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The flat interface between two fluids in a vertically vibrating vessel may be 
parametrically excited, leading to the generation of standing waves. The equations 
constituting the stability problem for the interface of two viscous fluids subjected to 
sinusoidal forcing are derived and a Floquet analysis is presented. The hydrodynamic 
system in the presence of viscosity cannot be reduced to a system of Mathieu equations 
with linear damping. For a given driving frequency, the instability occurs only for 
certain combinations of the wavelength and driving amplitude, leading to tongue-like 
stability zones. The viscosity has a qualitative effect on the wavelength at onset: at 
small viscosities, the wavelcngth decreases with increasing viscosity, while it increases 
for higher viscosities. The stability threshold is in good agreement with experimental 
results. Based on the analysis, a method for the measurement of the interfacial tension, 
and the sum of densities and dynamic viscosities of two phases of a fluid near the 
liquid-vapour critical point is proposed. 

1. Introduction 
The generation of standing waves at the free surface of a fluid under vertical 

vibration has been known since the observations of Faraday (1831) (for a review see 
Miles & Henderson 1990). In a recent experiment by Fauve e/  al. (1992) with a closed 
vessel of liquid surrounded by its vapour under vertical oscillation, new phenomena 
were observed very close to the liquid-vapour (L-V) critical point. First, the 
wavelength saturates at a finite value as a function of frequency, and, second, the 
selected wave pattern at the onset consists of lines rather than the squares observed in 
previous experiments with low-viscosity fluids in contact with air at atmospheric 
pressure (see, for example, Ezerskii, Korotin & Rabinovich 1985; Tufillaro, 
Ramashankar & Gollub 1989; Ciliberto. Douady & Fauve 1991). As the temperature 
of the vessel is brought towards the L-V critical point, the difference in densities of the 
two phases and the surface tension of the interface decrease rapidly, while the viscosity 
of the two phases remains at some finite value. Consequently the wavelength decreases 
and the dissipation due to viscosity can no longer be trcated as a small correction. One- 
dimensional standing waves (i.e. lines) are also observed at the free surface of a viscous 
glycerine-water mixture (Edwards & Fauve 1992) undergoing vertical oscillation. This 
further suggests the importance of viscosity. 

Benjamin & Ursell (1954) studied the stability of the free surface of an ideal fluid 
theoretically and showed that the relevant equations are equivalent to a system of 
Mathieu equations. The dispersion relation in the ideal fluid case was in agreement 
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with that found in low-viscosity fluid experiments. They estimatcd the viscous 
dissipation by treating it as a small perturbation but noted that the experimentally 
measured energy dissipation is actually much larger than this estimate. The prediction 
of the dispersion relation for two ideal fluids (see $4), however, does not agree with the 
experimental results of Fauve et al. (1992) close to the L-V critical point, and the 
estimated stability threshold based on a similar perturbative approach completely 
disagrees with the experimental one. In the light of these discrepancies, a linear stability 
analysis of the viscous problem seems necessary in order to understand the role of 
viscosity. 

In this article we present a linear stability analysis of the interface between two 
viscous fluids. Starting from the Navier-Stokes equations, we derive the relevant 
equations describing the hydrodynamic system in the presence of parametric forcing 
and carry out a Floquet analysis to solve the stability problem. The viscous problem 
does not reduce to a system of Mathieu equations with a linear damping term, which 
is traditionally considered to represent the effect of viscosity. The traditional approach 
ignores the viscous boundary conditions at the interface of two fluids. To determine the 
eff'ect of neglecting these, we compare our exact viscous fluid results with those derived 
from the traditional phenomenological approach. We also present the relevant 
equations governing the stability of a multilayer system of heterogeneous fluids 
(Appendix A) under parametric forcing. We propose a simple method for measuring 
the interfacial tension as well as the sum of densities and dynamic viscosities of two 
phases of a fluid near the L-V critical point. 

2. Description of the hydrodynamical system 
2.1. Goueriiing equations 

We consider two layers of immiscible and incompressible fluids, the lighter one of 
uniform density p 2  and viscosity y2 superposed over the heavier one of uniform density 
p ,  and viscosity ?I,> enclosed between two horizontal plates and subjected to a vertical 
sinusoidal oscillation. In a frame of reference which moves with the oscillating 
container, the interface between the two fluids is flat and stationary for small forcing 
amplitude, and the oscillation is equivalent to a temporally modulated gravitational 
acceleration. The equations of motion in the bulk of each fluid layer are: 

pj[?t + (y. V)] y = - V(4) + 4, V2 q - p j  G(t)  e,, (2.1) 
0 * q = 0 ,  (2.2) 

wherej = 1 ,2  labels respectively the lower and the upper layer of fluids. The modulated 
gravitational acceleration is given by 

G(t) = g- f ( t )  = g - a  cos (of) (2.3) 
and can be compensated for by a pressure field. Linearizing about the state of rest 

= 0, <(t) = -p,?GG(t)z, the equations for the perturbation fields uj, p i  within the 
two fluid layers read 

(2.4) 

v . u j  = 0. (2.5) 
Eliminating the horizontal velocity and the pressure from (2.4) in the usual way by 
operating with e;V x V x , we obtain 

(2.6) 

f $  '1, uj = - V(Pj) + ,vj V2Ujr 

(a, - 1;. V2) VPWj = 0, 
where wj is the vertical velocity in fluid layer , j  of kinematic viscosity vj. 
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2.2. Boundaq] conditions and pressure jump at the interface 

No-slip conditions are imposed at the boundaries z = - h,, h,, either or both of which 
may be at infinity. That is, at z = (- 1)'h,, 

(2.7) 

The fluid layers are separated by an interface which is initially flat, stationary, and 
coincident with the z = 0 plane by choice of the coordinate system. More generally, 
after it is destabilized the interface is located at z = c(x, t ) ,  where x = (x, y ) ,  and obeys 
the kinematic surface condition (Lamb 1932, $9) 

u I -  - 0 * w 1  = a2 142) = 0. 

