Hydrodynamics

Class 6

Laurette TUCKERMAN
 laurette@pmmh.espci.fr

Blasius Theorem

$$
\text { Drag }-i \text { Lift }=F_{x}-i F_{y}=\frac{i \rho}{2} \oint\left(\frac{d w}{d z}\right)^{2} d z
$$

Complex integral useful because:

- integral determined by residue theorem!
- can move contour to more convenient one (e.g., circle)!

On small boundary segment $d s$,

2D irrotational incompressible flow around body with

$$
\begin{aligned}
d z=d x+i d y & =(\cos \phi+i \sin \phi) d s=e^{i \phi} d s \\
\frac{d w}{d z}=u-i v & =|\boldsymbol{u}|(\cos \phi-i \sin \phi)=|\boldsymbol{u}| e^{-i \phi} \\
\left(\frac{d w}{d z}\right)^{2} & =|\boldsymbol{u}|^{2} e^{-2 i \phi}
\end{aligned}
$$ boundary C

2D irrotational incompressible flow around body with boundary C

$$
d F_{x}-i d F_{y}=p[-\cos (\pi / 2-\phi)-i \sin (\pi / 2-\phi)] d s
$$

$$
=p[-\cos (\pi / 2) \cos \phi-\sin (\pi / 2) \sin \phi
$$

$$
-i(\sin (\pi / 2) \cos \phi-\cos (\pi / 2) \sin \phi)] d s
$$

$$
=p(-\sin \phi-i \cos \phi) d s
$$

$$
=-i p(-i \sin \phi+\cos \phi) d s
$$

$$
=-i p e^{-i \phi} d s
$$

$$
=-i\left(p_{\infty}+\frac{\rho}{2}\left(U_{\infty}^{2}-|\boldsymbol{u}|^{2}\right)\right) e^{-i \phi} d s
$$

$$
=K e^{-i \phi} d s+\frac{i \rho}{2}|\boldsymbol{u}|^{2} e^{-i \phi} d s
$$

$$
=K e^{-i \phi} d s+\frac{i \rho}{2}\left(\frac{d w}{d z}\right)^{2} d z
$$

$$
F_{x}-i F_{y}=K \oint e^{-i \phi} d s+\frac{i \rho}{2} \oint\left(\frac{d w}{d z}\right)^{2} d z
$$

Body around $z=0$. Contour very far away. No singularities outside body. Flow around body is superposition of uniform flow, sources and sinks, vortex, doublet, \ldots, approximately centered at 0 .
Sources and sinks cancel since contour of body is closed streamline.

$$
\begin{aligned}
w(z) & =U z+\frac{m}{2 \pi} \log z+\frac{i \Gamma}{2 \pi} \log z+\frac{\mu}{z}+\ldots \\
\frac{d w}{d z} & =U+\frac{i \Gamma}{2 \pi z}-\frac{\mu}{z^{2}}+\ldots \\
\left(\frac{d w}{d z}\right)^{2} & =U^{2}+\frac{2 U i \Gamma}{2 \pi z}-\left(\frac{\Gamma}{2 \pi z}\right)^{2}-\frac{2 U \mu}{z^{2}}+\ldots \\
F_{x}-i F_{y} & =\frac{i \rho}{2} \oint\left(\frac{d w}{d z}\right)^{2} d z \\
& =\frac{i \rho}{2} \oint\left[U^{2}+\frac{2 U i \Gamma}{2 \pi z}-\left(\frac{\Gamma}{2 \pi z}\right)^{2}-\frac{2 U \mu}{z^{2}}+\ldots\right] d z \\
& =\frac{i \rho}{2} 2 \pi i \frac{2 U i \Gamma}{2 \pi} \\
& =-i \rho U \Gamma
\end{aligned}
$$

Lift $=F_{y}=\rho U \Gamma$
Kutta-Joukowski Lift Theorem

Conformal Mapping

$$
\begin{aligned}
\text { Transform } \zeta=(\xi, \eta) & \rightarrow z=(x, y) \\
\quad(\text { simple geometry }) & \rightarrow \text { (actual geometry) }
\end{aligned}
$$

