Instability of uniform turbulent plane Couette
flow: spectra, probability distribution functions
and K — Q closure model

Laurette S. Tuckerman, Dwight Barkley and Olivier Dauchot

Abstract Near transition, plane Couette flow exhibits statisticaligady bands of
alternating turbulent and laminar flow. We simulate thes¢epas numerically and
show that they can be quantified via the spatial Fourier carapbcorresponding
to the pattern wavevector and its probability distributi®he trigonometric nature
of the turbulent-laminar pattern suggests that it emenges & linear instability of
the uniform turbulent state, and we attempt to verify thipdthesis via th& — Q
closure model. We calculate steady 1D solution profiles efith- Q model and
their linear stability to 3D perturbations, but find no capendence between this
analysis and the onset of turbulent-laminar bands in expari and simulation.

1 Turbulent-laminar bands

Near transition, plane Couette flow exhibits a remarkaldéstically steady state
containing alternating oblique bands of turbulent and temflow which are regular
and statistically steady. Discovered experimentally bigétt and Dauchot (GIT-
Saclay) [1, 2] and subsequently simulated numerically bskBBg and Tuckerman
[3, 4, 5, 6], these patterns seem to be an intrinsic featutbeotransition to tur-
bulence in shear flows, since they are also seen experiyemmtaounter-rotating
Taylor-Couette flow [1, 2] and the stator-rotor configuratj@], as well as in simu-
lations of plane Poiseuille flow [8], and pipe flow [9].
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Fig. 1 Turbulent-laminar pattern at Reynolds number 350. Isosurfafdastantaneous streamwise
vorticity. This visualization is constructed by tiling a l@rglomain with many repetitions of our
computational domain.

Figure 1 shows a perspective plot of a turbulent-laminatepa¢d flow com-
puted by our simulations &e = 350. The upper and lower plates are locatettfat
and move in the streamwise directionddt); the conventional Reynolds number is
Uh/v. In the flow of figure 1, the width of the bands is 40 in unit$pénd they are
oriented at an angle d = 24° from the streamwise direction, so that the pattern
wavevector is oriented at 66This width and angle are within the typical range of
these patterns [1, 2].

We focus on the transition from uniform turbulence to tudmitlaminar pat-
terns with decreasing Reynolds number, which takes plageRee= 400. This low
Reynolds number is quite accessible to direct numericallsition of the Navier-
Stokes equations. We first describe three numerically coaapilows spanning the
transition region, and characterize these flows by mearseaffourier transforms
along the pattern wavevector.

Our simulations were carried out with the spectral-elerrenirier codePr i sm
[10]. We use between 8 and 20 modes per unit length, leadirgrésolution of
about 16 gridpoints or modes. More details concerning our numerigathods can
be found in [3, 4, 5, 6].
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2 Analysis of Fourier spectra
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Fig. 2 Top row: timeseries of the spanwise velocity at 32 points alomgearhidway between the
plates and oriented along the pattern wavevector. Bottevntime-average of the power spectrum
along the pattern wavevector of the spanwise velocity. ke 1 component corresponds to the
pattern wavelength of 40. Left column: uniform turbulenc&at= 500. Middle column: intermit-
tent state aRe = 410. Right column: statistically steady turbulent-laminargratatRe = 350.

We now describe the onset of these patterns as the Reynatdsenis decreased.
The upper portion of figure 2 shows timeseries of the spanvelkeity for 32 points
along a line located midway between the plates and orientéuki direction of the
pattern wavevector. (In this figure, as in some of our previawork [4, 5, 6],z
denotes the direction of the pattern wavevector, but iniae@& we will usez to
denote the spanwise direction instead.)
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Figure 2 shows that the turbulence usiform for Re = 500 andbanded for
Re = 350. At the intermediate valuRe = 410, the turbulence igttermittent, with
a pattern appearing and disappearing sporadically. We phecess this data by
taking the square modulus of the Fourier transform alongptitéern wavevector
|span,(t)|? at each instart, and then averaging over time for eaRé This yields
the 1D power spectra avgpan,(t)|?) of the spanwise velocity, shown in the lower

portion of figure 2. Th(tase spectra display a very promineattie: then= 1 Fourier
component corresponding to wavelength 40 emerges fronesieof the spectrum
atRe= 350 and, to a lesser extentRe= 410. The emergence of the= 1 Fourier
component suggests using it as an order parameter for th&tioam from uniform
to banded turbulence, as shown in figure 3.
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Fig. 3 Bifurcation diagram for transition from uniform to bandedulence usingn= 1 compo-
nent of averaged power spectra, as in figure 2.

To obtain a sharp threshold, however, it is necessary tarrétuthe instanta-
neous componerst(t) = [span(t)|. Rather than averaging these over time, we treat
the instantaneous values as statistical samples and, binbithese, construct their
probability distribution functionp(a). The resulting probability distribution func-
tions forRe = 500, 410 and 350 are shown in figure 4. We can distinguishrdifte
regimes: FoRe 2> 440, the most probable value afs zero, and this is wherg(a)
has its maximum. ARe = 440, p(a) changes curvature and, fBe < 440, p(a) has
a local minimum at= 0 and a maximum at a finite val@g,ax > 0.

