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Blasius Theorem

Drag− iLift = Fx − iFy =
iρ
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Complex integral useful because:
• integral determined by residue theorem!
• can move contour to more convenient one (e.g., circle)!
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2D irrotational incompress-
ible flow around body with
boundaryC

On small boundary segmentds,

dz = dx+ idy = (cosφ+ i sinφ) ds = eiφ ds
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φ
ds

X

Y

C

P

2D irrotational incom-
pressible flow around
body with boundaryC

dFx − idFy = p[− cos(π/2− φ)− i sin(π/2− φ)] ds

= p [−������cos(π/2) cosφ− sin(π/2) sinφ

−i (sin(π/2) cosφ−������cos(π/2) sinφ)] ds

= p(− sinφ− i cosφ) ds
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= −ipe−iφ ds

= −i(p∞ +
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Body aroundz = 0. Contour very far away. No singularities outside body.
Flow around body is superposition of uniform flow, sources and sinks, vortex,
doublet, . . . , approximately centered at 0.
Sources and sinks cancel since contour of body is closed streamline.
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Lift = Fy = ρUΓ Kutta-Joukowski Lift Theorem



Conformal Mapping

Transformζ = (ξ, η) → z = (x, y)
(simple geometry)→ (actual geometry)

Defineφ̃(ξ, η) = φ(x(ξ, η), y(ξ, η))

(∂2x + ∂2y)φ(x, y) = 0 =⇒ (∂2ξ + ∂2η)φ̃(ξ, η) = 0

(∂2x + ∂2y)ψ(x, y) = 0 =⇒ (∂2ξ + ∂2η)ψ̃(ξ, η) = 0

w(z) = φ+ iψ complex potential inz-plane=⇒
w̃(ζ) = φ̃+ iψ̃ complex potential inζ-plane (drop tildes)

Relation between velocity inz-plane and velocity inζ-plane:
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=
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dζ

dz



Strength of sources and vortices is conserved

m =

∮

u · ndl =
∮
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∮
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∮
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Joukowski transformation

z = ζ +
R2

ζ

dz

dζ
= 1− R2

ζ2
=

{

0 if ζ = ±c
∞ if ζ = 0

Both |ζ| < R and|ζ| > R are mapped into entire plane.

We are interested in|ζ| ≥ R (outside cylinder)

For large|ζ|, we havez → ζ (mapping approaches identity)

ζ =
z

2
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√

z2

4
−R2

(Choose+√ so thatz → ζ as|z| → ∞)



Circle ζ = aeiφ, a > R:

z = ζ+
R2

ζ
= aeiφ+

R2

a
e−iφ =

(

a+
R2

a

)

cosφ+ i

(

a− R2

a

)

sinφ = x+ i y

Circle of radiusa in ζ-plane=⇒ ellipse with major and minor semi-axesa ±
R2/a in z-plane:

x2

(a+R2/a)2
+

y2

(a−R2/a)2
= 1

Circle ζ = Reiφ :

z = ζ +
R2

ζ
= Reiφ +

R2

R
e−iφ = R(eiφ + e−iφ) = 2R cosφ

Circle of radiusR in ζ-plane=⇒
line segment[−2R, 2R] in z-plane



ζ z

Flow around circular cylinder of radiusa =⇒
flow around an elliptical cylinder with semi=axesa±R2/a

Uniform flow at angleα : f(ζ) = Uζe−iα

Using w(ζ) = f(ζ) + f(a2/ζ̄) leads to w(ζ) = U
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= ζe−iα +
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Circulation and stagnation points

Add circulation: w(ζ) = U

(

ζe−iα +
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ζe−iα

)

+
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log ζ

(log(ζe−iα) = log ζ −�
�iα, since constant is unimportant)
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At r = a, ur = 0 uθ = −2U sin(θ − α)− Γ

2πa

=⇒ sin(θstag − α) = − Γ

4πUa



Kutta condition

Recall

dw

dz
=

dw

dζ

dζ

dz

dz

dζ
= 1− R2

ζ2
= 0 =⇒ dζ

dz
= ∞ at ζ = ±R

To prevent
dw

dz
= ∞ at z = ±2R, must have

dw

dζ
= 0 at ζ = ±R

If ζ domain is|ζ| > a > R, then singular point is not in domain.

If a = R (flat plate inz domain), must set circulationΓ such that stagnation
point θstag is at sharp trailing edgeθ = 0

Γ

4πUa
= sin(α− θstag) = sinα

What about singularity at sharp leading edgeθ = π?



No circulation

ζ z
Circulation prescribed by Kutta condition

ζ z



Lift Coefficient

Dimensionless lift coefficient is:

CL =
Lift

1
2ρU

2ℓ

whereℓ is the length or chord of the airfoil

Blasius Theorem: lift= ρUΓ, leading to

CL ≡ Lift
1
2ρU

2ℓ
=

ρUΓ
1
2ρU

2ℓ
=

2Γ

Uℓ

Flat plate: flow with circulation taken to satisfy Kutta condition:

Γ = 4πUa sinα

Flat plate is line segment[−2a, 2a] with lengthℓ = 4a

CL =
2Γ

Uℓ
=

2(4πUa sinα)

U(4a)
= 2π sinα



Symmetric Joukowski airfoil

Use Joukowski transformation

z = ζ +
R2

ζ

on ashifted circle

ζ = −λ+ (R + λ)eiφ

Here is the airfoil shape:

z = −λ+(R+λ)eiφ+
R2

−λ+ (R + λ)eiφ



Flow around symmetric Joukowski airfoil

w(ζ) = U

(

(ζ + λ)e−iα +
(R + λ)2

ζ + λ
eiα
)

+
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log(ζ + λ)
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=
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=
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eiα

)

+
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2π(ζ + λ)
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1

1−R2/ζ2

Singularities atζ = ±R. But ζ = −R is inside wing, not flow region, so OK!

ChooseΓ to place stagnation point atζ = R, eliminating remaining singularity

At ζ = +R,

dw

dζ
= −2Ui sinα +

iΓ

2π(R + λ)
Γ

4πU(R + λ)
= sinα

According to Blasius Theorem, lift is then

ρUΓ = 4πρU 2(R + λ) sinα

No lift for α = 0! Small lift for α small!



Cambered Joukowski Airfoil

Use Joukowski transformation

z = ζ +
R2

ζ

on acircle shifted left and up

ζ = −λ+ i µ+
√

(R + λ)2 + µ2 eiφ

Kutta condition=⇒

Γ = 4π
√

(R + λ)2 + µ2 sin(α + β)

where β = arctan

(

µ

R + λ

)

Hence there is lift even forα small.



Examples of airfoils



Comparison of lift, drag, and pressure with experiment



Separation


