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A new time integrator for large, stiff systems of linear and nonlinear coupled 
differential equations is described. For linear systems, the method consists of 
forming a small (5-15-term) Krylov space using the Jacobian of the system and 
carrying out exact exponential propagation within this space. Nonlinear correc- 
tions are incorporated via a convolution integral formalism; the integral is 
evaluated via approximate Krylov methods as well. Gains in efficiency ranging 
from factors of 2 to 30 are demonstrated for several test problems as compared 
to a forward Euler scheme and to the integration package LSODE. 
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1. I N T R O D U C T I O N  

The construction of an efficient algorithm for the solution of large, coupled 
sets of stiff ordinary differential equations has been a central concern of 
numerical analysis for many years (Byrne and Hindmarsh, 1987). At 
present, the most generally applicable and widely used methods are based 
on backward differentiation formulas (Gear, 1971; Hindmarsh, 1983). Stiff 
equation packages of this type also employ a complex control structure in 
which a variable time step and order are chosen automatically to satisfy 
user-specified error tolerances. 
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In this paper, we propose a new algorithm for the solution of general 
stiff equation systems which potentially appears to offer significant 
improvement for a wide class of problems. We first describe the algorithm 
in some detail and indicate where gains in efficiency can be expected to 
arise. For linear systems, the advantages are easily understood and 
demonstrated. Applications to several types of standard nonlinear systems 
are then presented. For some problems, a reduction in CPU time of more 
than a factor of 10 is obtained for several levels of solution accuracy. 

The algorithm is based upon an expansion of the solution in a Krylov 
subspace of the linearized operator, created by repeated action of the 
Jacobian on a trial vector. For a symmetric matrix, this corresponds to a 
Lanczos procedure. For nonsymmetric matrices, one simply forms the 
operator in an orthogonalized Krylov space, as in the work of Arnoldi 
(1951). As a relatively small (5-15) number of iterations are used per time 
step, neither orthogonalization nor diagonalization of the resulting reduced 
matrix constitute a prohibitively expensive portion of the calculation, so 
long as the number of equations is sufficiently large. Such an approach 
has been Utilized by a number of workers to find eigenvectors of large 
linear systems (Saad, 1980; Goldhirsch, Orszag, and Maulik, 1987; 
Christodoulou and Scriven, 1988). 

Krylov methods have also found application in the solution of dif- 
ferential equations. Gear and Saad (1983), and Brown and Hindmarsh 
(1986, 1989) have used a Krylov method to solve the large linear systems 
resulting from the backwards differentiation formulas. Park and Light 
(1986) and Leforestier et al. (1989) have achieved high efficiencies by using 
the Krylov algorithm to exponentially propagate the Schr6dinger equation 
via approximate diagonalization. However, the use of exponential propaga- 
tion to solve systems of nonlinear differential equations is, as far as we 
know, novel. 

Propagation of a linear system is achieved by straightforward 
exponentiation of the Krylov matrix, followed by transformation back to 
the original vector space. For nonlinear systems, we correct the linearized 
results using a convolution integral. This requires solution of a nonlinear 
equation for the correction term, the most demanding aspect of which is 
evaluation of an integral over time (the independent variable) of the 
exponentiated linearized operator acting on the nonlinear terms. The 
integral is evaluated by expanding the nonlinear correction in polynomials 
in time, forming a Krylov subspace (of very low dimension) for the vector 
coefficient of each polynomial, and then analytically integrating the poly- 
nomial over the resulting exponentials. Exponentiation allows the use of 
very long time steps in many cases, for both the linear and nonlinear parts 
of the problem. 
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The availability of an analytic expression in terms of exponentials and 
powers of t for the solution also facilitates error analysis, as derivatives can 
be explicitly computed analytically. This leads to a method of selecting an 
appropriate time step. Results at intermediate times, as well as the 
approximate eigenvectors and eigenvalues are also available from the 
Krylov space expansions at a negligible cost. 

The present article does not constitute a demonstration that the algo- 
rithm will run reliably and efficiently on a diverse set of problems; to show 
this, many more examples will be required. Rather, it is intended to 
illustrate the possibilities inherent in the approach. This has been done by 
achieving large reductions in computational effort for a few systems, sub- 
stituting empirical optimization for an as-yet-incomplete internal control 
structure. 

The article is organized as follows. In Section 2, the linear version of 
the algorithm is described. Section 3 outlines the nonlinear correction 
scheme. Section4 discusses practical implementation, including error 
analysis, choice of time step, and selection of various other parameters of 
the algorithm. Sections 5 and 6 present results for the Krogh test problem, 
and for a reaction-diffusion system, with computations carried out on a 
Cray X-MP supercomputer. Section 7, the conclusion, suggests possible 
improvements of the algorithm that can be expected for the future. 

2. L I N E A R  K R Y L O V  A L G O R I T H M  

We consider a linear system of the form 

dx 
dt A x  (2.1a) 

X(to) = Xo (2.1b) 

where x is an N-dimensional vector and A is a real N x N matrix. The exact 
solution to this system is 

x(  t o + t) = eAtxo (2.2) 

The basic Krylov algorithm for propagation of x from to to a later time 
to + t is as follows: 

(1) We define OI=Xo/[IXoH. We form 0 2 by computing A01, 
orthogonalizing to 01, and normalizing. Simililarly, O k is formed by com- 
puting A0 k 1, orthogonalizing to all previous 0 vectors, and normalizing. 
K iterations thus yields K Krylov vectors, which form a basis for the 
propagation. K will typically be on the order of 3-15. The K-dimensional 
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linear space spanned by the O k is called the Krylov subspace. We can 
define an N x  K matrix T by Tik-= 0~. T transforms from the Krylov sub- 
space to the original space, i.e., multiplication by T of a K-vector evaluates 
the linear combination of Krylov vectors whose coefficients are given by 
that K-vector; conversely T* can be viewed as a projection operator from 
R N into the Krylov subspace. 

