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Abstract Near transition, plane Couette flow exhibits statisticallysteady bands of
alternating turbulent and laminar flow. We simulate these patterns numerically and
show that they can be quantified via the spatial Fourier component corresponding
to the pattern wavevector and its probability distribution. The trigonometric nature
of the turbulent-laminar pattern suggests that it emerges from a linear instability of
the uniform turbulent state, and we attempt to verify this hypothesis via theK −Ω
closure model. We calculate steady 1D solution profiles of the K −Ω model and
their linear stability to 3D perturbations, but find no correspondence between this
analysis and the onset of turbulent-laminar bands in experiment and simulation.

1 Turbulent-laminar bands

Near transition, plane Couette flow exhibits a remarkable statistically steady state
containing alternating oblique bands of turbulent and laminar flow which are regular
and statistically steady. Discovered experimentally by Prigent and Dauchot (GIT-
Saclay) [1, 2] and subsequently simulated numerically by Barkley and Tuckerman
[3, 4, 5, 6], these patterns seem to be an intrinsic feature ofthe transition to tur-
bulence in shear flows, since they are also seen experimentally in counter-rotating
Taylor-Couette flow [1, 2] and the stator-rotor configuration [7], as well as in simu-
lations of plane Poiseuille flow [8], and pipe flow [9].
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Fig. 1 Turbulent-laminar pattern at Reynolds number 350. Isosurfacesof instantaneous streamwise
vorticity. This visualization is constructed by tiling a large domain with many repetitions of our
computational domain.

Figure 1 shows a perspective plot of a turbulent-laminar patterned flow com-
puted by our simulations atRe = 350. The upper and lower plates are located at±h
and move in the streamwise direction at±U ; the conventional Reynolds number is
Uh/ν . In the flow of figure 1, the width of the bands is 40 in units ofh, and they are
oriented at an angle ofθ = 24◦ from the streamwise direction, so that the pattern
wavevector is oriented at 66◦. This width and angle are within the typical range of
these patterns [1, 2].

We focus on the transition from uniform turbulence to turbulent-laminar pat-
terns with decreasing Reynolds number, which takes place near Re = 400. This low
Reynolds number is quite accessible to direct numerical simulation of the Navier-
Stokes equations. We first describe three numerically computed flows spanning the
transition region, and characterize these flows by means of their Fourier transforms
along the pattern wavevector.

Our simulations were carried out with the spectral-element/Fourier codePrism
[10]. We use between 8 and 20 modes per unit length, leading toa resolution of
about 106 gridpoints or modes. More details concerning our numericalmethods can
be found in [3, 4, 5, 6].
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2 Analysis of Fourier spectra

Fig. 2 Top row: timeseries of the spanwise velocity at 32 points along a line midway between the
plates and oriented along the pattern wavevector. Bottom row: time-average of the power spectrum
along the pattern wavevector of the spanwise velocity. Them = 1 component corresponds to the
pattern wavelength of 40. Left column: uniform turbulence atRe = 500. Middle column: intermit-
tent state atRe = 410. Right column: statistically steady turbulent-laminar pattern atRe = 350.

We now describe the onset of these patterns as the Reynolds number is decreased.
The upper portion of figure 2 shows timeseries of the spanwisevelocity for 32 points
along a line located midway between the plates and oriented in the direction of the
pattern wavevector. (In this figure, as in some of our previous work [4, 5, 6],z
denotes the direction of the pattern wavevector, but in section 3 we will usez to
denote the spanwise direction instead.)
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Figure 2 shows that the turbulence isuniform for Re = 500 andbanded for
Re = 350. At the intermediate valueRe = 410, the turbulence isintermittent, with
a pattern appearing and disappearing sporadically. We thenprocess this data by
taking the square modulus of the Fourier transform along thepattern wavevector
|spanm(t)|

2 at each instantt, and then averaging over time for eachRe. This yields
the 1D power spectra avg

t
|spanm(t)|

2) of the spanwise velocity, shown in the lower

portion of figure 2. These spectra display a very prominent feature: them= 1 Fourier
component corresponding to wavelength 40 emerges from the rest of the spectrum
atRe = 350 and, to a lesser extent, atRe = 410. The emergence of them = 1 Fourier
component suggests using it as an order parameter for the transition from uniform
to banded turbulence, as shown in figure 3.

Fig. 3 Bifurcation diagram for transition from uniform to banded turbulence usingm = 1 compo-
nent of averaged power spectra, as in figure 2.

To obtain a sharp threshold, however, it is necessary to return to the instanta-
neous componenta(t)≡ |span1(t)|. Rather than averaging these over time, we treat
the instantaneous values as statistical samples and, by binning these, construct their
probability distribution functionp(a). The resulting probability distribution func-
tions forRe = 500, 410 and 350 are shown in figure 4. We can distinguish different
regimes: ForRe & 440, the most probable value ofa is zero, and this is wherep(a)
has its maximum. AtRe = 440,p(a) changes curvature and, forRe . 440,p(a) has
a local minimum ata = 0 and a maximum at a finite valueamax> 0.

Although a Gaussian provides an extremely good fit top(a) for Re = 500, the
functional form which best fitsp(a) for Re = 410 and 350 as well is:

ln p(a) = c0+ c1a+ c2a2 (1)

rather than the more usual quartic. The functional form (1) givesamax=−c1/(2c2)
as the most probable value. Bothamax andc1 are shown on the right part of figure 4.
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Fig. 4 Left: probability distribution functionsp(a) for pattern Fourier component.Re = 500
(squares),Re = 410 (triangles), andRe = 350 (circles). Solid curves are least-squares fits to
ln p(a) = c0 + c1a + c2a2, dashed curves to lnp(a) = c0 + c2a2 + c4a4, Right: maximumamax
of PDFs as a function of Reynolds number (solid dots) and coefficient c1/10 (hollow dots) from
least-squares fit.

