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Plane parallel flows

Plane parallel flowlU = U(y)é,

By construction, incompressible and nonlinear term vanishes:
(U-V)U = (U(y)ész - V)U(y)és = U(y)0:U(y)éz =0
V-U(y)éx = 0.U(y) =0

Must satisfy Navier-Stokes equations:

. —0,P + zU"(y) = —P =g(y)z + h(y, 2)
0=-VP+-AU=<¢ —0,P — ¢(y) = G (constant)
R Y
-0, P — h(y, z) = H (constant)

For ideal (inviscid) fluids, no viscous ters=- all U(y) allowed
For viscous fluids, solve

1
0 = G+—-U"
+ 5 (y)

GR
= U(y) = —7y2+ay+b



Poiseuille and Couette flow

GR
Uly) = -y +ay+b,  —1<y<+l
Poiseuille flow: pressure-driven Couette flow: shear-driven
G#0 Uly=1)#Uly=-1)
Can choose
stationary plate§’(+1) = 0 frame such thal/ (+1) = +1

GR

Uly) = (1= y") Uly) =y

plane Poiseuille flow plane Couette flow
— —
SN
— -~

Longstanding mystery: Poiseuille and Couette flow undergo sudden transition
to three-dimensional turbulence that is not predicted by linear stabilitysisal



x main flow direction streamwise
between the bounding platesross-channe

spanwise

<

Linear stability analysis of plane parallel flows

Perturbations: = (u, v, w). Linearize nonlinear term abol(y)é,:

(U-V)u = (Uy)éz - V)u=U(y)o,u
(u- VU = (u-V)U(y)é, = vU'(y)é,

Linearized Navier-Stokes equations:

ou+Udu+ovU'é, = —Vp—l—%Au
Veu = 0

Want to reducéu, v, w,p)tov = é, - u,n = é, - VXu



O+ Udyu +vU'é, = —Vp + £ Au

Take divergence:

1
V-0 + V-(Udyu) + V-(vU'é,) = V+(—Vp) + V- (EAU,)

Expand, usingv-u = 0 andVU = U’é,:

V-@tu = atV’U, =0
V-(Ud,u) = UV-(0,u)+ (VU)-0d,u
= U0, Vu+Ué, d,u=U0dwu
V-(wU'é,) = 0,(vU") =U'0v
V-(=Vp) = -Ap
V- (LAu) = LAV =0
Obtain:
2U'0v = —Ap



Ou+ Udyu + vU'éy = —=Vp + 5Au

Laplacian ofy component:
Adw + A(U0v) = —Adyp + %A%
Expand nonlinear term, usifgU = U'é, andAU = U":

AUIw) = UAOw)+2(VU) -V (9,v) + (AU)(9,v)
= U0, Av+2U'0yyv + U"0,v

Recal: — Ap = 2U'9,v
—Adyp = 0,(2U'0,v) = 2U' 0w + 2U" D0

1
Adw + U, Av + 2U' po+T"0,0 = 285,00 + 2U" 9,0 + EA%
(0, +Ud)Av = U"0v+ %AQU

— Equation containing only



O+ Udyu +vU'é, = —Vp + £ Au
Takey component of curl:
éy - VX (Ou+Udyu+oU'éy) =é,- VX (—~Vp+ tAu)
Expand, using) = é, - VXxXu = 0,u — d,w:

€y - VXou = 0
éy - VX(UO,u) 0.(Udyu) — 0,(U0,w) = UOp,u — UOpyw = Uy
é, - Vx((wU'é,) = 0.(vU")=U'0v
éy,-VX(=Vp) =0

. 1 1 B l B B l
é, - VX (EAU,> = 5 (0,Au — 0, Aw) = 7 (Ad,u — Ad,w) = RAn

This gives a second equation, which coupjesdo:

(0 +Udy)n +U'0v = %An



(0 +Udy)Av = U"0pv + A%
(0, +Udy)n+U'0.v = A7
Equations are'™ order forv, 2"¢ order fory
In z, z, assume periodic boundary conditions (works for any order)
Iny, applyu =v=w=0 at y. = 6 BCs. Transform:
v=20

u=0w=0 = 9Jv=0
ou=0w=0 =n=>0



(0 +Ud,)Av = U"0v + %AZU
(0, +Udy)n+U'0.v = A7

Homogeneousin, z, t so dependence is exponential or trigonometric (if bounded)
Not homogeneous in since: —boundary conditions at= vy
—base stat& depends ony

v(x,y, z,t) = O(y)e! Tt +52)
- { n(w,y, 2, t) = q(y)e =t

«, (3 real, butc can be complex—ic = ¢; — ic,
¢; = growth rate: perturbations growdf > 0, decay ifc; < 0, neutral ifc; = 0.
¢, = phase speed: a peak moves at speed

