again that the efficiency of time evolution 
increases apparently without bound as the steady-state 
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FIG. 4. Efficiency of time evolution versus the dimension K of the 
Krylov subspaces used in the exponential propagation method. The plot 
summarizes the results of twelve runs with K = 5 ,  10, 15, ..., 60, for the 
initial condition of Fig. 2a. Each curve is a contour of constant model time. 
The dashed contours are for times 0.1, 0.2, 0.3, ... in units of (rou t -  rin)2/v. 
The solid contours are for times 1,2, 3 ..... 10. The accumulation of 
the solid curves indicates that the time steps t used by the method are 
increasing, apparently without bound, as the steady-state solution is 
approached. The relative error tolerance was e = 10 -4 for all runs. 

solution is approached, as shown by the accumulation of 
the contours of model time as is it approaches 10. Figure 5 
varies the relative error tolerance e, keeping K fixed at 20. 
CPU timings are for a single Cray YMP processor. 
Vectorization occurs primarily in the elementary hydro- 
dynamic subroutines over one or both spatial directions 
(N, and/or Nz, which are fixed) and thus does not effect the 
dependence of C P U time on K. 
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FIG. 5. Efficiency of time evolution versus relative error tolerance. 
The dashed and solid lines are as defined in Fig. 4. Six runs were performed, 
with relative error tolerances 10-~, 10-2, ..., 10-6. 

3.5. Comparison with Other Methods 

Clearly there are many differences between our Krylov 
method for time evolution and other, more common 
methods. Let us compare our method to typical semi- 
implicit methods. 

1. Accuracy. The semi-implicit methods usually achieve 
only up to second-order formal accuracy in the timestep t, 
as there is no unconditionally stable third-order implicit 
multistep method. The formal order of accuracy of the 
Krylov method is known only for the homogeneous linear 
system, by the calculation leading to Eq. (3.17), but not for 
the nonlinear case. The Krylov method incorporates an 
automatic error control technique. Semi-implicit schemes 
can also be implemented with automatic error control, but 
this requires the ability to vary t during the calculation. 
Many semi-implicit codes use fixed t, however, because 
this allows preprocessing of an operator such as 
[I - ( t /2)  v V2], if it has a regular structure, for later 
inversion. 

2. Storage. Semi-implicit methods require a small, fixed 
number of storage areas for velocity fields, whereas the 
Krylov method stores many velocity fields in order to span 
the Krylov subspaces. That is, storage requirements for the 
Krylov method are dominated by the size N x K of the V 
matrices. The size of the Krylov subspace K may, however, 
be chosen for storage economy, and Fig. 4 shows that CPU 
time may be traded for storage over some range of K from 
about 20 down to 5 or less. 

3. CPU time. If a semi-implicit code were to take full 
advantage of the regular structure of the vector Laplacian in 
our Couette-Taylor problem, we estimate that the transient 
calculation shown in Fig. 2a to b would require from three 
to five times less CPU time than is required by our Krylov 
method with K = 20. This estimate is based on performance 
results for other fluid-dynamical codes with which we are 
familiar and on the problem size N. Note that we are 
comparing our results to codes which fix the timestep t 
and which do not incorporate automatic error control. 
The efficiency with which our time evolution method 
approaches a steady state, however, greatly surpasses that 
of semi-implicit schemes because ultimately their stability is 
determined by the CFL condition, so that the size of the 
timestep t and therefore the CPU time per model time must 
remain bounded. 

4. Implementation. Semi-implicit methods attempt to 
deal with the stiffness of the Navier-Stokes equations by 
special handling of the viscous term. Our Krylov method, 
by contrast, is a general method for time evolution of stiff 
nonlinear equations, and we couple it to elementary fluid 
dynamical subroutines which compute only explicit actions 
of the Navier-Stokes right side F(U), its Jacobian DF(U), 
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and the remainder G(u). Implementation of these elemen- 
tary subroutines is considerably simpler than implementa- 
tion of a semi-implicit scheme, and to solve another 
problem in a different geometry or with a different grid, it 
would only be necessary to change the elementary fluid 
dynamical routines and the method of solving the pressure 
Poisson equation, but not the stiff-equation solver. That is 
to say that most of Sections 3.1 to 3.3 is very general, and 
only the subroutines F(U), DF(U), G(u), and FlU are 
specific to the Couette-Taylor problem. Separating the 
implementation tasks in this way has the further advantage 
that the subroutines F(U) and DF(U) may also be used for 
steady-state solving and, with minor modification, for linear 
stability analysis, in conjunction with other general Krylov 
methods which we will describe in the following sections. 
The use of general Krylov methods for steady-state and 
stability calculations, as we will see, allows high accuracy 
to be achieved with reasonable efficiency and with little 
additional coding effort. 

