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Transition to chaos of natural convection between two infinite differentially heated vertical plates
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Natural convection of air between two infinite vertical differentially heated plates is studied analytically in
two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times
the critical value Rac = 5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady
2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation
and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the
rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and
then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady
state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork
bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids.
The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the
rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of
period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus
instability.
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I. INTRODUCTION

Transition to turbulence of natural convection in a fluid
layer between two differentially heated plates is of substantial
interest for many industrial applications, such as heat exchang-
ers in reactors or insulation of buildings (e.g., double-paned
windows). In classic Rayleigh-Bénard convection, the fluid
lies between two horizontal plates and is heated from below
so the thermal gradient opposes the direction of gravity. In
the configuration considered here, the walls are vertical, and
the thermal gradient is orthogonal to the direction of gravity.
Although this configuration may not have received quite as
much attention as Rayleigh-Bénard convection [1], a number
of studies have shed some light on its specific dynamics.
However, with a few exceptions, most of the theory and
numerics so far have focused either on the two-dimensional
case or on a limited range around the critical Rayleigh number.
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The first investigations of natural convection between
differentially heated vertical plates relied on experimental
descriptions. Elder [2] observed the onset of secondary flow
and “cat’s-eyes” tertiary flow in his experiments with two
fluids: paraffin and silicone oil. Vest and Arpaci [3] observed
the onset of secondary convection in air flow and compared
it with their calculations of secondary flow stream patterns.
Oshima [4] considered convection in a rectangular water-filled
cavity heated through two vertical sidewalls. He observed the
development of the wavy motions of streamlines into rows of
periodic vortices, which then burst into turbulence.

Early computations of the flow structure were based on
stability analysis in the neighborhood of the critical Rayleigh
number Rac and were limited to the 2D case. Following
Batchelor’s [5] approach, Gill and Davey [6] and then Bergholz
[7] investigated the 2D linear stability of the flow for different
Prandtl numbers. Vest and Arpaci [3] also relied on 2D linear
stability to calculate secondary-flow stream patterns. Weakly
nonlinear stability calculations in 2D were carried out by
Daniels and Weinstein [8], Cornet and Lamarque [9] for
air, and Mizushima and Gotoh [10] for water convection. A
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Newton-Raphson method to compute equilibria was used by
Mizushima and Saito [11] in the zero-Prandtl-number limit.
More bifurcation diagrams were obtained in the case of air by
Mizushima and Tanaka [12,13].

The agreement between the patterns predicted by theory and
experimental observations of the first instabilities suggests that
convection between 2D infinite plates is a good representation
of what happens in tall cavities. However, there is some
evidence that these simplified assumptions may not provide an
accurate picture of the real dynamics. First, the influence of the
aspect ratio—what exactly makes a cavity “tall enough”—may
be difficult to determine intuitively. From Bergholz [7], it can
be seen that the nature of the most unstable disturbances for
water (Pr = 7.5) switches from a stationary to a traveling state
for a critical aspect ratio A ∼ 70. Moreover, the nature of
the higher-order bifurcations is likely to be affected by the
presence of horizontal boundaries. S. Xin [14] carried out 2D
numerical simulations of natural convection of air in a confined
cavity as well as between infinite plates (a channel). Transition
to the chaotic state was observed at a relatively low Rayleigh
number in the cavity, while only regular patterns could be
obtained in the channel.

Second, although most numerical simulations [15–20] have
been carried out in the 2D case, there is evidence that
the flow becomes rapidly three-dimensional as the Rayleigh
(or Grashof) number increases, as was observed by Wright
et al. [21] in their experiments for tall air-filled cavities.
This is in agreement with Chait and Korpela’s [22] 3D
linear stability calculations, which indicated that the flow
between vertical isothermal sidewalls should become rapidly
three-dimensional. Early 3D computations of equilibria in
the limit of vanishing Prandtl number were performed by
Nagata and Busse [23]. A steady 3D pattern was found to be
associated with a secondary instability. Clever and Busse [24]
also identified a steady 3D pattern, which then bifurcated into a
traveling wave of invariant shape at higher Rayleigh numbers.
A Ginzburg-Landau model was used by Suslov and Paolucci
[25,26] to describe the three-dimensional flow between infinite
plates in the case of non-Boussinesq convection for a variety of
Prandtl numbers. However, their approach remains limited to a
region around the critical Rayleigh number. Bratsun et al. [27]
carried out extensive experimental and numerical studies of
the successive bifurcations of the flow in three dimensions, but
their work was conducted at a high Prandtl number (Pr = 26)
for which the primary instability consists of traveling waves.
No equivalent study has been performed for air as far as we
know.

At the other end of the Rayleigh number range, the turbulent
regime has received some attention for two decades. Phillips
[28] compared 3D direct numerical simulation results with
the experiments of Elder [29] and showed that most of the
turbulence was generated by the shear layer at the center of
the slot. Versteegh and Niewstadt [30,31] computed energy
budgets to determine scaling laws and wall functions with
a direct application to turbulence modeling. Although the
presence of spiral structures has been noted by Wang et al. [32]
for air at Ra = 5.4 × 105, a complete coherent-structure-based
description is still missing. As noted by Hall [33], “there has
been apparently no attempt to look for coherent structures
embedded in the flows as has become routine in shear flows.”

Few models for the dynamics of such structures have yet been
proposed [33].

The goal of the present study is to provide a description
of the transition to turbulence of natural convection of air
between two infinite plates. We are aware of the limited
character of this investigation, which crucially depends on
the periodic dimensions of the plates. Due to numerical
constraints, the transverse dimension of the plates was kept
small, which hampers the development of three-dimensional
instabilities. However, we believe that such simulations con-
stitute a necessary step towards a better understanding of the
dynamics of unsteady natural convection. They also represent
a complementary approach to linear stability analysis, where
the full range of wave numbers can be explored. A detailed
analysis of the flow at lower Rayleigh numbers could be
helpful to understand the coherent structures observed in the
fully developed turbulent regime [32]. Some direct numerical
simulation (DNS) studies [30] suggest that a substantial part
of the energy in the turbulent regime is associated with
patterns which are similar to the most linearly unstable mode.
This situation presents some analogy with Rayleigh-Bénard
convection, where the large-scale structures identified in the
turbulent regime share common features with the convection
cells observed at near-critical Rayleigh numbers [1,34,35].
In addition, determining key instability mechanisms in a
canonical configuration will be useful for studying more
complex geometries and/or including additional physics such
as radiation or mixed convection.

The paper is organized as follows. We first recall standard
theoretical results based on linear and weakly nonlinear
stability analysis. We derive analytically a Ginzburg-Landau
equation to represent the flow around the first bifurcation. We
then briefly present results for 2D direct numerical simulation
for Rayleigh numbers Ra up to about 3Rac. We show that a
temporally chaotic regime can only be found over a limited
range of Rayleigh numbers. We then present our results of
a 3D numerical simulation. The sequence of the instabilities
leading to chaos and corresponding physics is described in
detail. A large difference with 2D results is found.

II. PHYSICAL AND NUMERICAL CONFIGURATION

We consider the flow of air between two infinite vertical
plates maintained at different temperatures. The configuration
is represented in Fig. 1(a). The distance between the two plates
is D, and the periodic height and depth of the plates are Lz

and Ly , respectively. The temperature difference between the
plates is set to �T . The x direction is normal to the plates, y

represents the transverse direction, and the gravity g is opposite
to the vertical direction z.