3 Stability analysis ofK −Ω Model

The sequence seen in figures 2-4, in particular the emergenceof a single trigonomet-
ric mode, suggests that these patterns result from a linear instability of theuniform
turbulent state, whose temporal average depends only on a single spatial variable:
the cross-channel coordinatey.

We decompose the velocity field into itsshort-time mean and its fluctuating parts:

U = Ū+U′ whereŪ ≡ 〈U 〉 and〈U′ 〉= 0 (2)

Ū is governed by the Reynolds-averaged equations:

∂tŪ = −∇P − (Ū ·∇) Ū + F +
1

Re
∆ Ū (3a)

∇ · Ū = 0 (3b)

where the Reynolds stress force isF ≡ −〈(U′ ·∇)U′ 〉. These are subject to the
boundary conditions which define plane Couette flow:

Ū(x,y =±1,z) = ±ex (3c)

Ū(x+λx,y,z) = Ū(x,y,z+λz) = Ū(x,y,z) (3d)

wherex, y, z are the streamwise, cross-channel and spanwise directions, respectively.
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Since (3a) contains the Reynolds stress force, which in turndepends on the fluc-
tuationsU′ which we seek to bypass, we require aclosure model relatingF directly
to the mean flowŪ. TheK −Ω model, as described in [11, 12, 13] is that thought
best adapted to walls and to low Reynolds numbers. Equations(3) are closed by
approximatingF as:

F = ∇ · (νT 2S) νT ≡
K
Ω

2Si j ≡ ∂iU j +∂ jUi (4a)

whereK andΩ are scalar fields which evolve according to:

∂tK = −Ū ·∇K +νT S2−β ∗(ΩK)+∇ ·

((

ν +
νT

σK

)

∇K

)

(4b)

∂tΩ = −Ū ·∇Ω +αS2−βΩ 2+∇ ·

((

ν +
νT

σΩ

)

∇Ω
)

(4c)

with typical parameters ofα = 5/9, β = 3/40, β ∗ = 9/100,σK = σΩ = 2. K is to
be interpreted as the kinetic energy density and has boundary conditions:

K(x,y =±1,z) = 0 (4d)

Ω is meant to account for the presence of the boundary and is subject to various
phenomenological boundary conditions, such as:

Ω(x,y =±1,z) = 1/(∆y)2 (4e)

where∆y is the numerical grid spacing at the boundary.
We have computed steady 1D solutions of (3)–(4) for various Reynolds numbers.

To do so, we set̄U(x,y,z) = Ū(y)ex and ∂t = ∂x = ∂z = 0. We discretized they
direction over a grid ofNy+1= 61 points with a Chebyshev spacingy j = cosjπ/Ny,
which concentrates points at the boundaries, We then solvedfor Ū(y), K(y) and
Ω(y) via Newton’s method. The left portion of figure 5 showsŪ , K, andΩ profiles
for Re= 100, 300 and 500, while the right portion comparesŪ(y)−y to the averaged
turbulent profiles from our full 3D simulations atRe = 500. Like [14], we find that
the K −Ω model exhibits a bifurcation from laminar flow (K = 0, U(y) = y) to
turbulent flow (K > 0)) at Re ≈ 100, illustrated in the left portion of figure 6. (This
is already inconsistent with actual plane Couette flow, in which the lowestRe at
which turbulence has ever been observed is 220 in certain numerical simulations
[4, 15] and more typically above 300 [3, 16].) ForRe = 300 and 500, theU profiles
haveS-shapes and theK profiles show flattening in the bulk, both features found in
actual turbulent channel flows.

We then carried out linear stability analysis by substituting






Ū(y)ex
K(y)
Ω(y)







+







ū
k
ω







eσt+2πi(x/λx+z/λz) (5)
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Fig. 5 Profiles fromK −Ω model. Left:Re = 100 (solid curves),Re = 300 (long-dashed curves)
andRe = 500 (short-dashed curves).̄U(y) ranges between−1 and+1, K(y) has a bulge in the
center.Ω(y) (not shown) isO(106) at boundaries and decreases sharply toO(1) in the bulk.
Right: comparison ofU(y)− y betweenK −Ω and full DNS. Solid and dashed curves show DNS
andK −Ω profiles, respectively, forRe = 500.

into the full 3D equations (3)–(4), linearizing, and calculating the eigenvaluesσ .
In the ranges 90≤ Re ≤ 500 and 10≤ λx,λz ≤ 1000, we find that the eigenvalues
σ(λx,λz,Re) are all negative. The table on the right of figure 6 shows the maximum
σ for eachRe, maximized over the wavelengthsλx, λz.

The largest (least stable) eigenvalue is found forRe = 120 at(λx,λz) = (60,20).
This corresponds to a pattern angle ofθ = atan(λz/λx) = 18◦ to the streamwise di-
rection and a pattern wavelength ofλz cos(θ) = 19. (see the Appendix of [5]). In
contrast, turbulent-laminar patterns in plane Couette floware observed experimen-
tally at 300≤ Re ≤ 420 withλx = 110 and 50≤ λz ≤ 80, corresponding to an angle
between 25◦ and 37◦ and a pattern wavelength of between 46 and 60. It is therefore
unlikely that the instability of theK−Ω model bears any relationship to that under-
gone by uniform turbulent flow in plane Couette flow. A similarcalculation using
the simpler Prandtl mixing-length model also shows no instabilities.

This analysis underscores the inadequacy of turbulence closure models, in par-
ticular for transitional wall-bounded flows at low Reynoldsnumbers. Quantitative
prediction of turbulent-laminar banded patterns would provide an extremely strin-
gent test of a future closure model.
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