Gallopoulos and Saad [23 ] have also proposed a Krylov 
method for exponential propagation, for which they prove 
a number of results about convergence and stability. The 
method has been applied by Saad and Semeraro [54] to the 
fluid-dynamical driven cavity problem. There are several 
general remarks we can make: 

1. Calculation of the small-matrix exponential. Rather 
than exactly exponentiating tH via explicit diagonalization 
of H, it is possible to economize by using polynomial or 
rational-function approximations, as is done in [23]. As 
previously noted, however, the cost of K Arnoldi steps with 
DF(U) for our Couette-Taylor problem greatly exceeds the 
O(K 3) cost of explicit diagonalization of H, and thus we 
prefer to exactly exponentiate tH. More reliable numerical 
schemes for computing e 'H are given in [25]i however, we 
have found that computing the matrix exponential via the 
explicit diagonalization technique is adequate for our 
purposes. A further motivation for diagonalization is 
that we may evaluate e m at different times using the same 
matrices E and E - ' and recomputing only e ta. 

2. Number ofKrylov subspaces. In our evaluation of the 
integral in (3.25) via (3.30), we use a separate Krylov 
subspace for each of the vector coefficients gj. It is possible 
to reformulate the integral equation and the method of 
evaluating the integral so as to reduce the number of times 
that the Arnoldi process must be carried out. Gallapoulos 
and Saad [23] use the same Krylov subspace at different 
times z for the case of a linear system with time-dependent 
forcing. This multiple use is facilitated by their formulation 
of the integral equation and by their use of general-purpose 
quadrature formulas to evaluate the integral. In our method 
the nonlinear residual G(u) is first fitted to a polynomial in 
t and we generate Krylov subspaces for each vector coef- 

ficient of this polynomial. These Krylov subspaces bear no 
resemblance to the subspace used to evaluate (3.26), and 
thus the latter subspace cannot be reused. However, the 
subspaces generated for each of our vector coefficients gj 
are very small, typically of dimension Kj = 2 only. Thus 
evaluation of the integral, which is carried out at each 
functional iteration step, is very inexpensive compared to 
the evaluation of (3.26) with K,~ 20, which is done only 
once per timestep. 

3. Parallelism. On a vector machine, the main advan- 
tage to be gained for our problem is in the evaluation of 
F(U) and DF(U), and in the orthogonalization of the 
Krylov vectors. The tensor-product basis set (2.1) allows 
the computation of each spatial derivative (e.g., 0r) to be 
vectorized over the other direction (e.g., z). We do not 
attempt to take maximum advantage of parallelism for 
manipulations of the small matrix H, although for some 
problems this may become significant. 

4. Incompressibility. In our formulation of the fluid 
dynamical problem, we enforce incompressibility via a fast 
direct solution tff the consistent pressure Poisson equation 
(2.5) for each evalution of F(U) and DF(U). In this instance 
we take advantage of the special structure of the linear 
system, and thus we do not deal directly with the issue of 
how incompressibility is to be enforced in situations where 
direct solution of the Poisson problem is not feasible. In 
contrast, Saad and Semeraro [54] use an artificial com- 
pressibility method in which the flow is not kept exactly 
divergence-free at all times, but which avoids the need to 
solve the pressure problem for each evaluation of F(U) and 
of their Jacobian. Their method is more easily generalizable 
to nonstandard geometries and grids. We note that other 
forms of the governing equations, such as the stream 
function/vorticity formulation, avoid the pressure problem 
altogether but are not generalizable to three-dimensional 
flows. 

4. STEADY-STATE SOLVING USING A 
NEWTON-KRYLOV METHOD 

The second major problem of computational fluid 
dynamics is steady-state solving. Here one seeks a velocity 
field U such that 0t U= F(U) = 0, or, in a more general con- 
text one seeks traveling- or rotating-wave solutions which 
are steady in some appropriate moving or rotating frame of 
reference. Steady-state solutions which are stable may be 
obtained by time evolution, as was done for Taylor vortices 
in the previous section, although this method is often slow. 
Unstable steady solutions may also be of interest, and since 
these cannot be obtained via time evolution one must 
appeal directly to the steady-state problem F(U) = 0. 

In this section 4 we will recompute the Taylor vortex 
solution by a steady-state computation using two variants 
of Newton's method. Our Krylov-Newton methods use the 
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same subroutines F(U) and DF(U)  that were used by the 
time evolution method of Section 3. We describe these 
methods using the Krylov notation and definitions intro- 
duced in Section 3.1. Our test case will be the computation 
of the flow of Fig. 2c using the flow of Fig. 2b as the initial 
guess. After presenting typical timings we will compare our 
method to other approaches for the ste.ady-state problem. 