The relevant fluid properties are the kinetic viscosity ν,
thermal diffusivity κ , and thermal expansion coefficient β.
Four nondimensional parameters characterize the flow: the
Prandtl number Pr = ν/κ , the respectively transverse and
vertical aspect ratios Ay = Ly/D and Az = Lz/D, and the
Rayleigh number based on the gap between the two plates
Ra = gβ�T D3

νκ
. Only the Rayleigh number dependence is

considered in the present study. The Prandtl number is fixed
and equal to 0.71. The transverse aspect ratio is set to be
Ay = 1. The vertical aspect ratio was Az = 10 in most cases
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FIG. 1. (Color online) (a) Study domain. (b) Base flow profiles for the temperature �(x) and vertical velocity W (x).

and occasionally Az = 9 and Az = 2.5. The choice of these
values is dictated by the critical wave number kc ∼ 2π/2.5 (see
next section). The larger domain therefore could accomodate
four structures.

A. Equations of motion

The flow is governed by the Navier-Stokes equations
within the Boussinesq approximation. We choose the reference
parameters to be κ

D

√
Ra for the velocity, D for the length, and

�T for the temperature. The nondimensionalized equations
then are

�∇ · �u = 0, (1)

∂ �u
∂t

+ �u · �∇ �u = −�∇p̃ + Pr√
Ra

��u + Pr θ̃ ẑ, (2)

∂θ̃

∂t
+ �u · �∇ θ̃ = 1√

Ra
�θ̃, (3)

with Dirichlet boundary conditions at the plates,

�u(0,y,z,t) = �u(1,y,z,t) = 0,
(4)

θ̃ (0,y,z,t) = 0.5, θ̃ (1,y,z,t) = −0.5,

and periodic conditions in the y and z directions. Here t denotes
time, �u = (ũ,ṽ,w̃) is the velocity vector, p̃ is the pressure, and
θ̃ is the temperature.

The equations of motion (1)–(4) admit an analytic steady
solution (U ,V ,W ,�), the pure conduction state, which depends
only on the x direction,

U = 0; V = 0;

W (x) = 1
6

√
Ra

[(
x − 1

2

)3 − 1
4

(
x − 1

2

)]
; (5)

�(x) = −(
x − 1

2

)
.

The solution Eq. (5) is represented in Fig. 1(b). The equa-
tions (1)–(4) admit an O(2) × O(2) symmetry. One O(2) sym-

metry corresponds to the translations in the transverse direction
y and the reflection y → −y, while the other corresponds to
the translations in the vertical direction z and a reflection
that combines centrosymmetry and Boussinesq symmetry:
(x,z,T ) → (1 − x,−z,−T ). The base flow possesses the
same symmetry as the equations, since it is one-dimensional
and antisymmetric with respect to the midplane x = 0.5.

B. Numerical configuration

The 2D simulations are carried out using a spectral DNS
code [14] developed at the Laboratoire d’Informatique pour la
Mécanique et les Sciences de l’Ingénieur (LIMSI). The code
relies on a Chebyshev collocation discretization in the hori-
zontal direction x and a Fourier discretization in the vertical
direction z. The complete Navier-Stokes system is solved by
inverting the Uzawa operator to ensure incompressibility. Over
the range of Rayleigh numbers investigated, we choose 40
Chebyshev modes for the discretization in x and 160 Fourier
modes in z for Az = 10.

The 3D simulations are carried out with a multidomain
spectral code [36] also developed at LIMSI. A Chebyshev-
Fourier collocation method is used for spatial discretization.
Incompressibility is enforced by the projection-correction
method. The equations are integrated in time with a second-
order mixed explicit-implicit scheme. The domain decomposi-
tion is carried out by the Schur complement and implemented
with the MPI library. Some details about the numerical
schemes are explained in Appendix A. In our study, the domain
is decomposed into four subdomains in the z direction. A
Chebyshev discretization is applied in directions x and z, while
a Fourier discretization is used in the transverse direction y.
For Ay = 1 and Az = 10, we use 30 modes in the transverse
direction y and 40 and 160 modes in the horizontal and
vertical, x and z, directions, respectively. The initial condition
is typically taken to be equal to the base flow.
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Convergence of the spatial discretization in the 2D sim-
ulation has been established [14]. Convergence for the 3D
code was checked by running the simulations using 45 Fourier
modes in y and 60 and 240 Chebyshev modes in x and z,
respectively. No significant difference was observed between
the two spatial discretizations. Comparison of the 2D and 3D
codes was carried out both below and slightly above the critical
Rayleigh number. The difference between the flows was found
to be within round-off error.

III. 2D THEORETICAL ANALYSIS OF THE
FIRST BIFURCATION

A. Linear stability analysis

The base flow Eq. (5) is parallel and depends only on the
x direction. The hypotheses of Squire’s theorem are verified
in this case, so the most unstable mode is expected to be 2D.
We decompose the velocity and temperature into the base flow
(U,W,�) and perturbations (u,w,θ ) as

ũ = U + u, w̃ = W + w, θ̃ = � + θ, (6)

and take the curl of the momentum equations to eliminate
the pressure term. Let ψ be the stream function for the
perturbations, where u = − ∂ψ

∂z
, w = ∂ψ

∂x
. The equations of

motion (1)–(4) lead to the 2D system of perturbations in x

and z as

M
∂φ

∂t
= Lφ + b(φ,φ), (7)

with

φ =
[

ψ

θ

]
; b =

[
bψ

bθ

]
; M =

[∇2 0
0 1

]
;

(8)

L =
⎡
⎣ Pr√

Ra
∇4 − W ∂

∂z
∇2 + ∂2W

∂x2
∂
∂z

Pr ∂
∂x

∂�
∂x

∂
∂z

1√
Ra

∇2 − W ∂
∂z

⎤
⎦ ,

where the nonlinear terms bψ and bθ are bilinear forms and
defined as

bψ (φα,φβ) =
(

∂ψα

∂z

∂

∂x
− ∂ψα

∂x

∂

∂z

)
∇2ψβ

(9)

bθ (φα,φβ) =
(

∂ψα

∂z

∂

∂x
− ∂ψα

∂x

∂

∂z

)
θβ.

The indices α and β will be used to designate the different
orders of the solutions obtained in the multiscale analysis in
the following subsection.

The associated boundary conditions are

ψ(x = 0) = ψ(x = 1) = 0, (10)

ψ ′(x = 0) = ψ ′(x = 1) = 0, (11)

θ (x = 0) = θ (x = 1) = 0, (12)

where the prime symbol denotes partial differentiation with
respect to x.

The linearized system is written as

M
∂φ

∂t
= Lφ. (13)

Seeking a normal-mode solution of the form φ = φ̂(x)est+ikz,
we obtain a generalized eigenvalue problem, L̂φ̂ = sM̂φ̂.
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FIG. 2. (Color online) Norm of the most unstable mode |φ̂(x)|
(|ψ̂(x)|,|θ̂ (x)|) at kc and Rac.

Solving the eigenvalue problem leads to a critical Rayleigh
number Rac = 5708 and a critical wave number kc = 2.81,
which agrees with the results of Bergholz [7] and Ruth [37].
The critical eigenvalue is purely real, and the modulus of the
most unstable mode |φ̂(x)| at the critical wave number kc and
Rayleigh number Rac is maximum in the core region, as shown
in Fig. 2.