[a, + (U' V)] < = 1.1' I z q  (2.8) 

which states that the interface is advected by the fluid. All velocity components must 
be continuous across this interface. Thus at L = 5 we have 

(2.9) u, - u, = 0 * M', - M?, = c?,(WZ - wJ = 0. 

Since we are interested in the linear stability of the flat interface, we may Taylor- 
expand the fields and their --derivatives around z = 0 and retain only the lowest-order 
terms. It is then sufficient to compute the fields and their vertical derivatives at z = 0 
instead of at the unknown position of the surface z = <(x, t) .  This is valid as long as 
the deformation (5 )  is small compared to the wavelength of the instability and the slope 
of the deformed interface is much less than unity. The kinematic condition (2.8), 
linearized and applied at z = 0, now reads 

(2.10) 

and (2.9) is applied at z = 0 as well, greatly simplifying the computations. 

written as 
The remaining conditions are derived by considering the stress tensor, which is 

n,,Irn = -(Pj-PIG(t)z)6,,+q,(~,uj,rn+~rnU3,l)r (2.11) 

where the indices I, nz refer to components x, y ,  z ,  a n d j  to the fluid layer. 
Any deformation of the flat interface generates viscous stress. For a continuously 

deformed interface, the tangential components of the stress tensor must also be 
continuous (Chandrasekhar 1970, $91) at the interface. By setting these equal across 
the interface, and taking the horizontal divergence of (2.11) dotted with e,, we obtain 
that at the interface 

//l(v; w, + CZ v, u,,) = Y/,(VL W';! + Cz v, * u,J 

=+- Y/,(Vi -2z2)  w,  = T Z ( V i  - a2J w,. (2.12) 

The destabilization, and more specifically the curvature, of the interface generates a 
discontinuity in the normal component of the stress tensor. The jump in the normal 
component of the stress tensor, for small curvature, is given by 

(2.13) 

Here A x  = x lzZi+ - x 12={- denotes the jump in any quantity x across the interface, and 
applies to all quantities to its right within a term. The surface tension coefficient is CT. 
Substituting the definition (2.1 1) of the stress tensor into (2.13), we obtain 

(2.14) Ap = 2 4  11' At1 + G(t)  {Ap  + r V &  {. 
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We can derive another expression for the pressure by taking the horizontal 

v; 1)j = ( Y J  v’ -PI ‘ H  ’ u H ~  

= (p, ‘?t - 7, V2) 8, W ] .  (2.15) 

Setting the discontinuity across the interface of (2.15) equal to the horizontal Laplacian 
applied to (2.14), we obtain the jump condition (see Appendix A for an alternative 
derivation) at the interface as 

A@ 3, - 9 V2) ?lZ w = 2Vi  ?, I V  l z=o  All + G(t)  V g  &I + F V ~  6. (2.16) 

Equation (2.16) serves as an additional boundary condition for the system (2 .Q  and 
is the only equation in which the external forcing G(t)  remains explicitly. 

Horizontal boundary conditions are required to complete the specification of the 
stability problem given by (2.6), (2.7), (2.91, (2.10), (2.12) and (2.16). We will consider 
a horizontally infinite plane, whose normal modes are trigonometric functions, e.g. 
sin ( k - x ) .  The horizontal wavenumber k ,  where k’ = k: + k:, can take any real value. 
We can expand the fields in terms of horizontal normal modes of the Laplacian since 
the form of the equations is such that each mode is decouplcd from the others. This 
is the approach followed by Benjamin & UrseIl (1954) for the ideal fluid case, and 
it remains valid for the viscous fluid equations in the prescnt case. We now simply 
replace w(x, z ,  t )  by sin ( k -  x) w(z ,  t ) ,  <(x, t )  by sin ( k .  x) {(t) ,  and the differential operator 
V i  by the algebraic one - h 2 .  

The complete linear stability problem is now summarized : 

[2,- ~,(~,,-k’)](C?,,--~)11.. ,  = O  for -h ,  < I“ < 0, 
[a, - ~ ~ ( c ? , ~  -k2) ]  (Z,, -k2 )  w2 = 0 for 0 < I’ < h,. 

The boundary conditions a t  the two plates are given by 

i v ,  = 0 at 2 = - A , ,  

C?,M’, = 0 at z = -h , ,  
(?zw2 = 0 at z = h,, 

1.1‘’ = 0 a t  z = h,, 

and the conditions at the interface are 
AW 0, 

A(?, w = 0, 
At/(C‘zz + k‘) w = 0, 

Ab i?t - )/(?zz -k2 )  + 2j/k2] i, M. = - [A/) G(t) - gk2]  k2{ .  

The kinematic condition at the interface reads 

Pt (- M! Iz=,) = 0. 

The above set of equations (2. I7)-(2.27) constitutc the full hydrodynamic 
which we shall refer to as FHS. 

3. Floquet solution for the viscous equations 

(2.17) 
(2.18) 

(2.19) 
(2.20) 
(2.21) 
(2.22) 

(2.23) 

(2.25) 
(2.24) 

(2.26) 

(2.27) 

system, 

We apply Floyuet theory to solve the stability problem (2.17)-(2.27). Because G(t),  
the gravitational acceleration in the moving frame, is a periodic function of time with 
period 27c/o), the solutions are of Floquet form, i.e. 

w7(;, t)  = e(/’+‘”)‘ iG7(z, t mod 2n/w), (3.1) 
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where p + i a  is the Floquet exponent and e(’*+la)zn/‘oJ is . the Floquet multiplier. The 
function is periodic in time with period 27c/w, and may therefore be expanded in the 
Fourier series 

The Floquet multipliers are eigenvalues of a real mapping: this implies that they are 
either real or complex-conjugate pairs. In addition a is defined only modulo w,  since 
integer multiples of w may be absorbed into GI. Hence, we restrict consideration to the 
range 0 < ix < fw. The two cases x = 0 and a = $w are called harmonic and 
subharmonic, respectively, and correspond to positive or negative real Floquet 
multipliers, whereas 0 < a < f w  corresponds to a complex Floquet multiplier. 