DefineD = d/dy andk? = o? + 5%
(—iac+ Uia)(D* — k*)o = U'iad + +(D* — k%)*0

—iacr) + Uian + U'ipt = +(D* — k%)



(—iac+ Uia)(D* — k*)o = U'iad + %(D* — k%)*0
—iac) + Uian + U'ift = +(D* — k*)7)

Dividing by ia:
(U—=0o)(D* = k)0 = U'b+ 5= (D*—k*)*0 Orr-Sommerfeld equation (1907-8
U—-en+U% = (D~ K)p Squire’s equation (1933)
Eigenvalue problem with eigenvaluesnd eigenvectors, 7.
Matrix form:
(U —¢) = 2= (D> = k)] (D* — k?) - U" 0 0
U'L U—c)— = (D>~ k) | | 9



, .| Los O o |0
Uppertrlangularmatrlx.[ B ESQ][ }_[ ]

Two families of eigenvalues/vectors:

Orr-Sommerfeld modes  Squire modes
Losv=0, v#0 v=0
Lsqn = —Bo Lsgn=0, n#0

Squire modes neutral for ideal fluid® & oc), damped for viscous fluids:
0 = [ dwirtson= [ i U - g0 =)

_ / dy Ulif? — ¢ / dy [7f? — / dy i D% + £ [y Jaf?

+1 Y+
Integration by parts: / dy i D*i) = i DAfe — dy | Dr|?
-1 Y
Imaginary part: ci/ dy |7]* = dy | Dj|* — £ / dy |7]* <0

so need Orr-Sommerfeld equation and modes for instability



Squire’s Transformation (1933)

(U —o)(D* = k*)o=U"0+ 5 (D* — k*)*b

&> = kK=a’>+p52>a
Define: { 3 = 0= z-independent perturbation
R = Ra/a<R
(U = e)(D* = @0 =U"b + z=(D* — a*)%0

O-S equation withe 1,8 |, R |, ¢ unchangeplv unchanged

Viscous fluid: Findw, 5 with lowestR for which¢; (o, 5, R) > 0
Squire’s Theorem: lowest is achieved fo3 = 0 )
Ideal fluid: O.S. eq. withy, 3 > 0 <= O.S. eq. withi, 3 =0

Successive simplifications:
4 PDEs— 2 PDEs— 2 ODEs(c, a, ) = 1 ODE= 1 ODE(c, )

Can prove rigourously that Poiseuille and Couette flow are linearly statiiein
Reynolds numbers range in which transition to turbulence occurs, both exper-
imentally and numerically. At this time, there is no definite resolutiothis
dilemma, but much research.



Ideal fluids: Rayleigh Equation
0=[(U=c)(D*—k*)—U"]d

Rayleigh’s inflection point theorem (1880, 1887)¢; # 0 — U(y) has an
inflection point.

Sincec; # 0, can divide by—(U — ¢):
T Dy i)+ -
0= 5 | (—
/y y o [( + HU—J
Integration by parts] dy o*(—D?*)o = [ dy | Do
U U"(U — ¢ +ic;) _UU-c) el
U—-c (U-c¢ —ic))(U—c+ic)  |U~—c|]? U — ¢|?
Y+ U//(U —c ) Yt U//
0= d DAQ k2A2 =N ) A2 '7_/ d ~ 12
R e e i Y M

7 NS 7
TV TV

Z, 1z
Both real and imaginary parts are zero

>

A\

¢; # 0= 17, = 0 = U" changes sign ovéy_,y.] = U has inflection poinys



If ¢; # 0 (instability of U), thenU (y) has an inflection point.
If U(y) does not have an inflection point, then= 0 (stability of U).

Fjortoft’s Theorem (1950):
if ¢; # 0, thenU”(y)(U(y) — Ul(ys)) is negative over a portion ¢, . ].