B. Weakly nonlinear analysis

We use a multiscale analysis to derive a Ginzburg-Landau
equation for the flow around the first bifurcation. We introduce
the asymptotic expansion of the perturbation to the base
flow as

φ = εφ1 + ε2φ2 + ε3φ3 + O(ε4). (14)

We also define several time scales, t0 = t,t1 = εt,t2 = ε2t , and
vertical length scales z, z0 = z,z1 = εz. We then expand all
the operators in system (7) with respect to the new variables,

M = M0 + εM1 + ε2M2 + O(ε3), (15)

L = L0 + εL1 + ε2L2 + O(ε3), (16)

b = b0 + εb1 + ε2b2 + O(ε3), (17)

where M0, M1, M2, L0, L1, L2, b0, and b1 are detailed in
Appendix B.

The first-order perturbation εφ1 can be expressed as

εφ1 =
[

ψ

θ

]
= A(t1,t2,z1)

[
ψ̂(x)
θ̂(x)

]
est+ikcz + c.c., (18)

where ψ̂,θ̂ are the most unstable modes at the wave number
kc given by the linear stability analysis, A is the amplitude of
the solution, and c.c. stands for complex conjugate.

Substituting these expansions into (7), and collecting the
terms at different orders of ε, yields problems at different
orders of ε. The problem at order ε coincides with the linear
stability analysis. Collecting terms at order ε2 and imposing
a compatibility condition gives an expression for the group
velocity Cg . Numerical evaluation of Cg yields a value of
about 10−5, which is close to the expected value of zero since
the rolls are steady. The discrepancy is likely to be due to the
discretization error.
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1. Ginzburg-Landau equation

Collecting terms at order ε3 and enforcing the solvability
condition leads to a Ginzburg-Landau equation [38] for the
amplitude A in the primitive variables,

∂A

∂t
= σ (Ra − Rac)A + γ

∂2A

∂z2
− lA2A∗. (19)

Numerical evaluation of the coefficients σ , γ , l for
the critical wave number kc = 2.81 gives σ = 7.67 × 10−5,
γ = 0.112, l = 20.45. The sign of l indicates that the bifurca-
tion is supercritical. The amplitude of perturbations predicted
by this Ginzburg-Landau equation will be compared with the
DNS results discussed in the next section.

2. Absolute instability

The linearized Ginzburg-Landau equation takes the form

∂A

∂t
= σ (Ra − Rac)A + γ

∂2A

∂z2
. (20)

The introduction of a particular solution in the form of
normal modes A = Âei(βz−ωt) into Eq. (20) results in the
dispersion relation:

D(ω,β,Ra) = σ (Ra − Rac) + iω − γβ2 = 0. (21)

It can be written in the form of a single temporal mode
ω(β,σ,Ra) = i[σ (Ra − Rac) − γβ2], which has an equilib-
rium (β0,ω0), satisfying the conditions ω0 = ω(β0) and
∂ω
∂β

(β0) = 0. The latter condition yields ∂ω
∂β

(β0) = −2iγβ0 = 0.
So β0 = 0 and ω0 = iσ (Ra − Rac). As ω0,i = σ (Ra − Rac) > 0,
the disturbance grows with time at any fixed station in the
laboratory frame, which corresponds to the absolute instability,
in agreement with Tao and Zhuang’s [39] results.

IV. NUMERICAL RESULTS

A. 2D DNS simulations

We first use a 2D simulation to study the development of
instabilities in the flow. Results are summarized in Table I.

1. First bifurcation

As predicted by the linear stability analysis, the base
flow bifurcates to four steady corotating rolls at Rac ∼ 5708.
Although vertical invariance is broken, the solution still
displays the symmetry D4, consisting of translation by the
height Az/4 of each of the rolls. Invariance of the equa-
tions under z translations ensures that there exists a whole
circle of solutions, corresponding to an arbitrary vertical
translation of the rolls: The bifurcation is a circle pitchfork
bifurcation.

The time evolution of the temperature measured at the point
(x = 0.0381, z = 5), located in the hot boundary layer, is
plotted in Fig. 3(a). An enlargement of the same signal for
the times 1500 < t < 2000 is represented in logarithmic scale
in Fig. 3(b). The temperature disturbance grows exponentially
for 1500 < t < 1750, which corresponds to the linear growth
of the most unstable eigenmode and then increases at a slower
rate for t > 1750 before the amplitude of the solution saturates.
As was pointed out by Henderson and Barkley [40], this
evolution shows that the coefficient of the cubic term in the
normal form of the circle pitchfork bifurcation is negative,
and, therefore, the bifurcation is supercritical, in agreement
with the prediction of the Ginzburg-Landau model.

The steady amplitude A computed from the Ginzburg-
Landau equation is compared with the amplitude of the
velocity and temperature perturbations observed in the DNS
for a domain which is as close as possible to the critical
wavelength. The periodic height of the DNS was adjusted
to Az = 9, so it featured a wavelength of λ = 2.25 close to the
critical wavelength λc = 2.236.

Figures 4(a) and 4(b) show that the agreement between the
Ginzburg-Landau model and the DNS is very good for both
the temperature and velocity up to Ra ∼ 6300 (about 10%
above Rac).

2. Subsequent bifurcations

Figure 5 shows how the spatial organization of the flow
varies with increasing Ra. Just above the critical Rayleigh
number, the flow is characterized by four steady structures,
as shown in Fig. 5(a) at Ra = 6000. As Ra is increased past

TABLE I. Summary of bifurcations and associated flow structures and symmetries for the 2D simulations, Az = 10.

Nature of Spatial features Spatial symmetry
Ra bifurcation Number of structures Temporal symmetry

Ra < Rac = 5708 1D base flow O(2)
Steady

Rac � Ra � 13 000 Supercritical Corotating rolls D4

Circle pitchfork n = 4 Steady
13 500 � Ra � 15 300 Supercritical Corotating rolls No symmetry

Hopf n = 3 Periodic
15 400 � Ra � 15 600 Corotating rolls No symmetry

Unknown n = 3 Quasiperiodic
15 700 � Ra � 17 000 Corotating rolls No symmetry

Unknown n = 3 “Chaotic”
18 000 � Ra � 21 000 Corotating rolls No symmetry

Unknown n = 2 Steady
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FIG. 3. (Color online) (a) Time series of temperature perturbation at point (0.0381, 5) in the boundary layer near the hot wall at Ra = 6000.
(b) An enlargement of (a) for 1500 < t < 2000 on a logarithmic scale.

the value of Ra = 13 500, the four steady rolls merge into
three rolls which oscillate in time, as shown in Fig. 5(b). At
still higher Rayleigh numbers Ra � 18 000, only two rolls of
unequal size are observed, as shown in Fig. 5(d).

The temporal spectrum of the vertical velocity at the
point (x = 0.0381, z = 0.683) is shown in Fig. 6(a) and is
characterized by a main frequency (with harmonics) of f1 =
0.032. When 15 000 � Ra � 16 000, the flow still consists of
three oscillatory rolls, but the temporal evolution of the flow
becomes more complex. When Ra is increased to Ra = 15 500,
the flow becomes quasiperiodic with the appearance of a
second, much lower, frequency, f2 = 0.0031 [Fig. 6(b)]. When
Ra = 16 000, the peaks around the main frequency f1 and f2

broaden [see Fig. 6(c)], corresponding to seemingly chaotic
behavior. The chaotic behavior subsides beyond Ra = 18 000,
as the flow spatial pattern is modified: There seems to be
a competition between the onset of purely temporal chaos
in a specific flow pattern and the development of spatial
instabilities at short wave numbers. Up to Ra = 21 000, which
was the highest Rayleigh number considered, the flow remains
steady with a robust two-roll pattern.