The relationship between Fourier modes with positive and negative n depends on the 
value of a. In the harmonic and subharmonic cases, G3 must obey reality conditions 
wj ~n = w:n (harmonic) or w ~ , - ~ ,  = w ~ ~ T J - l  (subharmonic), so that the series (3.2) may 
be rewritten in terms only of non-negative Fourier indices. If, on the other hand, 0 < 
a < i w ,  then (3.1 j must be added to its complex conjugate in order to form a real field: 
Fourier coefficients with positive and negative n are independent. Only the harmonic 
and subharmonic cases are relevant to this linear stability analysis : complex Floquet 
multipliers are always of magnitude less than or equal to one, and hence do not 
correspond to growing solutions. This can be shown rigorously for the damped 
Mathieu equation (H. W. Miiller, private communication) and numerically for the 
Faraday problem for viscous fluids (see below). 

The interface position r is expanded in the same way: 

c(t) = e(p+l”)t [(t mod 27c/w), (3.3) 
a 

[(t mod 27c/wj = C c7, eircwt, 
-m 

(3.4) 

with the same reality conditions as for w. Equations (2.23) and (2.27) imply that 

wln(z  = 0) = w 2 n ( ~  = 0) = b+i(a+nw)]c,. (3.5) 

Substituting (3.1) and (3.2) into (2.17) and (2.18), we obtain for each layerj and for 
each Fourier component n the fourth-order ordinary differential equation in z: 

with solutions 
~ + i ( c c + n w ) - v , ( ~ , , - k z ) ] ( ? , , - k Z )  w , ~ ~  = 0, (3.6) 

wIn(z) = uI, e” + b,, e-kr + c j ,  e q ~ ~ ~ ‘  + d In e-ginz, (3.7) 

where 
2 ++I L + i (a + nu) 

7 
1;. 

9.in = (3.8) 

with the convention that q3, is the root of (3.8) with positive real part. 
For each n, the seven boundary and continuity conditions (2.19)-(2.25) relate the 

eight coefficients in (3.7). Most conveniently, the conditions can be used to express all 
of the coefficients as multiples of 5, via (3.5). (The algebra is straightforward but 
tedious and, especially for layers of finite height, is carried out numerically or 
symbolically; see Appendix B.) The case 11 +i(a+nrlj) = 0 is slightly different: the 
functions z ekkz replace e*4inz in the solution (3.7). If r is of Floquet form (3.3), then 
(3.5) implies that w,,(z = 0) = 0 when p +i(a+nro) = 0, which, together with the 
boundary and continuity conditions, ensures that wl0(z) = 0 for all z.  
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The only one of the equations which couples the different Fourier modes is the 
pressure jump condition (2.26) which we now express for each mode as 

A[p{y +i(a+rzo,)}+3r/k2]~z MI, -Ay2zzz~ t ' n  +(Apg-nk')k'<,, = Apk'[f(r)&t)] , .  (3.9) 

In (3.9). the notation [Kt)  <(t)], denotes the nth Fourier component of the product. For 
single-frequency forcing, we have 

fit) = &(t+ + e-"'t), (3.10) 

leading to If(4 iG)l, = +a(Cn+l + L J  (3.11) 

Recalling that 3, w,(O) and Pzzz w,(O) can be expressed as multiples of C,. the entire 
left-hand side of (3.9) can be written as $Apk2A, c,, with A ,  = A',+iAi, complex. The 
jump condition can then be rewritten as 

= a 0  

A.5, = 4Ll+LJ 
The reality conditions 

<Z1 = <: (harmonic) 

0 0 0 0 0 0  
1 0  0 0 1 0  

1 0  0 0 1 
0 0 1 0 0 0  
0 0 0 1 0 0  
. . . . . .  . . . . . .  . . . . . .  

(3.12) 

(3.13) 

11 0 1 0 0 0  
0 - 1 0 1 0 0  
1 0  0 0 1 0  
0 1 0 0 0 1  
0 0 1 0 0 0  
0 0 0 1 0 0  

. . . .  . . . .  
1 :  . . . .  

or = <: (subharmonic) (3.14) 

and truncation of the Fourier series (3.4) are used to restrict consideration to 0 d 
n < N .  

The coefficients A ,  and hence the system (3.12) depend on the Floquet exponent 
p + i a  via (3.8) and the boundary conditions (see Appendix B) in a complicated 
manner. However, the amplitude a of the external forcing appears linearly. In fact, for 
fixed Floquet exponent, (3.12) can be considered to be an eigenvalue problem with 
eigenvalues a and eigenvectors whose components are the real and imaginary parts of 
the 5,. That is, we write (3.12) as the generalized eigenvalue problem 

AS = aBS. (3.15) 

In (3.19, A is a diagonal complex matrix and B is a banded matrix whose structure 
depends on a. In the harmonic case, we have 

and in the subharmonic case, we have 

A:, -A; 0 0 0 0 ... 
A: A;  0 0 0 0 ... 
0 0 A: -A:  0 0 .. '  
0 0 A; A; 0 0 ..' 
0 0 0 0 A; - A ;  ..' 
0 0 0 0 A ;  A: ... 

... 

. . .  

... 

... 

... 

... 