4.1. Description o f  the Newton-Kry lov  Method 

Given a current estimate U (") for a steady state, one step 
of Newton's method consists of solving 

DF( U(~)) u(") = F( U (m)) (4.1) 

and updating U via 

u ( m +  1) = u(m)  __ u(m). 

Here F(U)  and DF(U)  are as defined in Eqs. (2.10)-(2.11). 
The discrete form of (4.1) is a large linear system in N 

unknowns with a nonsymmetric operator DF(U).  With N 
large, it is not feasible to directly solve this system, and thus 
we approximate the solution in a Krylov subspace of 
dimension K. This idea has been variously called inexact 
[2, 3, 16], iterative [55],  or truncated [6 ,43]  Newton 
solving and has been analyzed by a numbero f  authors. 

Let us introduce the abbreviations A ( " ) -  D F ( U  (m)) for 
the Jacobian and b (") = F ( U  (m)) for the nonlinear residual. 
The normalized linear residual for an approximate solution 
u (m) is I lA(")u(") -b( ' )H/ l lb ' ) lJ .  It has been proven [2, 55] 
that, if (4.1) is solved to fixed relative accuracy c at each 
Newton step, i.e., 

]lA(m)u(m)-b(m)][ 
i[b(m)ll - c ,  

then the overall Newton iteration converges linearly at rate 
c, i.e., 

95 

However, as in our method of exponential propagation, 
we approximately solve (4.1) in a low- and fixed-dimen- 
sional Krylov subspace. The accuracy is therefore low and 
nearly constant for each Newton step, so that only linear 
convergence (4.2) is achieved. 

Let us now drop the superscript (rn) and write Au = b for 
the linear system (4.1). We employ two well-known Krylov 
techniques, ORTHORES [61] and GMRES [51], for the 
approximate solution of this system. These are easily 
described using the notation we have introduced in 
Section 3.1. The right-hand side vector b is used to generate 
the Krylov space, i.e., vl = b/llbl[. 

Recall from Section 3.1 the definitions (3.6)-(3.10) of V, 
the N x K matrix of Krylov vectors, and of H, the K x K 
representation of A, 

H =  VTAV,  

and the Arnoldi decomposition, 

A V =  V H  + weT. (4.3) 

Just as the exponential e tA can be approximated in the 
Krylov subspace via 

e tA ~ V e t H V  T, 

the inverse of A can be approximated via 

A 1 ~  V H - 1 V T .  

In practice, this involves solving for y the K x K system 

Hy = VTb = Ilbll e, ,  (4.4) 

followed by the matrix-vector multiplication 

u = Vy. (4.5) 

lib( m + x)l[ 
lira [ibtm)]~= c. (4.2) 

m ~  

On the other hand, if A(m)u = b (m) is solved to increasing 
accuracy, in particular, if 

This approximation is called ORTHORES ("orthogonal 
residual") because the resulting residual is orthogonal to the 
Krylov subspace. To see this, note that eqs. (4.4) and (4.5), 
and the fact that b belongs to the Krylov subspace, imply 
that 

[[A(m)u - b(m) N 

lib(re)l[2 
- -  C ,  

Au = A Vy 

b = VVTb  = VHy, 

then the quadratic convergence of Newton's method is 
preserved [2, 16]: 

/ I b ( m +  1)11 
lim - -  = c. 

m ~ o o  Nb(m)ll 2 

so that the residual satisfies 

Au - b = (A V -  VH)  y 

= werxy. 

581/110/1-7 
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From this it follows that 

HAu-bLI = Ilwll le~yl  

VT(Au- -  b) = V T w e ~ y  = O, 

since the Arnoldi process maintains VTw = O. 

GMRES ("generalized minimal residual") is an alter- 
native method which produces an approximate solution the 
norm of whose residual IIAu - bll is minimal over all vectors 
u in the Krylov subspace, that is, all vectors of the form 
u =  Vy, for some K-vector y. Minimizing I lAVy-b l [  2 for 
each component of y leads to the least-squares equation 

(A V) T (A V) y = (A V) x b (4.6) 

o r  

(AV)  x ( A V y - b ) = O .  

That is, A u - - b  is required to be orthogonal to A V 

rather than to V. The matrices required in Eq. (4.6) are 
constructed economically using Eq. (4.3) as 

(A V) T = ( VII  + weT) T 

= H T V  T + eKw T 

(A V) T (A V) = H T V x VII  + H T VVwe] 

+ eKw T VH + exwTweX~ 

= H T H +  [Iwll 2 eKe,~, 

where we have used the orthogonality of the K Krylov vec- 
tors (columns of V) to one another and to w. The right-hand 
side of (4.6) is 

(A V) T b = H T v T b  + eKwrb 

= H T Ilbll el. 