B. 3D DNS results: First bifurcation

We first check that the base flow remains stable with respect
to any perturbation when Ra < Rac. As expected, the first
bifurcation observed in the DNS occurs at Rac around 5800
and is characterized by the appearance of four 2D steady
corotating rolls which are represented in Fig. 7. As mentioned
above, the vertical translation invariance is replaced with a D4

symmetry, and the centro-Boussinesq symmetry is conserved.

C. Second bifurcation: 3D steady structures

When Ra > Rac2, the four-roll solution becomes unstable
in the transverse direction, and a steady 3D pattern, shown
in Fig. 8, appears through a second bifurcation, as was also
found by Nagata and Busse [23] and Clever and Busse [24].
Since the transition breaks the y-translation invariance, this
new bifurcation is also a circle pitchfork bifurcation. From the
analysis of a time series similar to that of Fig. 3, we conclude
that this bifurcation is supercritical.

The threshold Rac2 can be obtained by linearizing the
equations of motion around the 2D steady solution and
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FIG. 4. (Color online) Comparison of the maximum amplitudes observed in the 2D DNS at x = 0.0381 with the Ginzburg-Landau equation
prediction: (a) temperature and (b) vertical velocity.
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FIG. 5. 2D flow streamlines at different Ra. (a) Four steady coro-
tating rolls; [(b) and (c)] three oscillating rolls; (d) two steady rolls.

integrating a small perturbation in time for different values of
Ra. The growth rate of these perturbations, which is equal to
the most unstable eigenvalue, is found to increase quasilinearly
with Ra. The critical Rayleigh number Rac2 obtained by linear
extrapolation of the plot is around 9980, which is within 2%
of the value Ra ∼ 10 100 observed in the DNS.

The steady 3D solution retains some of the symmetry of
the 2D solutions, namely the reflection in y and translation by
Az/4 in z, but the translation symmetry in y and the centro-
Boussinesq symmetry are replaced with the single discrete
symmetry

(x,y,z,T ) → (1 − x,y + 0.5,Az − z,−T ). (22)

The 2D solution, which was O(2) × D4 symmetric, has
bifurcated to a 3D solution with D1 × D4 symmetry.

This can be seen in Fig. 9, which shows temperature
contours and streamlines on three planes parallel to the
plates. The field obeys the symmetry (22), as can be seen
by comparing Figs. 9(a) with 9(c) or Figs. 9(d) with 9(f). The
upwind motion on the plane x = 0.0381 along the hot wall
[Fig. 9(d)] and the downwind motion on the plane x = 0.9619
along the cold wall [Fig. 9(f)] are captured. On the midplane,
the streamline plot of Fig. 9(e) shows two large and two small

Y

X

Z

(a) (b) (c)

FIG. 7. (Color online) Flow structure at Ra = 6000. (a) Isocon-
tours of the temperature on the two selected vertical plates x = 0.0245
and y = 0.9677, (b) isosurface of transverse vorticity �y = 3.1, and
(c) enlargement of the upper half of the domain in (b).

secondary counter-rotating vortices. Since the flow is invariant
under translation by Az/4, we restrict our analysis to the upper
half of the domain in the rest of this section.

Figure 10 shows isosurfaces of the vorticity components
�y , �x , �z along with the Q criterion [41]. The Q criterion is
defined as

Q = 1
2 (�i�i − EijEij ),

where Eij is the rate of strain tensor 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
) and therefore

provides a measure of the vortices. Comparison of Figs. 10(a)
and 10(d) show that most of the vorticity is transverse and is
organized into the corotating convection rolls corresponding
to the most linearly unstable mode.

Examination of the horizontal vorticity (�x) plots in
Fig. 10(b) confirms that the flow is characterized by two
counter-rotating vortices, which are inclined 45◦ with respect
to both the horizontal and the vertical planes. As shown in
Fig. 10(d), these secondary circulations link the primary rolls
and are to some extent reminiscent of the three-dimensional
braids connecting the primary vortices observed in shear layers
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FIG. 6. (Color online) Temporal Fourier spectrum of the vertical velocity at the point (0.0381, 0.683) in the boundary layer near the hot
wall in 2D simulations for different Rayleigh numbers.
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GAO, SERGENT, PODVIN, XIN, LE QUÉRÉ, AND TUCKERMAN PHYSICAL REVIEW E 88, 023010 (2013)

Y

X

Z

(a) t=500 (b) t=1040 (c) t=1090 (d) t=1120 (e) t=1170 (f) t=2000

FIG. 8. Flow structure at Ra = 11000. [(a)–(f)] Temperature isocontours on the two planes x = 0.0245 (next to the hot wall) and y = 0.9677
(perpendicular to sidewalls) at times as indicated.

before vortex pairings [42]. In addition, Fig. 10(c) shows the
presence of additional counter-rotating vortices within the
primary convection rolls. These vortices are about half
the height of the larger secondary vortices, and their orientation
is opposite to that of the larger secondary vortices. They are
predominantly aligned with the vertical direction z.

In summary, the flow structure for the 3D pattern consists
of (1) principal vertical corotating rolls predominantly aligned
in the transversal direction y, (2) large secondary counter-
rotating vortices or braids linking up the primary rolls, which
are inclined about 45◦ with respect to the horizontal and the
vertical planes, and (3) two vertical, short counter-rotating
vortices located within the principal rolls.

D. Third bifurcation: 3D time-periodic flow

The 3D pattern remains stable up to a value of Ra < Rac3.
For Rac3 < Ra < 12 000, the 3D pattern becomes time depen-
dent.

1. Local analysis

The time series of the temperature at a point located in the
hot boundary layer is plotted in Fig. 11(a). Figure 11(b) shows
that it corresponds to a periodic signal of frequency f1 =
0.036, very close to the basic frequency f 2D

1 = 0.032 found
in the 2D simulations at a slightly higher Rayleigh number.

During this periodic regime, we observe that the oscillation
frequency f1 is nearly constant as the Rayleigh number
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FIG. 9. [(a)–(c)] Temperature isocontours on two planes which are symmetric with respect to the vertical midplane (x = 0.5); [(d)–(f)]
streamlines on the same three vertical planes at Ra = 11 000.
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FIG. 10. (Color online) Vorticity isosurfaces at Ra = 11 000.

increases above its bifurcation value, while the square of
the oscillation amplitude increases linearly with Ra. This
is consistent with a Hopf bifurcation. The critical Rayleigh
number Rac3 evaluated by the linear extrapolation of the
oscillation amplitude as a function of Ra is around Rac3 =
11 270, in excellent agreement with results from the DNS
observations.

2. Global enstrophy budgets

Some insight into the dynamics of the flow can be given by
enstrophy, which gives a measure of rotational effects in the
flow. The total contribution to the enstrophy of each vorticity
component [

∫
V

�2
j dV ]1/2 was computed, where j = x,y,z

and �j is the j -th component of the vorticity. As we can
see from Fig. 12, most of the enstrophy is contained in the
transverse contribution [

∫
V

�2
ydV ]

1
2 . Both the horizontal and

vertical contributions oscillate essentially in phase opposition
with the transverse contribution.