(3.16) 
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The usual procedure for a stability analysis is to fix the wavenumber ?c and the 
amplitude LI (as well as the other hydrodynamic parameters), to calculate the exponents 
,u + ia, and to select that whose growth rate ,u(k a )  is largest. The curves in the (k, a) 
plane on which p(k, a) = 0 are the marginal stability boundaries, determined by 
interpolating LI between positive and negative values of p. In the present method, we 
instead fix it+ia, usually at ,LL = 0 and at a = ~ C O  or a = 0. We then solve (3.1 5 )  for the 
eigenvalues n. Only real and positive values of a are meaningful in this context. (For 
single-frequency forcing, the eigenvalues occur in + / - pairs because the symmetry 
f ( t )  = f ( t + n / o ~ )  implies that, if (n, [(t)) is a solution, then so is ( - a ,  {(f+n,/w))). We 
select the smallest, or several smallest, real positive eigenvalues u. These give the 
marginal stability boundaries a&,p = 0, a = &) and u(k,,u = 0, a = 0) directly 
without interpolation (see figure 1). If we set ,u = 0 and 0 < a < fo, we find only 
complex a,  indicating that the modcs with complex Floquet multipliers are damped as 
stated previously. The critical amplitude uc is the smallest value of m on the marginal 
stability boundaries, and the corresponding wavenumber is the critical wavenumber k,.  
I t  is this wavenumber which will be excited by gradually raising the forcing amplitude 
a,  if, as we have assumed, the system is horizontally infinite and has access to all 
wavenumbers. 

An ordinary eigenvalue problem can easily be constructed from (3.15) by inverting 
A :  

(3.18) 
1 

A-lBr = -5. 
n 

In  cases for which A is singular (as occurs in inviscid fluids at onset: see $4) but B is 
not (as in the subharmonic case), the latter can be inverted instead: 

B-' A[ = a[. (3.19) 

Eigenproblems (3.18) or (3.19) are solved straightforwardly by constructing the 
corresponding matrix, diagonalizing it via EISPACK, and selecting the smallest, or 
several smallest, real positive values of a. More specifically we calculate the values A ,  
corresponding to our hydrodynamic parameters, and then multiply all possible unit 
vectors 5 successively by B and by A-l (for (3.18)) or by A and by B l (for (3.19)). Note 
that B is not a complex matrix: compare the first two rows of B in (3.16) or (3.17) with 
the 2 x 2 blocks of A and of the rest of B. This is a consequence of the reality conditions 
(3.13) or (3.14), which state that B acts on <* as well as 6. Thus, A-'B and B-lA are 
2(N+ 1) x 2(N+ 1) real matrices, and subroutine rg (Real General) is called to 
diagonalize them. 

Formulation (3.18) has a slight advantage over (3.19). Inversion of A requires only 
one complex division per Fourier mode, whereas inversion of the banded matrix B 
requires an LU decomposition. For one-frequency forcing we find that a temporal 
resolution of N = 5 or N = 10 is sufficient, and diagonalization of the resulting 12 x 12 
or 22 x 22 matrices on a SUN Sparc-4 is rapidly performed. Research currently being 
undertaken by the present authors with W. S. Edwards shows that the above method 
is quite general and equally applicable to a general periodic forcing function. 
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4. Ideal fluids 

For two ideal fluids (vj = 0), the hydrodynamic equations reduce to 
4.1. Derivation of the Mathieu equation 

a,(i3,,-k2) w, = O  for -h, d z < 0, 

i$(dz2 - k2) w2 = 0 for 0 < z d h,. 

The boundary conditions at the plates become 

w, = O  at z=-h , ,  

w2 = 0 at z = h,, 

and those at the interface read 

AW = 0, 

Ap a, dz w = [Ap(g - a cos (wt) )  - ak2] k2& 

at [- w = 0. 

The horizontal velocity may be discontinuous across the interface, leading to 
discontinuity in a, w. Equations (4.1) and (4.2) state that the vorticity remains constant 
over time. One usually makes the additional assumption for ideal fluids that the initial 
vorticity is zero, leading to 

Solutions to (4.8) that satisfy boundary conditions (4.3H4.5) for the simplest case of 
two fluid layers of infinite heights are 

(azz - k2) wj = 0. (4.8) 

wl(z, t)  = W(t) ekz for - 00 < z < 0, 

w2(z, t )  = W(t) epk2 for 0 < z < co. 
(4.9) 

(4.10) 

The quantities appearing in the pressure jump condition (4.6) can then be calculated 
and are given by 

!xt) = JVo, (4.1 1) 

Apd,a,w = -k(p,+p,) m(t). (4.12) 

Substituting these into (4.6) we arrive at 

(+ w;[ 1 - 2 cos (ot)]  5 = 0, (4.13) 

where (4.14) 

and a ” = -U kJ - P I *  (4.15) 

For fluid layers of finite heights, p1 +pz in the denominator in (4.14) and (4.15) is simply 
replaced by I., coth (kh,) +p2 coth (kh,)]. When h,  = h, andp, = 0, this reproduces the 
original ideal fluid result of Benjamin & Ursell (1954). 

(Pl  + P2) 4 ’ 

4.2. Incorporation of damping 
For small damping (i.e. for A2w $ v) and for small deformation of the interface 
( 5  < A), the flow can be considered to be irrotational except for a thin layer around 
the interface. Neglecting this thin layer and the viscous boundary conditions, we can 
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estimate the viscous damping using the ideal fluid velocities, which, for two fluids of 
infinite height, are given by 

u(x,z,  t )  = [e, sin ( k . x ) + k  cos ( k - x ) ]  ~ ( t )  eT'2, (4.16) 

where the T signs are used for the upper and lower layers and k is the horizontal 
wavevector. The damping coefficient y is defined (Landau & Lifshitz 1987, $25) as 

y = lEl/2E, (4.17) 

where are time-averaged values of the rate of dissipation of the total 
mechanical energy due to viscosity and the total mechanical energy, to be estimated as 
follows. 