Y+ UNU — .
ozL:/ dy [|D@|2+k2|ﬁ|2+M|@|2
Y

. U — cf?
i U'U—=¢r), .9 v A2, 120402
dy ————= = — dy ||D k <0
|y e = [y o o]
DefineUs = U(ys) and multiplyZ; by (¢, — Us) /¢;:

U” cr US) 19
d =0
/y v =i

Add:

Y+ " _ _ Y+
— C
y_

Therefore:

Yt "U —

/ dy U‘((]U ‘ZS) ‘@‘2 < 0= U"(y)(U-Us) < 0 over portion of interval
— C

Yy



Rayleigh and Fjortoft apply to inviscid fluids and only demonstrate stability

Rayleigh’s inflection point theorem:
¢; # 0 = U(y) has an inflection point
U(y) has no inflection point=- ¢; = 0 = U(y) stable

Fjortoft's Theorem:

¢i 7 0 andU”(ys) =0=U"(y)(Uly) -

U//

Us) < 0 somewhere iy, y, |
—Ug) > 0overallly_,y.] = ¢; =0 = U(y) stable

.

/

No inflection point

Has inflection point

Has inflection point

U”(ys) — 0

U > Ug whereU” < 0

U < UgwhereU” > 0
U"(U—Usg) <0

U”(ys) — 0

U > Ug whereU” > 0

U < UgwhereU” <0
U"(U —Usg) >0

Rayleigh— stable

?

Fjortoft = stable




Howard’s semicircle theorem (1961)

Unstable eigenvalues= ¢, + ic; of Rayleigh equation obey:

(Umax - (]mim>2

— unstable: located inside circle whose diameter connégts, andU,,;,.



Kelvin-Helmholtz Instability

Caused by velocity gradient. Begin with piecewise-constant profile-ea, +oc]
I U, fory >0
| U_fory<0
Must specify jJump conditions at each discontinuityCaf

1) Interface remains WeII-define({UU H =0
— C

2) Continuity of normal stress (pressurd){U — ¢)D — U")o] =0
Rayleigh equatiord = [(U — ¢)(D* — k%) — U"] ¢

y>0 (D*=k)p=0 & o(+00)=0 = 0= Ae "
y<0 (D?—k)o=0 & oO(—00)=0 = 0= BeM
Apply jump conditions ay = 0:
B N v .. A B
O_U (0) U—c(o)_m—c U_—c¢
0 = (U—c)D UNo(0") — (U —¢)D — U)o (07)

(
(U, — ) (—kA) — (U- — c)kB



or

o=l o) 5]

A non-trivial solution exists if the determinant is zero:
U_ — U, —
C + 4 C
U+ — C U_ — C
0 = (U= +(Us—c)=2(— (Up + U_)e+ (U2 4+ U?)/2)

o = 5[]

U Uv. 1
— %i§\/—(U+—U)2
— AU
= U+i—
2
~ 1k(x—c Aeiky ik(z—T
v(r,y,t) = 0(y)e™ t):{ Bk }ekz( Ut) AtAU/2

Existence of growing perturbatica= U(y) is unstable

Discontinuous piecewise-constant profie- c is independent of



Piecewise linear profile which is continuous but not smooth

Yy > +5 U U+ U, = O QA)+ = A+€_ky D'lA)+ = —kA+€_ky
—S<y<+5|U=U+5%y|U = b0 = Ape ™™ + ByeM | Doy = —kAge ™™ + kBye"
y < —0 U= U_ U = 0 .= B_eM Di_ = kB_eM

If U is continuous then continuity @f/ (U — ¢) implies continuity ofo

0((5) 0 (5) = Aoeik(; + BQ@MS — A+€7k6 — A+€7k6 = Aoeiké + B(]ek6

o(—0) — _(—5) = Age™ + Bye ™ — B e — B 7" = Bye " 4+ Ayef?
(U =)D = U'lio(6) = [(U — ) D — U'lo,(6)

= (U= ¢)[Dig(6) — D0+(0)] = [(U"0+)(6) — (U')(0)]
(

A
Uy — ¢)[—kAge™ + kBye™ — (—kA e )] + 2;]

(Uy — ¢)[—kAge™ + EBye? — (—k(Age™ 4+ Byet?)] + %(Aoe—'ﬂs + Bye™)

= [(U=¢)D = U'ty(=0) = (U — ¢)D = U'Jo_(—0)