Define $\tilde{\phi}(\xi, \eta)=\phi(x(\xi, \eta), y(\xi, \eta))$

$$
\begin{aligned}
& \left(\partial_{x}^{2}+\partial_{y}^{2}\right) \phi(x, y)=0 \Longrightarrow\left(\partial_{\xi}^{2}+\partial_{\eta}^{2}\right) \tilde{\phi}(\xi, \eta)=0 \\
& \left(\partial_{x}^{2}+\partial_{y}^{2}\right) \psi(x, y)=0 \Longrightarrow\left(\partial_{\xi}^{2}+\partial_{\eta}^{2}\right) \tilde{\psi}(\xi, \eta)=0
\end{aligned}
$$

$w(z)=\underset{\sim}{\phi}+i \underset{\sim}{\psi}$ complex potential in z-plane \Longrightarrow
$\tilde{w}(\zeta)=\tilde{\phi}+i \tilde{\psi}$ complex potential in ζ-plane $\quad($ drop tildes)
Relation between velocity in z-plane and velocity in ζ-plane:

$$
\frac{d w}{d z}=\frac{d w}{d \zeta} \frac{d \zeta}{d z}
$$

Strength of sources and vortices is conserved

$$
\begin{gathered}
m=\oint \boldsymbol{u} \cdot \boldsymbol{n} d l=\oint(u d y-v d x) \\
\Gamma=\oint \boldsymbol{u} \cdot d \boldsymbol{\ell}=\oint(u d x+v d y) \\
\Gamma_{z}+i m_{z}=\oint(u d x+v d y)+i \oint(u d y-v d x) \\
=\oint(u-i v)(d x+i d y) \\
=\oint \frac{d w}{d z} d z=\oint \frac{d w}{d \zeta} \frac{d \zeta}{d z} d z=\oint \frac{d w}{d \zeta} d \zeta=\Gamma_{\zeta}+i m_{\zeta}
\end{gathered}
$$

Joukowski transformation

$$
\begin{gathered}
z=\zeta+\frac{R^{2}}{\zeta} \\
\frac{d z}{d \zeta}=1-\frac{R^{2}}{\zeta^{2}}=\left\{\begin{array}{ccc}
0 & \text { if } \zeta= \pm c \\
\infty & \text { if } \zeta=0
\end{array}\right.
\end{gathered}
$$

Both $|\zeta|<R$ and $|\zeta|>R$ are mapped into entire plane.
We are interested in $|\zeta| \geq R$ (outside cylinder)
For large $|\zeta|$, we have $z \rightarrow \zeta$ (mapping approaches identity)

$$
\zeta=\frac{z}{2}+\sqrt{\frac{z^{2}}{4}-R^{2}}
$$

(Choose $+\sqrt{ }$ so that $z \rightarrow \zeta$ as $|z| \rightarrow \infty$)

Circle $\zeta=a e^{i \phi}, a>R$:
$z=\zeta+\frac{R^{2}}{\zeta}=a e^{i \phi}+\frac{R^{2}}{a} e^{-i \phi}=\left(a+\frac{R^{2}}{a}\right) \cos \phi+i\left(a-\frac{R^{2}}{a}\right) \sin \phi=x+i y$
Circle of radius a in ζ-plane \Longrightarrow ellipse with major and minor semi-axes $a \pm$ R^{2} / a in z-plane:

$$
\frac{x^{2}}{\left(a+R^{2} / a\right)^{2}}+\frac{y^{2}}{\left(a-R^{2} / a\right)^{2}}=1
$$

Circle $\zeta=R e^{i \phi}$:

$$
z=\zeta+\frac{R^{2}}{\zeta}=R e^{i \phi}+\frac{R^{2}}{R} e^{-i \phi}=R\left(e^{i \phi}+e^{-i \phi}\right)=2 R \cos \phi
$$

Circle of radius R in ζ-plane \Longrightarrow line segment $[-2 R, 2 R]$ in z-plane

ζ

z

Flow around circular cylinder of radius $a \Longrightarrow$
flow around an elliptical cylinder with semi=axes $a \pm R^{2} / a$
Uniform flow at angle $\alpha: f(\zeta)=U \zeta e^{-i \alpha}$
Using $\quad w(\zeta)=f(\zeta)+\overline{f\left(a^{2} / \bar{\zeta}\right)} \quad$ leads to $\quad w(\zeta)=U\left(\zeta e^{-i \alpha}+\frac{a^{2}}{\zeta e^{-i \alpha}}\right)$ Invert using $\zeta=\frac{z}{2}+\sqrt{\frac{z^{2}}{4}-R^{2}}$:

$$
w(z)=U\left[z e^{-i \alpha}+\left(\frac{a^{2}}{R^{2}} e^{i \alpha}-e^{-i \alpha}\right)\left(\frac{z}{2}-\sqrt{\frac{z^{2}}{4}-R^{2}}\right)\right]
$$

$$
\begin{aligned}
\frac{w}{U} & =\zeta e^{-i \alpha}+\frac{a^{2}}{\zeta e^{-i \alpha}} \quad \text { using } \quad \zeta=\frac{z}{2}+\sqrt{\frac{z^{2}}{4}-R^{2}} \\
& =\left[\frac{z}{2}+\sqrt{\frac{z^{2}}{4}-R^{2}}\right] e^{-i \alpha}+\frac{a^{2}}{\left[\frac{z}{2}+\sqrt{\frac{z^{2}}{4}-R^{2}}\right] e^{-i \alpha}} \\
& =\left[\frac{z}{2}+\sqrt{\frac{z^{2}}{4}-R^{2}}\right] e^{-i \alpha}+\frac{a^{2}\left[\frac{z}{2}-\sqrt{\frac{z^{2}}{4}-R^{2}}\right]}{\left[\frac{z^{2}}{4}-\left(\frac{z^{2}}{4}-R^{2}\right)\right] e^{-i \alpha}} \\
& =z e^{-i \alpha}+\left[-\frac{z}{2}+\sqrt{\frac{z^{2}}{4}-R^{2}}\right] e^{-i \alpha}+\frac{a^{2}}{R^{2}}\left[\frac{z}{2}-\sqrt{\frac{z^{2}}{4}-R^{2}}\right] e^{i \alpha} \\
& =z e^{-i \alpha}+\left(\frac{a^{2}}{R^{2}} e^{i \alpha}-e^{-i \alpha}\right)\left[\frac{z}{2}-\sqrt{\frac{z^{2}}{4}-R^{2}}\right]
\end{aligned}
$$

Circulation and stagnation points

Add circulation: $\quad w(\zeta)=U\left(\zeta e^{-i \alpha}+\frac{a^{2}}{\zeta e^{-i \alpha}}\right)+\frac{i \Gamma}{2 \pi} \log \zeta$ $\left(\log \left(\zeta e^{-i \alpha}\right)=\log \zeta-i \alpha \alpha\right.$, since constant is unimportant $)$

$$
\begin{aligned}
& \frac{d w}{d \zeta}=U\left(e^{-i \alpha}-\frac{a^{2}}{\zeta^{2} e^{-i \alpha}}\right)+\frac{i \Gamma}{2 \pi \zeta} \\
&=U\left(e^{-i \alpha}-\frac{a^{2}}{r^{2} e^{2 i \theta} e^{-i \alpha}}\right)+\frac{i \Gamma}{2 \pi r e^{i \theta}} \\
&\left(u_{r}-i u_{\theta}\right) e^{-i \theta}=\left(U\left(e^{i(\theta-\alpha)}-\frac{a^{2}}{r^{2}} e^{-i(\theta-\alpha)}\right)+\frac{i \Gamma}{2 \pi r}\right) e^{-i \theta} \\
& u_{r}=U\left(1-\frac{a^{2}}{r^{2}}\right) \cos (\theta-\alpha) \quad-u_{\theta}=U\left(1+\frac{a^{2}}{r^{2}}\right) \sin (\theta-\alpha)+\frac{\Gamma}{2 \pi r} \\
& \text { At } r=a, \quad u_{r}=0 \quad u_{\theta}=-2 U \sin (\theta-\alpha)-\frac{\Gamma}{2 \pi a} \\
& \Longrightarrow \sin \left(\theta_{\operatorname{stag}}-\alpha\right)=-\frac{\Gamma}{4 \pi U a}
\end{aligned}
$$

Kutta condition

Recall

$$
\begin{aligned}
\frac{d w}{d z} & =\frac{d w}{d \zeta} \frac{d \zeta}{d z} \\
\frac{d z}{d \zeta} & =1-\frac{R^{2}}{\zeta^{2}}=0 \Longrightarrow \frac{d \zeta}{d z}=\infty \text { at } \zeta= \pm R
\end{aligned}
$$

To prevent $\frac{d w}{d z}=\infty$ at $z= \pm 2 R$, must have $\frac{d w}{d \zeta}=0$ at $\zeta= \pm R$
If ζ domain is $|\zeta|>a>R$, then singular point is not in domain.
If $a=R$ (flat plate in z domain), must set circulation Γ such that stagnation point $\theta_{\text {stag }}$ is at sharp trailing edge $\theta=0$

$$
\frac{\Gamma}{4 \pi U a}=\sin \left(\alpha-\theta_{\text {stag }}\right)=\sin \alpha
$$

What about singularity at sharp leading edge $\theta=\pi$?