Although a Gaussian provides an extremely good fipta) for Re = 500, the
functional form which best fitp(a) for Re= 410 and 350 as well is:

Inp(a) = co+ cra+ cpa’ @)

rather than the more usual quartic. The functional form {9$Bmax= —C1/(2C2)
as the most probable value. Bahax andc; are shown on the right part of figure 4.
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Fig. 4 Left: probability distribution functionsp(a) for pattern Fourier componenRe = 500
(squares)Re = 410 (triangles), andRe = 350 (circles). Solid curves are least-squares fits to
Inp(a) = co + c1a+ ca?, dashed curves to [(a) = co + cpa® + csa?, Right: maximumagmax

of PDFs as a function of Reynolds number (solid dots) and coeffici /10 (hollow dots) from
least-squares fit.

3 Stability analysis ofK — Q Model

The sequence seen in figures 2-4, in particular the emergéacgngle trigonomet-
ric mode, suggests that these patterns result from a linstahility of theuniform
turbulent state, whose temporal average depends only on a single spatiabier
the cross-channel coordinate

We decompose the velocity field into #isort-time mean and its fluctuating parts:

U=U+U  whereU=(U) and(U)=0 )

Uis governed by the Reynolds-averaged equations:

atu:—mp—(G-D)G+F+RieAG (3a)

0-U= (3b)

where the Reynolds stress forceAs= —((U’- ) U’). These are subject to the
boundary conditions which define plane Couette flow:

U(xy=+1.2) = e (3c)
U(X+/\Xay7z) = U(X7yvz+)\2) = U(X,y,Z) (3d)

wherex, y, zare the streamwise, cross-channel and spanwise direatispectively.
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Since (3a) contains the Reynolds stress force, which indapends on the fluc-
tuationsU’ which we seek to bypass, we requirelasure model relatingF directly
to the mean flowd. TheK — Q model, as described in [11, 12, 13] is that thought
best adapted to walls and to low Reynolds numbers. Equa(®)nare closed by
approximating- as:

K
FZD-(VT2§) VT:E 2Sj=dU; +9;U; (4a)

whereK andQ are scalar fields which evolve according to:

GK = —U-OK +vrS — B*(QK) +0- <(v+:<> DK> (4b)
dtQ:—G-DQ+G§—BQZ+D-<(V+:)DQ> (4c)
Q

with typical parameters af = 5/9, 8 = 3/40, 3* = 9/100,0kx = 0p = 2.K isto
be interpreted as the kinetic energy density and has boyiedaditions:

K(x,y=+12 =0 (4d)

Q is meant to account for the presence of the boundary and jeciub various
phenomenological boundary conditions, such as:

Q(x,y=+1,2) =1/(Ay)* (4e)

whereAy is the numerical grid spacing at the boundary.

We have computed steady 1D solutions of (3)—(4) for varioeylds numbers.
To do so, we set(x,y,z) = U(y)ex and & = dx = d, = 0. We discretized thg
direction over a grid oNy+ 1 = 61 points with a Chebyshev spacipg= cosj /Ny,
which concentrates points at the boundaries, We then sdored (y), K(y) and
Q(y) via Newton’s method. The left portion of figure 5 showsk, andQ profiles
for Re= 100, 300 and 500, while the right portion compduey) — y to the averaged
turbulent profiles from our full 3D simulations Be = 500. Like [14], we find that
the K — Q model exhibits a bifurcation from laminar flolK(= 0, U(y) =y) to
turbulent flow K > 0)) atRe~ 100, illustrated in the left portion of figure 6. (This
is already inconsistent with actual plane Couette flow, iriciviihe lowestRe at
which turbulence has ever been observed is 220 in certairencah simulations
[4, 15] and more typically above 300 [3, 16].) Hee = 300 and 500, the) profiles
haveS-shapes and thi€ profiles show flattening in the bulk, both features found in
actual turbulent channel flows.

We then carried out linear stability analysis by substilgti

J(y)ex a |
K(y) + k eOT+2T[I(X/A><+Z/)\Z) (5)
Q(y) w
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Fig. 5 Profiles fromK — Q model. Left:Re = 100 (solid curves)Re = 300 (long-dashed curves)
andRe = 500 (short-dashed curved)y) ranges between1 and+1, K(y) has a bulge in the
center.Q(y) (not shown) ig0(10°) at boundaries and decreases sharp@(b) in the bulk.

Right: comparison o) (y) —y betweerK — Q and full DNS. Solid and dashed curves show DNS
andK — Q profiles, respectively, foRe = 500.

into the full 3D equations (3)—(4), linearizing, and caftirig the eigenvalues.

In the ranges 9& Re < 500 and 10< Ay, A; < 1000, we find that the eigenvalues
0(Ax, Az, Re) are all negative. The table on the right of figure 6 shows theimmam

o for eachRe, maximized over the wavelengtiAg, A.