Thus, the K x K system solved by GMRES is 

( H T H +  Ilwll 2 eKe~) y = H T Ilbtl el, 

For either GMRES or ORTHORES,  note that if Ilw[I = 0 
then 

Au = A V y  = VHy  = VVTb = b, 

so that u will be an exact solution to the linear system, 
although this is never achieved in practice. 

Generally, ORTHORES and GMRES are used as 
iterative methods: the number of Krylov vectors K is 
increased until the desired degree of convergence, measured 
by some norm of the residual A u -  b, is attained. As K is 
increased, additional rows and columns are appended to the 

matrices H and V. However, as in our time-evolution 
method, we instead choose to work within a Krylov space 
and fixed size K, solving each of the linear problems Au = b 
only to a fixed (low) accuracy. Our storage requirements are 
dominated by the size N • K of the matrix V, and we cannot 
afford to solve the linear system to arbitrary accuracy, 
except by restarting. We assume that it is generally better to 
take a Newton step rather than to restart, and this is the 
strategy we have adopted. 

4.2. Taylor Vortex Test Computations 

Using the flow in Fig. 2b as the initial guess, we compute 
the steady-state Taylor vortex flow; that is, we compute the 
time-asymptotic flow of Fig. 2c, but via Newton-Krylov 
iteration rather than by time evolution. Figure 6 shows the 
convergence of the quasi-Newton iteration for fixed K = 20, 
for both ORTHORES and GMRES. In both cases, 
tog 11 F( U ('~)) II decreases linearly with increasing CPU time 
(which is proportional to m), until a "noise floor" near 10-9 
which is primarily due to roundoff error in the solution of 
the pressure Poisson problem. Except for an initial abrupt 
increase, the norm obtained using GMRES decreases 
monotonically, while use of ORTHORES leads to oscilla- 
tions of unknown origin in the nonlinear residual F(U(")).  

(Such oscillations have also been reported in [5] . )  
Each choice of K corresponds to a certain level of 

accuracy for the GMRES or ORTHORES solution at each 
Newton step and a certain level of efficiency for the overall 
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FIG.  6. Evolution of the Krylov-Newton solution of the steady-state 
problem. The logarithm of the right-hand side U F(U) l[ of  Eq. (4.1) is shown 
as a function of C P U  time. The smooth  curve results from using GMRES 
to approximately solve the linear equation; the jagged curve uses 
O R T H O R E S .  For  both methods,  the size K of the Krylov space is fixed at 
K = 20 throughout .  The linear convergence of the quasi-Newton iteration 
is evident, as is the presence of a "noise floor" at ~ l0 -9. The inferior 
performance of O R T H O R E S  results primarily from error induced in the 
first few Newton steps. 
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FIG. 7. Efficiency of Krylov-Newton iteration versus the dimension K 
of the Krylov subspaces used in GMRES. Each curve is a contour of 
constant log IIF(U)II; the values are + 1, 0, - 1 ..... --9 from bottom to'~op. 

method. Figure 7 shows the efficiency of the Newton- 
GMRES method as K is varied. We learn that after about 
K =  30 there is little to be gained by adding more dimen- 
sions to the Krylov subspace. Regarding solution accuracy 
at each step, for K = 2 0 ,  for example, we obtain an 
approximate solution with normalized residual IIAu-bill 
Ilbll ~0.8 to 0.9, i.e., only a slight improvement over the 
trivial guess u = 0 .  For  K = 6 0 ,  llAu--blL/[Ibll~O.12 is 
obtained. As discussed earlier in this section, solving Au = b 
to fixed accuracy c should lead to linear convergence of the 
overall Newton iteration at rate c, and this is indeed borne 
out by our experiments. We believe that effective precondi- 
tioners would greatly increase the speed of this convergence 
by increasing the accuracy of the solution at each iteration. 

4.3. Comparison with Other Methods 

There exist a number of other ways to calculate steady 
states via Newton's method. Although the linear equation 
(4.1) is sometimes solved directly by Gaussian elimination, 
this constrains the spatial resolution and Reynolds number 
to be extremely low; for most realistic computational fluid 
dynamics calculations, DF(U ~'~) is too large to be stored, 
let alone decomposed. 

Equation (4.1) may also be solved iteratively, but it is 
impossible to achieve reasonable accuracy in a reasonable 
amount of time. The reason for this is that the large range 
of eigenvalues of v V 2 is reproduced in DF(UC')), yielding 
poorly conditioned matrices for which iterative solution 
methods, such as conjugate gradient, converge slowly. It is 
therefore necessary to precondition the problem. An obvious 
candidate for a preconditioner is the inverse of v V% or of 
the full Stokes operator Hv V 2, and this approach has been 
used successfully be previous authors, e.g., [3, 5, 60]. 