= (U = ¢)[Dio(=0) — Do_(=0)] = [(U"d-)(=0) — (U'do)(—0)]
(

U_ —c)[—kApe™ + kBye™ — (kB_e )] + 2;](A06k5 + Bye ™)

= (U, — C)[—]{?Aoeké + kBoeiké — (k(Bgeiké + Aoek(s)

|
>

(A€k6+B€k6>

U
+ g(.Aoek(S + Boeik(s)



AU
0 = (U_|_ — 6)2k306k5 + ﬁ(Aoek(; + B()eké)

A
0 = (U —¢)(—2k)Ager + 2—2](1406% + Bye ")

[ 0 } _ [ SUeko (Uy = ¢)(—2k) 4+ 5Y¥)ek ] [ Ay ]
0 (U= = ¢)2k + 5Y¥)eh SUeko By
Has solution if determinant is zere=
_ AU
— - _ 2 _ ,—4ko
c U:I:4k5\/(1 2k6)? — e

c depends ot and can be real (neutral) or complex (growing or damped)
Boundary between two regimes is found by solving numerically

~

1-2k)?=e? —  j=0064



Unstable perturbations:

k=Fké < 0.64

270
— < 0.64
A

2
A>—40~1090
>0.64

The piecewise-linear profile is unstable to perturbations whose wavelgngth
more than 10 times the widthof the interface.

As 6 — 0, recover the previous result of the discontinuous profile.



Discontinuous piecewise-constant profile

o cl

o d

AU/2

ok

-AU/2

AU/2

—-AU/2




Beyond eigenvalues

Poiseuille and Couette flow: instability / transition to turbulence

Flow Rr Ry
plane Poiseuille 1000 | 5772
plane Couette| 300 | oo
pipe Poiseuille|| 2000 | oo

Pipe Poisedille flow i$/ (r)é, = (1 — r?)é..
Ry is linear instability threshold
Rpis R at which experiments and simulations show transition to turbulence

Turbulence is 3D, unlike 2DA = 0) perturbations shown by Squire’s Theorem
to be the most unstable.

Many ideas have been proposed to liberate hydrodynamic stability theorem
from the tyranny of Squire’s Theorem and eigenvalues.

Many articles are published each year in this very active field.



Energy theory

TakeU- of Navier-Stokes equations:

01 ou 1
§§U U=0U. 5_—U-[(U-V)U]—U-VP+}—_{U-AU
Integrate over volume with periodic or zero velocity through boundaries.
The nonlinear term is conservative:
2
/ dVU-[(U-V)U] :/ dVv V. (U%) ——W / dA n - U—:0

We can also calculate an analogous calculation onghknear equations which
govern the growth of a non-infinitesimal perturbatimf the steady flowU.
1

u-@tu+u-(u-V)U+u-(U-V)u+u-(u-V)u:—u-VerEu-Au



u-du+u-(u-V)U+u - (U-V)utu - (u-V)u=—-u-Vp+—u-Au

2
u-@tu = 8,5 (%)

w-[(u-Viu = V. (u|“|2> Py,

w-[(U-V)u = V- (U'“'Q) oy

2 2
—u-Vp = =V-(pu)+pV-u
2
u-Au = V-V (%) —|Vul?

Integrate over volume, use Gauss’s theorem, incompressibility, and boundary
conditions to eliminate all the terms above which are divergences.
— Reynolds-Orr equation:

gy Juf” ——/ dV u - [(u V)U]—l/ dV |Vul|?
dt 2 ) R

dE(u P(u) 1
d(t ) _ ~D(u)




Q
5
N
E/<
|

| —
9
£

at R
D(u)/ R is energy lost byu to viscous dissipation.

How is u supplied with energy? Base floW is maintained (for example,
by providing pressure gradient for Poiseuille flow or by moving the bounding

plates for Couette flow).
P(u) measures energy given by base flbinto perturbatiorn. The evolution

of the energy ofu comes from terms in N-S equations which are lineatin
viscous dissipation and the nonlinear term linearized abbui/e see that

1 dE(u)
E(u) dt

is independent of the amplitude af which is a consequence of the fact that
the evolution of the energy af comes from terms which are lineardn




Joseph (1976) defined an critical energy Reynolds nurfihesuch that
—ForR < Rg, E(u) < 0 for all u. _
— ForR > Rp, there exists a perturbatiansuch thatt'(u) > 0.