Following the argument of Landau & Lifshitz (1987, $25) the time-averaged 
mechanical energy, for the case of two fluids, is given by the sum of volume integrals 

k 

and 

r r 

and the time-averaged rate of dissipation is 

(4.18) 

(4.19) 

In (4.18) and (4.19), the first integral is to be evaluated in the lower fluid, and the 
second in the upper fluid. The indices I ,  m refer to components .'c, y ,  z and sums over 
these indices are implied. Combining (4.16t(4.19), we find 

(4.20) 

For fluids of finite depths, the terms q 1 + q 2  and p + p ,  in (4.20) are replaced by 
[ql coth (kh,)+?/;, coth (kh,)] and [p, coth (klz,) +p, coth (klz,)] respectively. 

Traditionally, for low-viscosity fluids, a linear damping term (e.g. Ciliberto & 
Gollub 1985) is added to the Mathieu equation to account for viscous dissipation. We 
do the same here for the two-fluid case in order to compare the results of the full 
hydrodynamic system (FHS) with this phenomenological approach. However, our 
damping is wavenumber dependent. The resulting equation is 

~ + 2 y ~ + w ~ ( l - r i c 0 s  Wt)( = 0. (4.21) 
We shall refer to (4.21) with parameter values given by (4.14) and (4.20) or its finite- 
depth version as the model. 

It is sometimes convenient to remove the damping from (4.21) by the transformation 

5 = e-yf 6. (4.22) 
Insertion of (4.22) into (4.21) results in the standard Mathieu equation 

where 
(4.23) 

(4.24) 

id = iw;/w;. (4.25) 
We solve the damped Mathieu equation (4.21) numerically by a simplified version of' 

the technique used to solve the full hydrodynamic problem. We substitute the Floquet 
form (3.3) and (3.4) into (4.21) and obtain 

KP + i(a + nw)S2 + 2y{p + i(a + n u ) )  + 03 Cn = iw:  ii({n-l + (%+,), (4.26) 
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which is of the same form as (3.12). The matrices B are exactly as in (3.16) and (3.17), 
whereas the matrix A has coefficients given explicitly by 

2 

wo 
A ,  = --2 [ {p  + i(a + nw))2  + 2y jp  + i(a + nw)) + w 3  (4.27) 

From the form of (4.26) and (4.27). we easily obtain the condition for resonance for 
infinitesimal forcing amplitude. Setting ri = 0, ,u = 0, we see that the existence of a non- 
trivial solution to (4.26) requires that A ,  = 0 for some n, i.e. 

(4.2%) 
(4.29) 

We conclude that, in fact, y = 0 if there is an instability for ri = 0 and 

Finally, using a = 0 or cr. = &I, we arrive at the usual result: 

where nz is odd for subharmonic resonance and even for harmonic resonance. 

a + nw = wo. 

W o  = iW7 0, 

(4.30) 

(4.3 1) 

5.  Results 
We determined the stability of the flat interface to standing waves of wavenumber 

k as a function of the amplitude a of the external acceleration. In figure 1, we show the 
neutral stability curves that divide the (Q, k)-plane into a region of stable solutions, and 
regions, called tongues, of unstable (growing) harmonic or subharmonic solutions. The 
harmonic solutions have the same period as that of the external driving and the 
subharmonic solutions have a period twice that of the external driving. We show the 
stability boundaries obtained by Floquet analysis of the Mathieu equation (4.13)-(4.15) 
derived from the ideal fluid equations in figure 1 ( ~ ) .  Tongues of harmonic and 
subharmonic response alternate. As a approaches zero, the temporal dependence of the 
response < corresponding to the nzth tongue approaches a single Fourier mode e1mwt/2. 
For higher a, is a superposition of different frequencies. However, harmonic and 
subharmonic responses remain separated : < contains frequencies which are either all 
odd or all even multiples of i w ,  as can be seen from the Floquet form (3.3) and (3.4). 
In the ideal fluid case, where a, = 0 for all tongues. modes from different tongues can 
be excited even for infinitesimally small a. In figure 1 (a),  where the excitation frequency 
( =  (fJ/h) is 100 Hz, the response frequencies at  onset for the first three tongues are 50, 
100 and 150 Hz, respectively. 

In figure 1 (b), we present the stability boundaries obtained by Floquet analysis of the 
FHS for viscous fluids (here, v1 = v2 = 7.516 x 10W m2 s-l). The viscosity smooths the 
bottom of the tongues, widening the band of excited wavenumbers k.  The minima 
(k,, a,) are displaced towards higher k and a. Since the viscous dissipation increases with 
k, a, is also higher for larger k. Because the lowest tongue is subharmonic, the interface 
is excited subharmonically at onset. Since a, is always finite in the presence of viscosity, 
the solutions at onset are superpositions of many frequencies. In the inset of figure I (b), 
the lower parts of the neutral stability curves for the model ((4.21) with (4.14), (4.15) 
and (4.20)) and the FHS are compared. The model (dashed curve) has a higher 
threshold oC and a lower critical wavenumber k, than does the FHS (solid curve) for 
the present case. 