The largest (least stable) eigenvalue is foundHer= 120 at(Ay, A;) = (60,20).
This corresponds to a pattern anglefof atar(A;/Ax) = 18 to the streamwise di-
rection and a pattern wavelength bfcog0) = 19. (see the Appendix of [5]). In
contrast, turbulent-laminar patterns in plane Couette #osvobserved experimen-
tally at 300< Re < 420 withAx = 110 and 50< A, < 80, corresponding to an angle
between 25and 37 and a pattern wavelength of between 46 and 60. It is therefore
unlikely that the instability of thé& — Q model bears any relationship to that under-
gone by uniform turbulent flow in plane Couette flow. A simitaiculation using
the simpler Prandtl mixing-length model also shows no infitees.

This analysis underscores the inadequacy of turbulensi@danodels, in par-
ticular for transitional wall-bounded flows at low Reynoluismbers. Quantitative
prediction of turbulent-laminar banded patterns wouldvigte an extremely strin-
gent test of a future closure model.

References

1. Prigent, A., Gegoire, G., Ch&, H., Dauchot, O., van Saarloos, W.: Large-scale finite-
wavelength modulation within turbulent shear flows. Phys. Rett. B9, 014501 (2002)



8 Tuckerman, Barkley & Dauchot
04015!H“HH‘HH.HH.ML
:K(y—()) . ] Re[ A« Az o
- 1 90 | 1000| 500 | —0.0179
001 ° B 100| 90 30 | —0.0190
L , 110| 60 20 | —0.0135
- . 120| 60 20 | —0.0081
L ] 150| 100 30 | —0.0181
0.005 . . 200/ 500 | 1000| —0.0148
- 1 300/ 500 | 1000/ -0.0141
L i 400| 500 | 1000| —0.0964
ol s 1 500| 400 | 1000/ —0.0855
] - ‘ - ‘ I - ‘ ] - ‘ -

0 100 200 300 400 500
Re

Fig. 6 1D and 3D instabilities of th& — Q model. Left: Steady 1D solution to the— Q model
as a function oRe. Shown isK(0), the turbulent kinetic energy in channel center. A bifuieat
from the laminar stat& = 0 is seen aRe ~ 100. Right: Leading eigenvalues from 3D linear
stability analysis of steady 1D solution. Shown is the maximumreigleie for eachRe, varying
10 < Ay, Az < 1000.

11.

12.

13.

14.

15.

16.

Prigent, A., Gegoire, G., Cha, H., Dauchot, O.: Long-wavelength modulation of turbulent
shear flows. Physica D74, 100-113 (2003)

. Barkley, D., Tuckerman, L.S.: Computational study of tueballaminar patterns in Couette

flow. Phys. Rev. Lett94, 014502 (2005)

. Barkley, D., Tuckerman, L.S.: Turbulent-laminar pattemplane Couette flow. In: Mullin,

T., Kerswell, R. (eds.) IUTAM Symposium on Laminar-Turbulentis#@ion and Finite Am-
plitude Solutions, pp. 107-127. Springer (2005)

. Barkley, D., Tuckerman, L.S.: Mean flow of turbulent-lantipatterns in plane Couette flow.

J. Fluid Mech576,109-137 (2007)

. Tuckerman, L.S., Barkley, D., Dauchot, O.: Statisticallgsia of the transition to turbulent-

laminar banded patterns in plane Couette flow. J. Phys.: Confl$& 012029 (2008)

. Cros, A, Le Gal,P.: Phys. Fluidg, 3755-3765 (2002)
. Tsukahara, T., Seki, Y., Kawamura, H., Tochio, D.: DNS obtlent channel flow at very

low Reynolds numbers. In Proc. 4th Int. Symp. on Turbulence dehSFlow Phenomena,
pp. 935-940 (2005)

. Moxey, D., Barkley, D., to be published
. Henderson, R.D., Karniadakis, G.E.: Unstructured speekeatent methods for simulation

of turbulent flows. J. Comput. Phy$22, 191-217 (1995)

Menter, F.R.: Two-equation eddy-viscosity turbulence e®dbr engineering applications.
AIAA Journal 32, 1598-1609 (1994)

Durbin, P.A., Pettersson Reif, B.A.: Statistical Theorg &fodeling for Turbulent Flows.
Wiley (2001)

Wilcox, D.C.: Re-assessment of the scale-determining equfatiadvanced turbulence mod-
els, AIAA Journal26, 1414-1421 (1988)

Templeton, J.: Stability Analysis of the k-omega TurbuleMaelel for Channel Flow. Stan-
ford University, 5 June 2000.

Schmiegel, A., Eckhardt, B.: Persistent turbulence in aledeplane Couette flow, Phys. Flu-
ids 51, 395-400 (2000).

Bottin, S., Daviaud, F., Manneville, P., Dauchot, O s&intinuous transition to spatiotempo-
ral intermittency in plane Couette flow, Europhys. Lé®, 171-176 (1998).