No circulation

Circulation prescribed by Kutta condition

z

Lift Coefficient

Dimensionless lift coefficient is:

$$
C_{L}=\frac{\text { Lift }}{\frac{1}{2} \rho U^{2} \ell}
$$

where ℓ is the length or chord of the airfoil
Blasius Theorem: lift $=\rho U \Gamma$, leading to

$$
C_{L} \equiv \frac{\text { Lift }}{\frac{1}{2} \rho U^{2} \ell}=\frac{\rho U \Gamma}{\frac{1}{2} \rho U^{2} \ell}=\frac{2 \Gamma}{U \ell}
$$

Flat plate: flow with circulation taken to satisfy Kutta condition:

$$
\Gamma=4 \pi U a \sin \alpha
$$

Flat plate is line segment $[-2 a, 2 a]$ with length $\ell=4 a$

$$
C_{L}=\frac{2 \Gamma}{U \ell}=\frac{2(4 \pi U a \sin \alpha)}{U(4 a)}=2 \pi \sin \alpha
$$

Symmetric Joukowski airfoil

Use Joukowski transformation

$$
z=\zeta+\frac{R^{2}}{\zeta}
$$

on a shifted circle

$$
\zeta=-\lambda+(R+\lambda) e^{i \phi}
$$

Here is the airfoil shape:

$$
s=R+2 \lambda+\frac{R^{2}}{R+2 \lambda}
$$

$z=-\lambda+(R+\lambda) e^{i \phi}+\frac{R^{2}}{-\lambda+(R+\lambda) e^{i \phi}}$

Flow around symmetric Joukowski airfoil

$$
\begin{aligned}
w(\zeta) & =U\left((\zeta+\lambda) e^{-i \alpha}+\frac{(R+\lambda)^{2}}{\zeta+\lambda} e^{i \alpha}\right)+\frac{i \Gamma}{2 \pi} \log (\zeta+\lambda) \\
\frac{d w}{d z} & =\frac{d w}{d \zeta} \frac{d \zeta}{d z}=\left(U\left(e^{-i \alpha}-\left(\frac{R+\lambda}{\zeta+\lambda}\right)^{2} e^{i \alpha}\right)+\frac{i \Gamma}{2 \pi(\zeta+\lambda)}\right) \frac{1}{1-R^{2} / \zeta^{2}}
\end{aligned}
$$

Singularities at $\zeta= \pm R$. But $\zeta=-R$ is inside wing, not flow region, so OK!
Choose Γ to place stagnation point at $\zeta=R$, eliminating remaining singularity
At $\zeta=+R$,

$$
\begin{aligned}
\frac{d w}{d \zeta} & =-2 U i \sin \alpha+\frac{i \Gamma}{2 \pi(R+\lambda)} \\
\frac{\Gamma}{4 \pi U(R+\lambda)} & =\sin \alpha
\end{aligned}
$$

According to Blasius Theorem, lift is then

$$
\rho U \Gamma=4 \pi \rho U^{2}(R+\lambda) \sin \alpha
$$

No lift for $\alpha=0$! Small lift for α small!

Cambered Joukowski Airfoil

Use Joukowski transformation

$$
z=\zeta+\frac{R^{2}}{\zeta}
$$

on a circle shifted left and up

$$
\zeta=-\lambda+i \mu+\sqrt{(R+\lambda)^{2}+\mu^{2}} e^{i \phi}
$$

Kutta condition \Longrightarrow

$$
\Gamma=4 \pi \sqrt{(R+\lambda)^{2}+\mu^{2}} \sin (\alpha+\beta)
$$

Hence there is lift even for α small.

$$
\text { where } \quad \beta=\arctan \left(\frac{\mu}{R+\lambda}\right)
$$

Examples of airfoils

Low-speed ULM (1 m)

Propeller blade (15 cm)

Airliner (8 m)

Supersonic interceptor (2m)

Blackbird (6 cm)

Dragonfly wing (12 mm)

Dolphin flipper fin (10 cm)

Turbofan fan blade (80 cm)

Turbine blade (8 cm)

Sailboat (3m)

Comparison of lift, drag, and pressure with experiment

Separation