To study the influence of viscosity in more detail, we plot the critical wavelength 
A,( = 27c/k,) and the critical excitation amplitude U~ as a function of kinematic viscosity 
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FIGURE 1. (a) Stability boundary for ideal fluids. The tongues correspond alternately to subharmonic 
(SH) and harmonic (H) responses. Fluid parameters are p1 = 519.933 Kg m-j, p2 = 415.667 Kg m ', 
v = 2.181 x 11 m-' and 2n /w  = 100 Hz. (b)  Stability boundary for FHS. ql = 3.908 x lo-' Pa s, 

= 3.124 x Pa s, and other parameters are as in (a). Inset: Comparison of the lowest tongues 
for the model (dashcd line) and the FHS (solid line). 
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FIGURE 2. (a) Wavelength at  onset as a function of viscosity 1 1 .  The prediction of the model (dashed 
line) is gcnerally above that of the FHS (solid line). Parameters are p1 = I O3 Kg m-3, pJe = 0.5 x pl ,  
cr = 72.5 x is in units of m2 s-'. (b) Stability threshold a, 
as a function of viscosity V .  The model (dashed line) greatly underestimates the stability threshold 
for small viscosity and overestimates it for higher viscosity. 

nm * and w / 2 n  = 60 Hz. v = v1 = 

v for both the FHS and the model in figure 2. We have set v1 = v2, which does not 
obscure the essential features of the problem. The assumption of infinite fluid depths 
serves to focus the comparison of the viscous stresses at the interface, avoiding the 
effect of additional stresses at the upper and lower plates. 
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At very low viscosity, figure 2(a) shows that the wavelengths predicted by the FHS 
and by the model both converge to that given by the dispersion relation (4.14) for ideal 
fluids, as expected. As 1) increases from zero, we see that A, first decreases (inset, figure 
2a) slightly and then increases strongly. Since the wavelengths predicted by the model 
and FHS do not differ significantly for low viscosity, we may use the model as a tool 
to understand the initial decrease in A, with increasing Y .  Thc response function, for 
small damping, may be considered to be dominated by frequency wd, which is half the 
excitation frequency w.  Therefore, from the dispersion relation given by (4.24), we 
have : 

For fixed w ,  (5.1) has one real root k for q1 = y2 = 0, p1 2 p2. For finite viscosity, there 
are two real roots, but only the smaller one is relevant, and it can be seen that this root 
k, increases with q,  + q2.  Consequently A, decreases with increasing viscosity. For 
higher viscosity, we see from figure 2(a)  that the selected wavelength A, begins to 
increase strongly with viscosity. Since the viscous dissipation is much stronger at higher 
viscosity, the system prefers smaller k,, i.e. larger A,, to minimize the viscous 
dissipation. Another way of seeing this is that the viscous timescale 7,,,,( z Ai /v )  
becomes comparable to the typical timescale of the response 7T( % 4n/o) and the 
wavelength selection is strongly affected. 

Figure 2(b)  shows the stability threshold a, as a function of viscosity. Since the 
model neglects the viscous boundary conditions at the interface, it grossly 
underestimates the energy dissipated - and therefore the threshold at small viscosities 
(inset, figure 2b).  Even a thin boundary layer at the interface costs considerable energy: 
it is necessary to consider the viscous boundary condition in order to predict the 
stability threshold. At higher viscosity, viscous dissipation can no longer be treated as 
a perturbation, and the flow should be considered rotational. Assumptions inherent in 
the model - for example the use of the ideal fluid solutions in expressions (4.18) and 
(4.1 9) for the energy and its dissipation - are no longer valid. From figure 2(b), we see 
that the model overestimates the stability threshold for larger viscosity. 

We compare the results of the FHS and of the model to experimental results 
obtained in a viscous glycerine-water mixture (Edwards & Fauve 1993) in contact with 
air. The experiment uses the 'rim-full' technique (Benjamin & Scott 1979; Douady 
1990) to pin the surface of the liquid to the edge of the vessel. This also makes the 
surface flat (i.e. free from any meniscus) before instability sets in. We consider the 
glycerine-water mixture to be a layer of finite height h = 0.29 cm, in contact with a 
layer of air of infinite height. In figure 3, we plot the experimental data for the critical 
wavelength A, and amplitude a, as a function of forcing frequency. The solid and 
dashed curves are obtained from the FHS and from the model with finite depth 
corrections, respectively. We note, however, that the values for the surface tension cr 
and the viscosity v were chosen so as to best fit the FHS to the experimental data. This 
led to values cr = 67.6 x n m-' and Y = 1.02 x lop4 m2 s-l, which are in good 
agreement with the corresponding values given in the literature for the mixture, 
composed of 88 YO (by weight) glycerol and 12 O/O water, at temperature 23 "C. With 
these values, both the model and the FHS agree reasonably well with the experimentally 
measured wavelengths. The experimentally measured amplitudes agree quite well with 
the FHS over the entire frequency range, and not at all with the model. It  is impossible 
to improve the f i t  oj the critical amplitudes to the model by var-ying cr and v.  

We now compare the results of the FHS with the experiments of Fauve et aE. (1992) 

3 F L M  279 
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FIGURE 3. Dispersion relation for glycerine-water mixture in contact with air at atmospheric pressure. 
Fitting the experimental data (Edwards & Fauve 1993) with the results of the FHS (solid lines) leads 
to r = 67.6 x nm-l. Inset: Fitting of the experimental data for the stability threshold leads to 
v = 1.02 x lo-* mz s-l. 

for carbon dioxide (CO,) near the L-V critical point. This proves to be much more 
difficult, owing to uncertainties in almost all of the fluid parameters. We need the 
values of the densities p l z q ,  pvap, and the dynamic viscosities qttq, rvap of the two phases 
of CO, and the coefficient of surface tension cr of the interface as a function of the 
temperature difference AT( = T,- T )  in order to be able to compare our prediction 
with the experimental results. The density difference p l l q  -pvap  between the two phases 
is known (see for instance Moldover 1985 and references therein) with reasonable 
accuracy (< 2 %) and can be computed using the power law 

Ptz* -Punp  = 2P, B" tP(l + 4 t33 (5.2) 

where t = ( T , - T ) / T , , p  = 0.325 and 6 = 0.5. For CO, we used B, = 1.60, B, = 1.454, 
p, = 467.8 Kg mP3 and T, = 304.13 K. The sum plLg+pVap of the two phases 
approaches 2p, as T approaches T,, but its exact dependence on AT is not known. The 
surface tension cr and the sum (rlzq+rvulr) of dynamic viscosities for CO, have been 
measured experimentally for 0.012 d AT 6 12 K by Herpin & Meunier (1974). Herpin 
& Meunier (1974) also observed that the kinematic viscosities vLiq, v , , , ~  of both phases 
remain roughly equal near the L-V critical point in many liquid-vapour systems, 
including CO,. Utilizing this fact, we can express the dynamic viscosity of one phase 
in terms of that of the other, and of the two densities. We treat the sum pl ip+pvap of 
the densities of two phases, the surface tension cr and the dynamic viscosity of one 
phase (say, y l z q )  as free parameters. The infinite depth limit is a reasonable 
approximation for this experiment. 