Our use of the inexact Newton's method, in which (4.1) is 
solved iteratively, but only to low accuracy, has been 
motivated by a desire to avoid viscous operator inversion 
and to require only explicit evaluation of F(U ~"~) and 
DF(U~"~)u. Another important  difference between our 
approach and that of some other authors [2, 3, 6, 54] is 
that we actually evaluate the action of the exact Jacobian 
DF(U (m)) u, rather than a finite difference approximation 
[ F (  U (m) 71- •l.l) - F( U~m~) ]/a. 

5. LINEAR STABILITY ANALYSIS VIA AN IMPLICITLY 
RESTARTED ARNOLDI PROCESS 

The third major problem of computational fluid 
dynamics is linear stability analysis. Given a solution U of 
the Navier-Stokes equations, one seeks to determine if it is 
stable with respect to small perturbations u. This leads to an 
eigenproblem with which the stability of U is determined by 
examining the real parts of the eigenvalues; the real part 
of an eigenvalue is the temporal growth rate of the corre- 
sponding eigenmode. If one or more eigenvalues have 
positive real part, U is unstable. In general we need only the 
leading eigenvalue or complex-conjugate pair to make this 
test. By leading we mean an eigenvalue whose real part is 
greater than or equal to the real part of any other eigen- 
value. It may occur that other eigenvalues have real parts 
close to that of a leading eigenvalue, and these may also be 
of interest. The remainder of the spectrum, however, 
corresponds to strongly damped eigenmodes which are not 
important for the linear stability analysis. If U and u are 
represented by a large number of unknowns, there will be 
many more uninteresting strongly damped eigenmodes than 
interesting leading and nearly leading eigenmodes. 

In this section 5 we examine the stability of the Taylor 
vortex solution U with respect to perturbations corre- 
sponding to wavy vortices. We will begin with a description 
of the fluid dynamical stability problem and the discrete 
eigenproblem that results from our spatial discretization. 
We will write this in terms of a modified Jacobian OFmq (U), 
where the subscripts mq specify the symmetry of the eigen- 
mode we are seeking. The action of this linear operator is 
computed by an elementary subroutine similar to the 
Jacobian DF(U) used in the previous sections. We then 
describe a Krylov method for finding the leading and nearly 
leading eigenvalues and eigenvectors of this large, non- 
symmetric operator. We test the method by computating 
wavy-vortex eigenmodes, such as Fig. 8, for the lineariza- 
tion about the Taylor vortex field of Fig. 2c. After 
presenting typical timings, we compare our method to other 
approaches for large linear stability problems. 

5.1. The Taylor Vortex to Wavy Vortex Eigenproblem 

The fluid dynamical eigenproblem is obtained by linear- 
izing the Navier-Stokes equations around the Taylor vortex 
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FIG, 8. The real and imaginary parts of u(r, z) of the leading wavy 
vortex eigenmode for the Taylor vortex flow of Fig. 2c, for azimuthal 
wavenumber m = 3 and Floquet exponent q = 0. 

solution U. Because U is steady, axisymmetric, and has axial 
periodicity ~, eigenmodes of the linear problem will have the 
form 

u(r, z mod or) e imO + iqz + 2t + C.C., (5.1) 

where m is an integer azimuthal wavenumber, q is an axial 
Floquet exponent which we take to be real, and 2 is the 
complex temporal eigenvalue. Eigenmodes of this form are 
rotating waves with azimuthal wavespeed IIm(2)l/m. 
Finding the leading eigenmode generally involves a search 
over all m and q, but one may usually restrict the search to 
small integers m and small Floquet exponents q ~ 0 .  A 
related publication [20] examines the role of the Floquet 
exponent q, especially with regard to finite-length 
experiments. The present computational problem is to 
determine for given values o fm and q the leading and nearly 
leading eigenvalues 2 and the corresponding eigenmodes u. 

Since u in (5.1) is axisymmetric and axially periodic, it 
may be spatially discretized using the same Chebyshev- 
Fourier series (2.1) that was used for Taylor vortices, with 
the proviso that u, and thus the expansion coefficients fnj, 
are complex. If we rewrite (2.1) for some component f o r  the 
total perturbation (5.1) we obtain 

Nr Nz/2 

f ( r ,  O, z, t)"~ ~ T,(xr(r))  ~ e =~ijz/~ 
n = 0 j = -- Nz/2 

• f n j e i m O +  iqz + At ..~ C.C.  

and we immediately see that when operating on u the 
azimuthal and axial derivatives must be modified such that 
go ~ On and 0z multiplies each f ,  j by 27r(//ct + iq and not just 
2nij/~. We introduce the subscript notation Vmq to indicate 
this modification. The modified Jacobian is then defined by 

DFmq( U) u = Hmq[ - ( ( Uc + U)-Vmq) u 

- -  (U  " V ) (  U c ' J I  - U )  "~- V V 2 m q U ] .  