- ()

Maximum is realized for perturbationswith 5 # 0:

Can show that:

Flow Rg 5]
plane Poiseuille 49.7 | 2.05
plane Couette| 20.7 | 1.56




Transient growth

(Butler & Farrell, 1992, Trefethen et al., 1993, Schmid & Henningson, 1994)
Consider the model problem:

il =1 )]

Matrix is upper triangular=- eigenvalues are-1/R et —2/R, both negative.
The corresponding eigenvectors are:

1 1 2 0
et () e me [

The variables evolve as

[Z] :Uolléle_t/RJf(Uo—voR) [?]e—%/R

Expand fort small:
n = noe—Qt/R+RUO(e—t/R o €—2t/R)
2t

t
— “2/R L Pyl — — 4o — 14 2L
noe +Rup(l — 7+ + 5 )

= 7706_2t/R + ’Uot



0.4

0.3 — —

0.1 —

The difference between twdecreasing exponentials can lead to algebrgrowth
over short times, callettansient growth, as is seen in Jordan blocks.

The matrix approaches a Jordan blockias+ oo. This tendency can also be
seen via the scalar product between the eigenvectors:

3] (2] i

R 1

where¢ is the angle between the two eigenvectors.
¢ — 0 = eigenvectors become parallel 8s— oc.



Squire’s Theorm shows lowest for growing eigenmodes found fgr = 0.
Not so for eigenvectors showing the largest transient growth.

. L E(t
Define amplification factorG = naE L
0475;757@07770 (0)
F I OW G tmax O‘max Bmax

plane Poiseuille | 0.20 R? x 1073 0.076 R| 0 |2.04

plane Couette || 1.18 R? x 1072 | 0.117 R |35/R | 1.6
pipe Poiseuille | 0.07 R? x 1073 0.048 R| 0 1

Blasius boundary layer1.18 B2 x 1073 | 0.778 R| 0 |0.65

G = 200 for plane Poiseuille flow ak = 1000
G = 100 for plane Couette flow ak = 300
Near where transition to turbulence occurs

Perturbation which maximizes hasa = 0 or o — 0.
Plane Couette flows ~ 7/2 — \,/2 = 7/ =~ 2, distance between plates.

Perturbations with largest transient growth (“optimal perturbations”)l@me
gitudinal vortices, like convective rolls, aligned with base flowdjrection).
These are observed experimentally and numerically.

Suggestive, but role of transient growth not demonstrated



Self-Sustaining Process
Streaks

advection of instubility of
mean shear Ufy,z)
SSP

Streamwise exp(iCx)
Rolls mode

W

nonlinear
self-interaction

Fabian Waleffe, Physics of Fluids, 8, 1997

Based on numerical simulations of turbulence at lBywValeffe (1990,1995)
proposed a nonlinear 3D theory for transitional turbulence:
—Streamwise rolls sustain “streaks” (i.e. spanwtgaer{odulation of the stream-

wise velocity)
—Streaks suffer a wake-like instability due to the spanwise inflectionscthds

to the onset of a streamwise ondulation,
—Nonlinear self-interaction of that streamwise ondulation regeneratesd¢hes

wise rolls.



Unstable steady states and travelling waves

jeutioulesm



ullB

.....

B i -
SR

computed by Gibson

Unstable steady states of plane Couette flok at 400,

and Cvitanovic (2008).



Until 1990, the only solutions known for plane Poiseuille and Couette flow
and for pipe flow were the basic laminar solution and, in the case of plane
Poiseuille flow, the two-dimensional Tollmien-Schlichting waves that b#tac

at Re;, = 5772. However, starting in 1990, large numbers of unstable solu-
tions solutions of wall-bounded shear flows, such as plane Couette and pipe
Poiseuille flow have been discovered computationally. It is hypothesizéd tha
weak turbulence can be understood as chaotic trajectories that visit ireaurn t
vicinities of the various unstable branches In order to explain weak turbulence
in wall-bounded shear flows, researchers focus on the unstable manifolds and
time-dependent trajectories which connect the branches. The non-trivial solu-
tions mostly consist of wavy longitudinal vortices, (3 # 0) and are created via
saddle-node bifurcations. The Reynolds-number threshold for weak turbulence
in wall-bounded shear flows is sometimes thought to be related to the lowest of
these saddle-nodes.