A physical interpretation of this plot is given in Fig. 13.
The flow structures are similar to the steady ones observed
in the previous regime (and therefore retain the same spatial
symmetry), but they now pulse periodically. When the primary
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V
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[
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1
2

[
V

(Ω2
x + Ω2

y + Ω2
z)dV ]

1
2

FIG. 12. (Color online) Temporal evolution of horizontal vortic-
ity intensity [

∫
V

�2
xdV ]

1
2 , transverse vorticity intensity [

∫
V

�2
ydV ]

1
2 ,

and vertical vorticity intensity [
∫

V
�2

zdV ]
1
2 at Ra = 11 500.

rolls are strongest, the secondary vortices disappear. At this
moment, the flow is mostly two-dimensional [Fig. 13(c)]. In
contrast, when the secondary vortices reach their maximum
intensities, the primary rolls bend in the transverse direction;
the strongly 3D flow can be seen in Fig. 13(e).

We note that the frequency f of the oscillation is very close
to the natural frequency of the mixing layer fn ∼ 0.032 [42],
when it is nondimensionalized with the distance between the
plates and the maximum velocity difference observed in the
base flow.

To better understand the origin of the oscillations, we
consider the vorticity equation:

∂�i

∂t
+ uj

∂�i

∂xj

− �j

∂ui

∂xj

= Pr√
Ra

∂2�i

∂xj∂xj

− Pr εijk

∂θδj3

∂xk

.

(23)

If we multiply equation (23) by 2�i , we obtain

∂�2
i

∂t
+ uj

∂�2
i

∂xj

= 2�i�j

∂ui

∂xj

+ 2
Pr√
Ra

�i

∂2�i

∂xj∂xj

− 2�iPr εijk

∂θδj3

∂xk

. (24)

(We sum over j and k but not over i, and ε is the permutation
symbol and δ is the Kronecker symbol.) The terms on the
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FIG. 11. (Color online) (a) Time series of temperature perturbation at the point (0.0381, 0.097, 5) in the boundary layer near the hot wall,
Ra = 11 500. (b) Temporal Fourier spectrum of the periodic portion t ∈ [1200,2000] of the signal (a).
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right-hand side of the equations correspond to the
production—or destruction—of �2

i through three different
mechanisms: (i) vortex stretching, which is tilting and stretch-
ing of vorticity components by the velocity field, (ii) friction,
i.e., the action of viscosity (which we will also refer to as
diffusion), and (iii) buoyancy. Summing over i (i.e., using

the tensor notation for i) yields the enstrophy equation. We
choose instead to integrate the equation corresponding to
each component over the domain. One can check that the
transport term (second term on the left-hand side) disappears,
so we are left with the following equations for each vorticity
component:

⎡
⎢⎢⎣

∫
V

∂�2
x

∂t
dV∫

V

∂�2
y

∂t
dV∫

V

∂�2
z

∂t
dV

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∫
V

(
2�x( �� · �∇u) + 2 Pr√

Ra
�x∇2�x + 2Pr�x

∂θ
∂y

)
dV∫

V

(
2�y( �� · �∇v) + 2 Pr√

Ra
�y∇2�y − 2Pr�y

∂θ
∂x

)
dV∫

V

(
2�z( �� · �∇w) + 2 Pr√

Ra
�z∇2�z

)
dV

⎤
⎥⎥⎦ . (25)

Figures 14 to 16 present the global evolution and spatial
distribution of the three terms on the right-hand side of Eq. (39)
for each vorticity component. The balance in the horizontal
direction can be seen in Fig. 14(a). The vortex-stretching
term and the buoyancy term are both source terms and
oscillate with a small phase shift, while the friction term is
negative and oscillates in phase opposition with the other
two contributions. As the intensity of the friction is not quite
compensated by the effect of vortex stretching and buoyancy,
this results in limited oscillations of the horizontal vorticity
rms [

∫
V

�2
xdV ]

1
2 . The spatial distribution of the contributions

due to vortex stretching, viscous effects, and buoyancy is
represented in Figs. 14(b)–14(d) on a plane orthogonal to the
plates. The plane was chosen in order to provide a relevant
cross section of one of the vorticity braids, i.e., the secondary
counter-rotating vortices. The vortex-stretching and buoyancy
terms are both positive everywhere [Figs. 14(b) and 14(d)],
while the friction term is negative [Fig. 14(c)]. All terms reach
their maximum over the portion of space occupied by the
counter-rotating vortices.

Figure 15(a) represents the different contributions to
equation (25) for the transverse component. All three terms
oscillate essentially in phase (with phase shifts of about 1/8
and 1/12 of the time period), which is responsible for the
strong oscillation observed in the principal rolls. The vortex-

(a) t = 2001 (b) t = 2008 (c) t = 2015 (d) t = 2022 (e) t = 2029

FIG. 13. (Color online) Q criterion isosurface Q = 0.12 at
selected times (corresponding vertical lines in Fig. 12) spanning one
temporal oscillation, Ra = 11 500.

stretching term is always positive, as can be expected. Perhaps
a more surprising result is that friction is now a source term for
the transverse vorticity, while buoyancy constitutes a sink for
it. Since the temperature gradient is always negative and the
principal rolls are associated with positive transverse vorticity
�y , one would expect a positive value for −2Pr �y

∂θ
∂x

. To un-
derstand this discrepancy, we examined the spatial distribution
of the different contributions, which can be seen in Figs. 15(b)–
15(d) for the symmetry plane y = 0.5. The effect of vortex
stretching was essentially positive, as could be expected
[Fig. 15(b)]. Over the portion of space covered by the principal
vortices, the contribution of the buoyancy was also found to
be positive [Fig. 15(d)], but strongly negative values were
observed very close to the wall in the boundary layer, which
is where the temperature gradient is significant. The situation
was reversed for friction effects: strongly positive values were
found very close to the walls. This reflects the fact that trans-
verse vorticity is indeed generated at the walls through friction,
while buoyancy works against the velocity gradient in the wall
layer.

Figure 16(a) represents the relative contributions of vortex
stretching and friction to the oscillations of the vertical
component of the enstrophy. These oscillations are limited,
since the positive effect of vortex stretching is almost exactly
compensated by frictional effects (buoyancy does not appear
in the equations). As can be seen in Figs. 16(b) and 16(c), both
friction and vortex-stretching contributions are maximal at the
location of the counter-rotating vortices.

E. 3D subsequent bifurcations

1. Period-doubling bifurcations

Case Az = 10. When 12 100 � Ra � 12 200, the tempo-
ral evolution of the 3D pattern becomes more complex.
At Ra = 12 200, the time series of the temperature at a
point located in the boundary layer presents subharmonic
oscillations for t ∈ [800,2200] before becoming quite irreg-
ular, as shown in Fig. 17(a). The Fourier spectrum of the
temperature [Fig. 17(b)] shows that the largest amplitude
is located at the frequency f1 = 0.035, which is close to
the frequency identified in the previous periodic regime at
a slightly lower Rayleigh number (see Sec. IV D1), while
the second-largest amplitude corresponds to the frequency
f1/2 = 0.0175 = f1/2.
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FIG. 14. (Color online) (a) Temporal evolution of the different terms in Eq. (25) for the x component: time derivative of the transverse

vorticity
∫

V

∂�2
x

∂t
dV , vortex-stretching contribution

∫
V

2�x( �� · �∇w)dV , and friction effects
∫

V
Pr√
Ra

�x∇2�xdV ; [(b)–(d)] spatial distribution

of (b) the vortex-stretching contribution 2�x( �� · �∇u), (c) the friction contribution Pr√
Ra

�x∇2�x , and (d) the buoyancy contribution 2Pr �x
∂θ

∂y

on the vertical plane y = 0.2903 at t = 2000, Ra = 11 500.