In figure 4, we compare the dispersion relations and the stability threshold a, of the 
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FIGURE 4. (a) Comparison of dispersion relations for liquid-vapour interface of CO,. Experimental 
results (filled circles) of Fauve et a/. (1992), results of the FHS (solid lines) and the predictions of the 
model (dashed lines) are for AT = 0.078 K (upper set of curves) and for AT = 0.007 K (lower set of 
curves). (h)  Comparison of stability threshold for CO,. Experimental results (filled circles) of Fauve 
et al. (1992), results of the FHS (solid lines) and the results of the model (dashed lines) are for 
AT = 0.078 K (lower set of curves) and for AT = 0.007 K (upper set of curves). 

FHS (solid line) and of the model (dashed line) with that of the experiment, Choosing 
the free parameters to best fit the results of the FHS to the experimental data led, for 
AT = 0.078 K, to the values p l i p  = 501.22 Kg m-3, pt ,ap = 396.95 Kg m-3r cr = 
2.79 x lop6 n m-I, qlip = 4.17 x lo-’ Pa s and qvap = 3.30 x lo-& Pa s. The resulting 
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value for the sum vlig+71,!,p is in excellent agreement with the values measured by 
Herpin & Meunier (1974), while CJ is in fairly good agreement with these measured 
values. For AT = 0.007 K, we obtain pliQ = 486.56 Kg m-', p l jap  = 439.687 Kg mp3, 
CJ = 1.16 x lo-' n m-l, ' y l i q  = 4.07 x Pa s and reap = 3.68 x lop5 Pa s. At this tem- 
perature we are not aware of experimentally measured values of r ,  y l i q  or rvap. 

Both the FHS and the model show the saturation of the selected wavelength at 
higher frequencies (figure 4a). For AT = 0.078 K, the critical wavelengths A, predicted 
by the FHS and by the model both agree well with experiment, except at low 
frequencies. For AT = 0.007 K, the dispersion curve predicted by the FHS agrees 
much better with experiment than that predicted by the model. However, the stability 
thresholds of figure 4(b), like those of figure 3.  reveal the most significant shortcoming 
in the model: a, predicted by the model disagrees significantly with the experimental 
results, and cannot be improved by varying pl iq  +pvapr m and y i i q .  

These trends persist for other values of AT (not shown in the figure 4a). For all 
AT 2- 0.078 K, by varying pl ip  +pt ,ap,  CJ and y l i a  the critical wavelength and stability 
threshold obtained by the FHS can be fit to the experimental data reasonably well, 
except at low excitation frequencies. In contrast, for smaller AT (e.g. AT = 0.007 K), 
the prediction by the FHS for A, remains below the experimental results for the 
entire range of excitation frequency. Varying all parameters, i.e. pliq + pvap ,  and ql,Lg 
by reasonable amounts does not improve the agreement with experimental results. 

We can propose various sources for the discrepancy between the experimental data 
and the results of the FHS for Ac. Meniscus waves, the no-slip condition at the lateral 
walls, liquid-vapour mixing and compressibility of the fluids may all affect the 
wavelength selection. A detailed discussion on various damping mechanisms in a fully 
confined fluid at temperatures far from the L-V critical point is given by Miles (1967). 
Because the surface tension decreases rapidly close to the L-V point, the effect of 
meniscus waves is expected to be small. Since the size of the viscous boundary layer is 
proportional to ( V / W ) ~ ' ~ ,  the effect of sidewalls, for a given viscosity, is greater at low 
excitation frequency. This may explain the disagreement of the prediction of the FHS 
with the experimental values of A, at low frequencies for AT = 0.078 K. For smaller 
AT, the liquid-vapour mixing and the effects due to compressibility might not be 
negligible. This might be the reason why varying all parameters does not give better 
agreement between the prediction of the FHS and the experimental results at AT = 
0.007 K.  

Based on our observations, we propose a method for measuring the densities and 
dynamic viscosities of two phases, and the surface tension of the interface in a 
liquid-vapour system. Any liquid-vapour system can be parametrically excited under 
vertical oscillation and the critical wavelength A, and the threshold a,, measured 
experimentally over a wide range of excitation frequencies. If the density difference 
(pl ig-pvap) ,  critical density pc and critical temperature T, are known by other 
experiments or by theory, we fit the experimental results by varying three parameters: 
the sum (pl i ,  +poap) ,  the surface tension CJ and i l l ig  (or vtJnp, since we assume vliq = vIJa,J. 
In principle this gives all the quantities p l i p ,  poap,  rlin and r .  We note that the dispersion 
relation is more sensitive to CJ and the stability threshold to the dynamic viscosity, 
facilitating the fitting procedure. This technique should work for temperature 
differences for which liquid-vapour mixing and/or compressibility effects are less 
important. 
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6. Conclusions 
We have presented a linear stability analysis for the interface of two viscous fluids 

using Floquet theory. The effect of large viscosity on the wavelength selection is 
substantial. We have also presented a simple model and compared its results with the 
full hydrodynamic system. The prediction of the stability threshold by the FHS agrees 
very well with that of the experimental results, while the model is unable to predict the 
stability threshold accurately even at small viscosities. As the viscous stress at the 
interface increases with viscosity, the critical mode is expected to be distorted 
significantly at large viscosity. Therefore, consideration of viscous boundary conditions 
is necessary, not only for obtaining a quantitatively better estimate of the stability 
threshold, but also for understanding the underlying mechanisms of pattern selection 
in any weakly nonlinear theory for viscous fluids. Based on the theory, we have 
proposed a simple technique for measuring the sum of the densities and the dynamic 
viscosities of liquid-vapour phases of a fluid, and the surface tension coefficient of its 
interface. We have also generalized the stability problem (Appendix A) to consider a 
multi-layer system of heterogeneous fluids under parametric excitation. 