The projector H,,q is obtained in the analogous way by 
noting that the pressure perturbation must also be of the 
form (5.1) withp in place of u, so that in Eqs. (2.6) and (2.7) 
we replace V by Vmq to obtain the explicit definition 

Hmqu =~ B [ u -  VmqP], 

where Vmq. B V,,q p = Vmq. Bu. 

The eigenproblem may now be stated as 

DFmu(U) u = 2u. (5.2) 

Figure 8 shows a computed wavy vortex eigenmode. We 
note that since u is complex, its representation as a vector 
requires twice the number of real unknowns as the Taylor 
vortex field U, that is, (Nr + 1) x Nz x 3 x 2 = 4050 for 
Nr = 24 and Nz = 27. Since the matrix form of DFmq(U) is 
never constructed, it may be considered to be a complex 
operator  for 2025 complex unknowns or equivalently as 
a real operator for 4050 real unknowns. In the following 
section we consider A = DFmq(U) to be a real operator for 
vectors of length 4050. 

5.2. A Krylov Method for Large Nonsymmetrie 
Eigenproblems 

Suppose that, starting with some initial vector v~, we 
have carried out K steps of the Arnoldi process to arrive at 
the decomposition 

A V =  V H +  we E (5.3) 

as in (3.10). The method we use to compute the leading and 
nearly leading eigenpairs of A = DF,,q(U) is based upon the 
following considerations: 

1. Approximate eigenpairs (u~,2k) of A may be 
obtained from the exact eigenpairs (Yk, 2k) of H by setting 
u~ = Vy~, k = 1 ..... K. 

2. The matrices V, H and the residual vector w all 
depend on the initial vector v~ that generates the Krylov 
subspace, and thus the approximate eigenpairs will also 
depend on V l. 

3. The dependence of residual vector w on V l is such that 
w = 0 if and only if Vl is a member of an invariant subspace 
of dimension K. 

4. Using the spectrum of H, we will see that the matrices 
V, H, and we E may be updated iteratively such as to drive 
v~ into an invariant subspace spanned by only the leading 
and nearly leading eigenvectors of A. As a result the 
approximate eigenpairs converge to exact eigenpairs of A. 

The method we use is developed and described fully by 
Sorensen in [56]. At each iteration we begin with an 
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Arnoldi decomposition of size K. The small K x K matrix H 
is explicitly diagonalized to yield its eigenvalues 2k, 
k = 1 ..... K. These are sorted in order of increasing real part, 
keeping complex-conjugate pairs together. The first Ku of 
them, i.e., those with most negative real part, are identified 
as unwanted. Typically K =  20 and Ku = 12. The remaining 
K,. = K -  K, are wanted, meaning leading or nearly leading. 
For each unwanted eigenvalue 2k, k = 1 ..... Ku, we apply a 
shift to the matrices V, H, and wet in a manner analogous 
to shifted QR iteration, as we will explain in the next few 
paragraphs. The effect of applying these K, shifts is to 
replace the starting vector vl by ~b(A) Ol, where ~k is a filter 
polynomial of degree K,  with ~k(2~) = 0 for each unwanted 
2k. This filtering is accomplished implicitly, that is, without 
computing any explicit action of the operator ~,(A). 
Furthermore, by discarding K~ columns of the updated 
matrices, we arrive at an Arnoldi decomposition of size Kw, 
which is exactly the same as that which would have resulted 
from Kw Arnoldi steps beginning with the vector ~k(A)vl, 
but this is accomplished implicitly without actually 
restarting the Arnoldi process. The decomposition of 
size Kw is then restored to size K by simply resuming the 
Arnoldi process at step Kw+ 1 and performing an 
additional Ku steps. The next iteration begins with this 
new decomposition of size K. The overall method may be 
described as an implicitly restarted Arno}di process with 
implicit polynomial filtering of the starting vector. 

To see how and why this works, we need to examine the 
method of applying shifts. Beginning with k = 1, let us 
suppose that we have performed a QR decomposition of the 
shifted matrix H - 2 1 L  for the unwanted eigenvalue 21,  tO 

obtain Q and R such that 

H - 2 1 I = Q R ,  (5.4) 

where Q is orthogonal and R is upper triangular, both of 
size K• In essence, our method simply computes 
updated matrices VQ, QTHQ, and we~Q which then replace 
V, H, and weT. We then return to (5.4) for the next 
unwanted eigenvalue 22. The process is repeated for all Ku 
unwanted eigenvalues, and in the final result (5.3) has been 
replaced by 

AVO = vOOTHO + we~O, (5.5) 

where 0 is the product of all the Q's. 
The effect of this can be understood by examining a single 

shift, for example, the first one. Substituting H =  QR + 211 
into (5.3) and rearranging, we obtain 

( A - 2 1 1 )  V= VQR+ we E . 