The topology of the flow consists of four 3D structures
which are similar to those found in the monoperiodic regime
at Ra = 11 500 (Sec. IV D1). The intensities of the transverse
rolls and that of the braids oscillate out of phase, with a
temporal modulation equal to twice the basic period.

Case Az = 2.5. Period doubling persists when the height
was set to Az = 2.5 instead of Az = 10. As Ra increases,

we observe for Az = 2.5 a succession of period-doubling
bifurcations as illustrated by phase portraits in Fig. 18. At Ra =
12 000, the singly periodic regime is characterized by one cycle
in the phase portrait [Fig. 18(a)]. For Ra ∈ [12 100,12 200], a
period-2 cycle is observed in Fig. 18(b). At Ra = 12 300, we
observe a 4-cycle in the phase portraits and then at Ra = 12 310
an 8-cycle and at Ra = 12 320 a 16-cycle [Figs. 18(c)–18(e)].
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FIG. 15. (Color online) (a) Temporal evolution of the different terms in equation (25) for the y component: time derivative of the transverse

vorticity
∫

V

∂�2
y

∂t
dV , vortex-stretching contribution

∫
V

2�y( �� · �∇w)dV , and friction effects
∫

V
Pr√
Ra

�y∇2�y dV ; [(b)–(d)] spatial distribution

of (b) the vortex-stretching contribution 2�y( �� · �∇v), (c) the friction effects Pr√
Ra

�y∇2�y , and (d) the buoyancy contribution −2Pr �y
∂θ

∂x
on

the vertical plane y = 0.5 at t = 2000, Ra = 11 500.
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FIG. 16. (Color online) (a) Temporal evolution of the different terms in Eq. (25) for the z component: time derivative of the vertical vorticity∫
V

∂�2
z

∂t
dV , vortex-stretching contribution

∫
V

2�z( �� · �∇w)dV , and friction effects
∫

V
Pr√
Ra

�z∇2�z dV ; [(b) and (c)] spatial distributions of

(b) the vortex-stretching contribution 2�z( �� · �∇w) and (c) the friction contribution Pr√
Ra

�z∇2�z at the vertical plane y = 0.2903 (same as in
Fig. 14) at t = 2000, Ra = 11 500.

At Ra = 12 400, there is no longer evidence of periodicity as
the trajectory fills out the space in a seemingly chaotic fashion
[Fig. 18(f)]. Similar sequences of period-doubling bifurcations
have been observed in the experimental transition to chaos
in Rayleigh-Bénard convection. Maurer and Libchaber [43]
observed the appearance of a first frequency f ′

1, followed by a
second frequency f ′

2. For higher values of the Rayleigh num-
ber, phase locking between the frequencies was observed. The
transition to turbulence was then triggered by the generation of
the frequencies f ′

2/2, f ′
2/4, and so forth. A similar scenario was

found in the experiments of Giglio, Musazzi, and Perini [44],
where a reproducible sequence of period-doubling bifurcations
up to f ′

1/16 was observed.

As the Ra is further increased beyond Ra = 12 550,
intermittency is observed in Fig. 19(a). The 3D structures keep
pulsating chaotically, but, at random times, the primary rolls
disappear entirely and reform at a different location, which is
separated from the original location by half a wavelength, as
shown in Figs. 19(b) and 19(c). This behavior suggests the
existence of a heteroclinic connection between two chaotic
attractors, which are diametrically located on the O(2) × O(2)
invariant torus of chaotic solutions. The jump from one
pulsating structure to another appears to take place only
in the vertical direction (the system is severely constrained
in the spanwise direction). Structurally stable heteroclinic
connections between fixed points or periodic solutions have
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FIG. 17. (Color online) (a) Time series of temperature perturbation at the point (0.0381, 0.097, 5) in the boundary layer near the hot wall,
Ra = 12 200, Az = 10. (b) Temporal Fourier spectrum of the subharmonic portion in the time interval t ∈ [1200,2000].
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FIG. 18. (Color online) Phase portraits at different Ra, Az = 2.5. Abscissa: Ta temperature mesured at the point (0.038, 0.097, 0.983);
ordinate: Tb temperature measured at the point (0.038, 0.903, 0.983).

been shown to exist in systems with O(2) symmetry [45,46].
We are not aware of corresponding theoretical results for
chaotic attractors.

2. Development of a spatial instability
in the large domain Az = 10

For Ra � 12 200, we observed irregular oscillations in
Fig. 17 for large times t > 2200. This corresponds to a
drastic change in the spatial organization of the flow, as
shown in Fig. 20. One of the structures is weakened and then
disappears so at large times t > 2200, the pattern observed
typically consists of three structures, as can be seen in
Figs. 20(b), 20(c), and 20(f). However, four structures can
still be found intermittently [Figs. 20(a), 20(d), and 20(e)].

The spatial organization of the flow can be described by the
1D vertical Fourier transform T̂ (0,k) of the x-averaged tem-
perature on the vertical plane y = 0.5. The temporal evolution
of the spectral coefficients |T̂ (0,k)|2 for the modes k = 3,4 is
shown in Figs. 21(a) and 21(b). The mode k = 4 dominates
when 700 < t < 2000, and then for t ∈ [4000,6000] the mode
k = 3 dominates for most of the time, except around the
times t ∼ 5040 and t ∼ 5950, where the mode k = 4 becomes
dominant again. Due to the long integration times, we were
not able to determine whether the spatial intermittency was a
transient or a persistent feature of the flow.

A simulation was performed at Ra = 12 000 from an initial
condition consisting of a instantaneous field at Ra = 12 200
characterized by a three-structure pattern. The flow settled
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FIG. 19. (Color online) (a) Time series of the temperature at the point (0.0381, 0.097, 0.983) in the boundary layer near the hot wall at
Ra = 12 600. [(b) and (c)] Streamlines on the plane Y = 0 at two arrow-pointed instants in (a): (b) t = 8505 and (c) t = 8540.

down to a periodic pulsation of three structures. The presence
of hysteresis confirms that the spatial wave-number modula-
tion instability is subcritical and supports the conjecture that
the wave-number competition between mode 4 and mode 3 is
similar to a subcritical Eckhaus instability.

Beyond Ra = 13 000, for Az = 10, it is no longer possible
to identify a discrete set of frequencies, and the flow rapidly
becomes temporally chaotic. When Ra is increased to Ra =
15 000, the whole domain is still dominated by three structures,
but patterns of two or four structures can also be observed, as
evidenced by the evolution of the temperature spectral density
|T̂ (0,k)|2 for different wave numbers.
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FIG. 20. Flow streamlines on the plane y = 0 at Ra = 12 200 for
different times: (a) t = 2905; (b) t = 2920; (c) t = 5900; (d) t = 5910;
(e) t = 5960; (f) t = 5970.

F. Influence of flow structures on global heat transfer

The global heat transfer is evaluated by the Nusselt number,
which is defined as a ratio between the convective and
diffusive heat transfer. In our simulations, the Nusselt number
is calculated as Nu = ∫∫ − ∂ ˜〈θ〉

∂x
dydz|x=0,1, since the velocity

of the flow at the walls is zero, where 〈·〉 denotes the time
averaging of a variable. Its dependence with respect to the
Rayleigh number Ra is plotted in Fig. 22.