We have benefited greatly from stimulating discussions with S. Fauve, W. S. 
Edwards, H. W. Miiller and C. Laroche. Experimental data for figure 3 were provided 
to us by W. S. Edwards. This work has been supported by the CNES (Centre National 
d’Etudes Spatiales) under Contracts Nos 91/277 and 92/0328. One of us (L.S.T.} was 
supported by the Fondation Scientifique of the Region Rh6ne-Alpes. 

Appendix A. Stability of a multilayer system of heterogeneous fluids under 
parametric oscillation 

We consider an arrangement in which many layers of incompressible fluids of 
variable density and dynamic viscosity are superposed and confined between two 
horizontal plates subjected to a vertical sinusoidal oscillation. The pressure P ,  density 
p and dynamic viscosity 7 are assumed to be functions of the vertical coordinate z .  The 
basic state is stationary with all interfaces flat. An interface located at z = z,  (s = 1,2, 
3, ...), where the density and the viscosity are discontinuous, is subjected to forces due 
to surface tension CT, in the presence of any perturbation. Following Chandrasekhar 
(1970, $91), the linearized equations for perturbations ( u , , ~ ,  Sp)  for such a system, in 
a frame of reference fixed to the vibrating plates, can be written as 

p at  UZ = - 4 P  + 7v2u, + (2, W + % UJ (4 7) - e,[G(O (Sp) - z (n, vi C S )  d(z - 4 1 ,  (A 1) 

(A 2) 
(A 3) 

(A 4) 

In the above G(t) = g- a cos (wt ) ,  e = (OOl) ,  w( = uI ez) is the vertical velocity and & the 
deviation of the sth interface from its preassigned value z,. Equation (A 3) states the 
incompressibility condition (i.e. D,p(z) = 0, where D, is the material derivative) for a 
fluid of variable density. The constant of integration in (A 3) is zero because the 
interfaces remain flat and stationary with respect to the moving frame in the absence 
of any velocity perturbation. Similarly the constant of integration in (A4) is zero 
because the density p(z)  at any point remains unchanged if there is no fluid motion. 

c 

s a, uL = 0, 

C?,(Sp) = - ~ ( 3 ,  p) * Sp = - ( Z Z  /I) 1%’ dt, 

at<, = W ,  * <,7 = Mi, dt. S 
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The boundary conditions at interfaces of viscous fluids demand continuity across 
every interface of all velocity components and of tangential components of the viscous 
stress. Making use of (A 2), these conditions at z = z, can be expressed as 

A, u' = 0 (continuity of w), (A 5) 

(A 6) 

(A 7) 

Condition (A 7) implies that a,, w is finite at an interface. Here, A, x = x I z T t +  -x Iz=<&- 
is the jump in quantity x at z = z ,  and applies to all terms appearing to its right. 

As a, w = 0 (continuity of 2, w ) ,  

As ?(a,, - VL) w = 0 (continuity of tangential stress). 

Taking the horizontal divergence of (A 1) and using (A 2) we arrive at 

v;p = a, - qv2) a, w - (a, 7) (z,, - v w. (A 8) 

Using (A 3) in the z-component of (A 1) we obtain 

a , ~  = -pa, w + 7V2 M: + 2(a, 7) (a, W )  + G(t) (a, p )  w dt+ (a, Vk {,) 6(z -zJ. (A 9) i 
To interpret (A 9) correctly we must integrate it across the interface. Using (A 5 )  and 
(A 6 )  and the boundedness of a,, w, (A 9) can be integrated over an infinitesimal length 
element dz including z,. Using (A 4), the result can be written as 

In the above the subscript s denotes the value of any quantity which is continuous 
across an interface, at the sth interface. Another expression for the jump in pressure p 
across the sth interface, from (A 8), is 

(A 11) As VLp = A,[@ 8, - 7V') z2 w - (a, 7) (a,, - V k) 1.1. 
Eliminating p from (A 10) and (A 11) we arrive at the jump condition 

This equation can be viewed as an additional boundary condition at the surface. 
Equations (A 1)-(A 7) and (A 12) along with a given density and viscosity profile and 
appropriate boundary conditions at the top and the bottom plates constitute the 
complete stability problem. For fluids completely enclosed in a vessel, the boundary 
conditions at the lateral walls must also be specified. 

In the absence of external excitation, our system reduces to the problem of 
Rayleigh-Taylor instability for viscous fluids (Chandrasekhar 1970, $9 1). For two 
fluids of different but constant densities and viscosities extending infinitely in the 
horizontal plane this system gives the set of equations obtained in 52.2. For one fluid 
of varying density p(z),  these equations describe internal gravity waves under 
parametric excitation. 

Appendix B. Boundary conditions for the Full Hydrodynamic System 
In the Floquet expansions (3.1) and (3.2), the nth coefficient wjTl of the vertical 

velocity in the jth fluid layer is given by (3 .7)  : wj,(z) = ajnekZ + bjnepkZ + c .  egfnz + 
djneC3nz. The eight coefficients in (3.7) are expressed in terms of the nth coefficient 
of the interface position by means of the eight equations (2.27) and (2.19)-(2.25), 
written as follows. 

3 n. 
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Kinematic condition 

Infinite lower layer: 

Finite upper layer: 
b,, = 0,  d,, = 0. 

Infinite upper layer : 
a,, = 0, c,, = 0. 
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