Equating the first column on both sides then yields 

(A - 211) vl = VQel P11, 

where VQel is the updated starting vector, i.e., the first 
column of VQ, and Pll --- e~Rel. Thus by applying one shift 
we have implicitly filtered the starting vector by the polyno- 
mial p ~11( A - 2 1 1 )  without any explicit computation of the 
action of this operator. It can also be shown that after all Ku 
shifts have been applied the starting vector vl has been 
replaced by the implicitly filtered vector VO.el = ~(A) vl. 

There are several important details that have been left out 
of this brief description. It is true, but perhaps not obvious, 
that (5.5) may be written in the form of a legitimate Arnoldi 
decomposition of size Kw, essentially by discarding K u 
columns of VQ and weTrQ and using the upper left Kw x Kw 
submatrix of Qa-H(~. Also, in the actual implementation 
each Q matrix is implicitly computed and applied one 
Givens transformation at a time. For  further information on 
these issues we refer the reader to [56],  which also deals 
with the issues of maintaining orthogonality of V, elimina- 
tion of spurious eigenvalues, the handling of numerically 
small subdiagonal elements of H, numerical stability, and 
the use of real arithmetic for complex-conjugate pairs of 
shifts. 

At the end of each iteration, we compute the eigenvalue 
residual II (A - 2 1 )  ul[ of the leading approximate eigenpair 
(u, 2 ) =  (Vy, 2) for u normalized to Ilu[I = 1. This is done 
explicitly by computing u = Vy and calling the subroutine 
A = DFmq(U ). In exact arithmetic this residual would be 
equivalent to the expression Ilwll leTryl, as can be seen by 
multiplying (5.3) on the right by y and using Vy = u and 
Hy = y2 to obtain 

A Vy = VHy + we ~ y 

= Vy2 + wet y 

so that 

(A -- 21) u = weTry. (5.6) 

This implies that we could avoid the explicit computation of 
the eigenvalue residual, for example, in stopping tests. Note 
also that if the residual vector w were zero, then the 
approximate eigenpairs would all be exact eigenpairs of A. 

A proof of the convergence of the implicit restart method 
described here exists 1-56] only for the case of a symmetric 
operator A. 

5.3. Taylor Vortex to Wavy Vortex Test Computations 

In Fig. 9 we show the evolution of the eigenvalue residual 
norm for the leading approximate eigenvector as a typical 
calculation progresses. The original starting vector Vl in this 
case was created from a sequence of pseudorandom num- 
bers. The final computed leading eigenmode is depicted in 
Fig. 8. In addition to the straightforward calculation of 
II(A-2I)ul[, the residual norm may be calculated as 
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FIG. 9. Convergence history of the leading eigenvalue residual for the 
implicit polynomial method with K w = 8 and K, = 12. The abscissa shows 
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throughout most of the calculation, these eventually differ, with IIAu - 2ull 
becoming constant while IlweV~ Y II continues to decrease. 

Ilwl[ lerYl as in (5.6), and both of these quantities are plotted 
in Fig. 9. They are equal until a value of approximately 10-8 
is attained, after which Ilwl[ lerYl continues to decrease 
while I[ (A - 21) ull remains essentially constant. A probable 
cause for this is roundoff error in the subroutine DFmq (U), 
especially in the solution of the pressure Poisson problem. 
This implies that, in practice, acting with the Jacobian 
DFmq(U ) is not exactly equivalent to multiplication by a 
matrix, so the mathematical  equivalence of the two eigen- 
value residual calculations carries over to the numerical 
method only up to this accuracy limit. We note also that the 
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residual norm oscillates in a manner reminiscent of the 
Kry lov-Newton  method using O R T H O R E S  (Fig. 6), but 
again the reason for this is not known. 

Figure l0 shows contours of constant I f (A--2l)ul l  as 
functions of both CPU time and of the total size of the 
Krylov space, K = K w + K , ,  for fixed Kw= 8. Recall that 
wavy vortices are rotating waves and thus the leading and 
nearly leading eigenmodes are complex-conjugate pairs; 
specifying Kw = 8 allows us to compute four such rotating 
waves. We see that K = 3 0  is again an optimal value 
and that choosing K >  30 can even increase the cost of 
calculating an eigenpair to a given accuracy. 