In the 2D steady regime, we find that Nu ∼ 0.0867Ra0.25,
which is consistent with the laminar regime. This estimate
actually holds slightly beyond the second supercritical pitch-
fork bifurcation, where the 2D rolls become more intense and
distorted in the transversal direction (this stage is labeled as
“quasi-2D structures” in Fig. 22). However, at Ra = 10 500,
the flow becomes three-dimensional through the creation of
secondary vortices, and the Nusselt number experiences a
small decrease. It then remains approximately constant over
the 3D steady regime from Ra = 10 500 and Ra = 10 600.
At the onset of the oscillatory regimes, the Nusselt number
begins to increase and continues doing so over the sequence of
period-doubling bifurcations. After a sharp decrease observed
at the onset of the Eckhaus-like instability, the Nusselt number
starts increasing again. The maximum heat transfer increases
over the range of Rayleigh numbers Ra < 15 000 is about 20%,
which agrees with Wright et al.’s [21] results.

We note that the spatial characteristics of Wright et al.’s
“secondary cells” match those of what we call primary
rolls. Furthermore, their general description of the route to
turbulence seems to agree loosely with ours, as their flow
becomes three-dimensional and then chaotic at a Rayleigh
number of 13 600, which is close to our observations. However,
two discrepancies are observed: (i) unlike our stationary rolls,
their cells appear to drift in the vertical direction from the onset
of the first instability, which could be due to (horizontal) end
effects of the cavity, and (ii) as the Rayleigh number increases,
the motion of the cells is intensified, and merging between the
cells occurred, whereas no vortex pairing was observed in our
simulation. This difference could be the consequence of the
relatively small dimensions of our numerical domain.
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FIG. 21. (Color online) Temporal evolution of the spectral coefficients |T̂ (0,k)|2 on the midplane y = 0.5 for selected modes k.
[(a) and (b)] Ra = 12 300, modes k = 3,4: (a) t ∈ [0,3000] and (b) t ∈ [4000,6000].

V. CONCLUSION

The focus of the present study is the sequence of instabilities
leading to chaos for the air flow between two infinite
differentially heated vertical plates. Our goal is to examine the
influence of three-dimensional effects in transition. A mapping
of the route to chaos has been established in two and in
three dimensions. In both cases the base flow bifurcates to 2D
steady rolls through a supercritical circle pitchfork bifurcation
at Rac = 5708. The nature of this first instability is found
to be absolute. A weakly nonlinear analysis results in the
derivation of a Ginzburg-Landau equation which is able to
predict correctly the amplitude of the 2D rolls for Rayleigh
numbers within a limited range (10%) of Rac.

In 2D simulations, a second bifurcation occurs at
Ra = 13 500. The flow becomes oscillatory, and the steady
four-roll pattern turns into a periodic three-roll one with a
characteristic frequency f = 0.032. When Ra is increased,
the temporal evolution of the three unsteady rolls becomes
quasiperiodic, and then apparently chaotic, while the char-
acteristic frequency f remains dominant. As Ra is further
increased to Ra = 18 000, the flow becomes steady again, and
the three oscillatory rolls give way to two steady rolls. This
suggests that the occurrence of pure temporal chaos is limited

0.6 0.8 1 1.2 1.4 1.6
x 10

4

1

1.05

1.1

1.15

1.2

1.25

Ra

N
u

steady 2D rolls
steady steady 2D structures
steady 3D structures
mono−periodic 3D structures
spatially modulated 3D structures

FIG. 22. (Color online) The Nusselt number Nu (averaged over
vertical planes and time) as a function of Ra for Az = 10.

by the development of a vertical instability, which leads to a
long-wavelength modulation of the spatial pattern. The two
steady rolls remain stable over a range of Rayleigh numbers,
as no chaotic behavior is observed up to Ra = 21 000.

The situation differs in 3D simulation (Table II). The
second bifurcation is observed at a Rayleigh number of
Rac2 ∼ 9980. The 2D rolls become unstable through another
supercritical pitchfork bifurcation to a steady 3D pattern,
characterized by secondary counter-rotating vortices con-
necting the principal convection rolls. When the Rayleigh
number is further increased to Rac3 ∼ 11 270, the steady
3D pattern becomes oscillatory through a Hopf bifurcation,
as the intensities of the transverse rolls and the counter-
rotating vortices oscillate in phase opposition. A sequence
of period-doubling bifurcations is then observed at higher
Rayleigh numbers. If the periodic height of the plates is small
enough (Az = 2.5), thereby preventing any modulation of the
basic vertical wavelength, the period-doubling bifurcations
lead to temporal chaos at Ra = 12 400. The location of the
chaotically pulsating structures is observed to be intermittent
beyond Ra > 12 550. For larger domains such as Az = 10, the
sequence of period-doubling bifurcations is also observed, but
only as a transient feature. The multiply periodic flow gives
way to complex spatiotemporal dynamics when Ra � 12 100
and a competition between different wavelengths is rapidly
apparent in the flow pattern. The global behavior of heat
transfer is established up to Ra = 15 000, where Nu generally
increases with Ra, with discontinuities as the flow goes through
bifurcations.

Comparison of 2D and 3D results confirms that transverse
effects are essential in the development of instabilities and
the onset of chaos. This result is of interest, and as in many
situations involving thermal convection, the first step towards
making a problem tractable is to reduce it to a two-dimensional
geometry. We emphasize that, due to numerical constraints, the
dimensions of the plates were relatively small in the present
study. The competition between vertical and transverse pattern
modulations is expected to be altered as the dimensions of
the plate increase. Comparison of the present study with
experimental results highlights the need for larger simulation
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TABLE II. Summary of bifurcations and associated flow structures and symmetries for 3D simulations, Az = 10, T = 1/f1.

Nature of Flow structures Spatial symmetry
Ra bifurcation Number of structures Temporal symmetry

Ra < Rac = 5708 1D base flow O(2) × O(2)
Steady

Rac < Ra < 9980 Supercritical 2D corotating rolls O(2) × D4

Circle pitchfork n = 4 Steady
9980 < Ra < 11 270 Supercritical 3D structures D1 × D4

Circle pitchfork n = 4 Steady
11 270 < Ra � 12 000 Supercritical 3D structures D1 × D4

Hopf n = 4 T periodic
Ra � 12 100 Period doubling 3D structures D1 × D4

n = 4 2nT periodic
subcritical Eckhaus-like 3D structures No

instability n = 3 Symmetry

domains, as well as for a better experimental characterization
of transverse effects.
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APPENDIX A: NUMERICAL METHODS

A multidomain spectral code [36] is used for our 3D
simulation. The domain decomposition is based on the
definition of a Schur complement and implemented with
MPI library. Incompressibility of the flow is enforced by
the projection-correction method. The spatial discretization
is performed with the spectral collocation method, while the
temporal discretization is carried out through a second-order
implicit-explicit mixed scheme. The overall procedure consists
of solving several general Helmholtz equations.

1. Discretization

The spectral collocation method is used for spatial dis-
cretization. In the horizontal direction x, Chebyshev modes
are used. In the transverse direction y, Fourier modes are
used, as the periodic boundary condition is imposed. The
domain is divided into four subdomains along the vertical
direction z. Chebyshev modes are used for each subdomain
in this direction. A periodic communicator is defined through
MPI to enforce the periodic vertical boundary condition over
the full domain. The solution of Navier-Stokes equations in
the interior of each subdomain is executed independently
on a single processor. The continuity of variables and their
first derivatives across the interface between the subdo-
mains is ensured by defining a Schur complement method,
where the Schur matrix is built using an influence matrix
technique [36].

A second-order mixed explicit-implicit scheme is adopted
for the temporal integration. The diffusive term is treated
implicitly, while the convective term is calculated explicitly.
The discretized Navier-Stokes equations can be recast into four

general Helmholtz equations for u, v, w, θ , respectively,
Pr√
Ra

∇2un+1 − 3

2�t
un+1

= ∂pn+1

∂x
− 4un − un−1

2�t
+ 2(V · �∇u)n − (V · �∇u)n−1,

(A1)
Pr√
Ra

∇2vn+1 − 3

2�t
vn+1

= ∂pn+1

∂y
− 4vn − vn−1

2�t
+ 2(V · �∇v)n − (V · �∇v)n−1,

(A2)

Pr√
Ra

∇2wn+1 − 3

2�t
wn+1

= ∂pn+1

∂z
− 4wn − wn−1

2�t
+ 2(V · �∇w)n − (V · �∇w)n−1,

(A3)

1√
Ra

∇2θn+1 − 3

2�t
θn+1

= −4θn − θn−1

2�t
+ 2(V · �∇θ )n − (V · �∇θ )n−1. (A4)

A fifth general Helmholtz equation for a potential needs
to be solved in the procedure of the projection-correction
method to ensure the incompressibility of the flow. All
five general Helmholtz problems are solved by use of
the matrix-diagonalization method, which is presented as
follows.

2. Solution of the general Helmholtz problem

The general 3D Helmholtz problem reads as

(∇2 − λ)f = S, (A5)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ; λ = 3
√

Ra
2Pr�t

for u,v,w; λ = 3
√

Ra
2�t

for θ ; and S represents the source term. The idea solve
this equation in the discrete form is to invert the operator
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(∇2 − λ). In our code, the matrix-diagonalization method
is employed [36,47,48]. In fact, the second derivative, for
example ∂2

∂x2 , in the discrete form constitutes a regular matrix,
which is diagonalizable and invertible, so we have D2

x =
P�xP

−1, D2
y = Q�yQ

−1, D2
z = R�zR

−1, where �x , �y ,
�z are diagonal matrix containing the eigenvalues, and the
matrices P , Q, R are formed by the eigenvectors of D2

x ,
D2

y , D2
z , respectively. In the discrete forms, the 3D Helmholtz

equation takes the following form:(
Iz ⊗ Iy ⊗ D2

x + Iz ⊗ D2
y ⊗ Ix + D2

z ⊗ Iy ⊗ Ix

− Iz ⊗ Iy ⊗ Ixλ
)
F = S, (A6)

where ⊗ is the Kronecker product operator. Multi-
plying Eq. (A6) by (P −1 ⊗ Q−1 ⊗ R−1), we can pass

this equation into the eigenspace in the following way.
For the first term on the left side of Eq. (A6),
we have (R−1 ⊗ Q−1 ⊗ P −1)(Iz ⊗ Iy ⊗ D2

x) = (Iz ⊗ Iy ⊗
�x)(R−1 ⊗ Q−1 ⊗ P −1) by using twice the property (A ⊗
B)(C ⊗ D) = AC ⊗ BD. With similar treatment for the other
terms, we can obtain

(Iz ⊗ Iy ⊗ �x + Iz ⊗ �y ⊗ Ix + �z ⊗ Iy ⊗ Ix

− Iz ⊗ Iy ⊗ Ixλ)F̃ = S̃, (A7)

where F̃ = (R−1 ⊗ Q−1 ⊗ P −1)F and S̃ = (R−1 ⊗ Q−1 ⊗
P −1)S. Therefore, to solve the 3D Helmholtz problem, we first
multiply the source term S by (R−1 ⊗ Q−1 ⊗ P −1) to obtain
S̃. Then F̃ can be easily obtained by inverting the operator in
front of F̃ in Eq. (A7). Finally, multiplying F̃ by P ⊗ Q ⊗ R,
we get the solution F .

APPENDIX B: OPERATORS IN MULTISCALE ANALYSIS SECTION

The operators defined in Eqs. (15) to (17) can be expressed as

M0 =
[∇2

0 0

0 1

]
, (B1)

M1 =
[

2 ∂
∂z0

∂
∂z1

0

0 0

]
, (B2)

M2 =
[

∂2

∂z2
1

0

0 0

]
, (B3)

L0 =
⎡
⎣ Pr√

Rac
∇4

0 − W ∂
∂z0

∇2
0 + ∂2W

∂x2
∂

∂z0
Pr ∂

∂x

∂�
∂x

∂
∂z0

1√
Rac

∇2
0 − W ∂

∂z0

⎤
⎦ , (B4)

L1 =
[

4 Pr√
Rac

∂
∂z0

∂
∂z1

∇2
0 − W ∂

∂z1
∇2

0 − 2W ∂
∂z1

∂2

∂z2
0
+ ∂2W

∂x2
∂

∂z1
0

∂�
∂x

∂
∂z1

2√
Rac

∂
∂z0

∂
∂z1

− W ∂
∂z1

]
, (B5)

L2 =
⎡
⎣ 2 Pr√

Rac

∂2

∂z2
1

(∇2
0 + 2 ∂2

∂z2
0

) − 3W ∂
∂z0

∂2

∂z2
1

0

0 1√
Rac

∂2

∂z2
1

⎤
⎦

+
⎡
⎣− 1

2
Pr√
Ra3

c

∇4
0 − W

2Rac

∂
∂z0

∇2
0 + 1

2Rac

∂2W
∂x2

∂
∂z0

0

0 − 1
2

1√
Ra3

c

∇2
0 − W

2Rac

∂
∂z0

⎤
⎦ , (B6)

b0,ψ (φα,φβ) =
(

∂ψα

∂z0

∂

∂x
− ∂ψα

∂x

∂

∂z0

)
∇2

0ψβ, (B7)

b0,θ (φα,φβ) =
(

∂ψα

∂z0

∂

∂x
− ∂ψα

∂x

∂

∂z0

)
θβ, (B8)

b1,ψ (φα,φβ) =
(

∂ψα

∂z1

∂

∂x
− ∂ψα

∂x

∂

∂z1

)
∇2

0ψβ + 2

(
∂ψα

∂z0

∂

∂x
− ∂ψα

∂x

∂

∂z0

)
∂

∂z0

∂

∂z1
ψβ, (B9)

b1,θ (φα,φβ) =
(

∂ψα

∂z1

∂

∂x
− ∂ψα

∂x

∂

∂z1

)
θβ, (B10)

where ∇0 = ∂2

∂x2 + ∂2

∂z2
0
, Rac is the critical Rayleigh number found in the linear stability analysis, W is the vertical velocity of the

base flow, and � is the temperature of the base flow.
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[15] D. R. Chenoweth and S. Paolucci, Phys. Fluids 28, 2375 (1985).
[16] D. R. Chenoweth and S. Paolucci, J. Fluid Mech. 169, 173

(1986).
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[34] A. Sergent and P. L. Quéré, J. Phys. Conf. Ser. 318, 082010

(2011).
[35] B. Podvin and A. Sergent, Phys. Fluids 23, 105106 (2012).
[36] S. Xin, J. Chergui, and P. L. Quéré, in Parallel Computa-
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