5.4. Comparison with Other Methods 

We now discuss other ways of solving the eigenproblem 
(5.2). First, the N •  N matrix form of A = D F ( U )  may be 
diagonalized by the QR algorithm, yielding all of the eigen- 
pairs directly. Since matrix diagonalization is even more 
costly than inversion, this is generally ruled out in computa- 
tional fluid dynamics. The notable exception occurs when 
the matrix is block diagonal (e.g., [-42]) or block banded 
(e.g., [-333) with small blocks. In this case, only the blocks 
need be directly diagonalized, and the eigenpairs of the full 
system is constructed from those of the blocks. Second, 
variants of the power method for finding dominant  eigen- 
values (those of largest magnitude) may be used to extract 
the desired eigenpairs. While the inverse power method 
might seem a natural choice for calculating eigenvalues of 
small magnitude, it presents the same difficulties as 
described in previous sections: in particular, an operator 
with an eigenvalue near zero is necessarily poorly condi- 
tioned, and so iterative solution methods are slow. Instead, 
a common course [11, 18, 243 is based on the (forwards) 
power method on the operator e tA , which is accomplished 
by solving the system O,u = Au by some time-stepping algo- 
rithm. The transformation A - *  e "~ maps the sought-after 
leading eigenvalues of A to accessible dominant  eigenvalues 
of e 'A. The drawback to this method is again intrinsic to the 
problem: the eigenvalues of A that are near zero are all 
mapped onto eigenvalues of e 'A that are near one (for t 
small). The ratio between these is close to one, so the power 
method converges quite slowly. 

There are also alternative Krylov methods which restart 
the Arnoldi process. Variants of this idea were introduced 
early by Karush in [34]. Cullum and her colleagues have 
investigated explicit restart methods for the symmetric case 
[13-15] .  Most recently the idea has been explored by Saad 
in [493 by Chatelin and Ho in [73 and by Chronopoulos  in 
[ 12 ] for the nonsymmetric case. In all of these methods, the 
entire Arnoldi sequence must be restarted. Moreover,  in the 
methods described in [7 ,49]  an auxiliary calculation 
involving the explicit calculation of ~(A) v] is required. We 
have described a particular construction of the polynomial 
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filters. There are many  alternatives, including the construc- 
tion by Saad [-49] that  is based on Manteuffel 's scheme 
[41 ], and the variants of  this are presented and discussed by 
Chatelin and H o  in [-7]. 

6. CONCLUSIONS 

We have described Krylov  methods for each of  the three 
major problems of computa t ional  fluid dynamics  and we 
have tested these methods  on the specific problem of  the 
Taylor vortex to wavy vortex instability in the Coue t t e -  
Taylor problem. Our  methods rely exclusively on explicit 
evaluations of  the Navier-Stokes  r ight-hand side F(U)  and 
of its Jacobian  D F ( U ) ,  without  any inversion of  the viscous 
operator. A major  advantage of our  overall approach  is that  
the three problems, time evolution, steady-state solving, 
and linear stability analysis, are solved by conceptual ly 
similar methods  which use identical or very similar elemen- 
tary fluid dynamical  subroutines. 

Because no matrix form of the Jacobian D F ( U )  is needed, 
the total number  of unknowns  N is not  constrained by the 
N 2 storage cost of  such a matrix. In practice this means that 
spatial discretization errors can be reduced by using a finer 
grid. Fur thermore ,  since the elementary subroutines needed 
for our time evolution method are the same or very similar 
to those needed for steady-state and linear stability calcula- 
tions, the latter two problems are solved essef~tially with no 
further implementat ion effort. There is thus nothing to be 
saved by using time evolution, as is often done, to s tudy 
asymptotic  steady states or the linear behavior of  small per- 
turbations. One  can just as easily solve the steady-state and 
linear stability problems by Krylov methods tailored to 
those calculations, thus avoiding any temporal  discretiza- 
tion error. 

We do not  claim, however, that  these methods are the 
most efficient ways to solve these problems. We have 
already noted that  semi-implicit methods may well outper-  
form our  time evolution method by taking advantage of  the 
special structure of  the vector Laplacian, if this is possible. 
The major  exception to this is upon  close approach  to a 
steady state, where our  Krylov method  speeds up dramat i -  
cally. Fo r  K r y l o v - N e w t o n  steady-state solving, effective 
precondit ioning of  the linear system can greatly improve  the 
accuracy achieved at each Newton  step, and thus also the 
convergence rate, as shown, for example, in [-3, 5, 60].  

However,  Krylov  methods  based exclusively on explicit 
actions of  the Navier -S tokes  r ight-hand side F(U)  and its 
Jacobian D F ( U )  are easily implemented and reasonably  
efficient. While we have focused specifically on the 
Coue t t e -Tay lo r  problem, Krylov methods could well be 
used in m a n y  other  situations. Spatial discretization 
schemes including finite difference, finite element, spectral, 
and spectral element are compatible with these methods.  In 
addition, the extension of  the methods  to more complicated 
governing equations,  including, for example, thermal, 

chemical, or  electromagnetic effects, is relatively straight- 
forward since the elementary fluid dynamical  subroutines 
would simply compute  explicitly the action of  each new 
term. Due to this flexibility we expect that  Krylov methods  
will find increasing use for a wide variety of practical flow 
problems. 
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