(2) In the course of orthonormalizing the vectors Ok, the Krylov 
matrix .d defined by Akl-- (Ok[ A I0l), i.e., 

.7t - T ' A T  (2.3) 

is assembled, as described by Saad (1980). The K x K  upper Hessenberg 
matrix .d is diagonalized using the QR algorithm, which is inexpensive for 
small K. That is, 

= U A U  -1 (2.4) 

where U is the matrix of eigenveetors, and A the diagonal matrix of eigen- 
values of .d. 

(3) The formula for X(to + t) is then 

x ( t  o + t) = ~ J U e A t U - I ~ P t N o  

The products T U  and U - 1 T  * transform between R N and what can be 
called the diagonalized Krylov representation, in which the action of e At is 
given by the K by K diagonal matrix e At. Note that by construction, 
T~Xo = T~O 1 IXo[ =e l  IXol (where el is the first unit vector); however, we 
retain the T t notation for clarity. 

The difference between exponential propagation and the usual multi- 
step methods can be summarized for the linear equation (2.1) as follows. 
Multistep methods approximate the exponential of A occurring in solution 
(2.2). Explicit methods use a polynomial approximation, whereas implicit 
methods (including the backwards differentiation formulas) employ 
rational approximations, which are more stable because they are bounded 
in large regions of the left half complex plane (Gear, 1971), but which 
require matrix inversion. Within the rational or polynomial approxima- 
tions, however, the exact matrix A is used. In contrast, exponential 
propagation performs an exac t  exponent ial ,  but of the approx ima te  m a t r i x  
.4 of (2.3). Exponentiation, while desirable, is far more expensive than 
inversion of a matrix of the same size. We have targeted our integration 
method to large systems because it is only then that the cost of exponentia- 
tion of a small approximate matrix can compete with that of inversion of 
a matrix of much larger size. 
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We now state several elementary properties of the Krylov propagation 
algorithm. First, if Xo is composed of K or fewer eigenvectors of A, 
propagation is exact for all time. Secondly, it can be shown that accuracy 
to order t x is achieved if one carries out K iterations. Finally, the method 
is clearly globally stable, as large negative eigenvalues are simply exponen- 
tiated and their components thus rapidly destroyed. This last property is 
what suggests the method as a useful stiff equation solver: one does not 
need to propagate these large negative eigenvectors accurately in order 
to achieve stability. The time step can therefore be chosen in accord with 
how well the eigenvectors on the (long) time scale of primary interest are 
advanced. 

The convergence with iteration number of the eigenvalues and eigen- 
vectors of a matrix for Lanczos-type algorithms is quite complicated, even 
in the case where the matrix is symmetric. We refer the reader to Cullum 
and Willoughby (1985) and to Saad (1980) for a detailed discussion. Here, 
in any case, the issues are rather different than in the usual employment of 
Lanczos, in that accurate time evolution for a restricted interval does not 
require accurate convergence of the eigenvectors. 

The above considerations render a formal analytical error analysis of 
the method rather difficult. As the methodology is developed further, such 
an analysis may be worth pursuing despite the difficulties. The objectives of 
the present paper, however, do not require such work; our intention is to 
see whether or not the intuitive advantages of an algorithm based upon 
exponentiation in a restricted subspace can be translated into actual 
improvements in CPU time for an interesting and computationally 
demanding problem. 

3. NONLINEAR ALGORITHM 

3.1. Formal Equations 

We now consider a general set of coupled autonomous nonlinear 
ODEs of the form 

d x  
~- = f ( x )  (3.1a) 

X ( t o ) =  Xo (3.1b) 

Our first step is to linearize the evolution operator about the current state 
x o 

d 
dt (x - Xo) =/(Xo) + D f ( x o ) ( X  - Xo) + E f ( x )  - f ( X o )  - D f ( x o ) ( X  - Xo)] 
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We then obtain the following equation for y ( t ) -  X(to + t ) -  x0: 

d 
dt y = b + Ay  + R ( y )  (3.2a) 

y(0) = 0 (3.2b) 

where b = f (xo) ,  A = Df(xo) ,  and the remainder 

R ( y )  - f ( x o  + y)  - f (Xo)  - Df (xo)  y (3.3) 

is O(y2). The right-hand side of Eq. (3.2a) can be divided into two parts: 
a linear part, which can be solved with the algorithm of Section 2, and the 
remainder R ( y ( t ) )  which constitutes a time-dependent forcing term to be 
determined self-consistently. Our initial guess consists of setting the forcing 
term equal to zero, leading to the linear equation 

d 
_ y(O) = b + Ay  (~ (3.4a) 
dt 

y(~ = 0 (3.4b) 

for the first solution y(O) [-note the presence of the constant term b, modify- 
ing the solution from that of Eq. (2.1a)]. This leads to new approximation 
of R ( y )  as R(y(~ The next approximation y(l) is the solution to 

d y(1) = b + Ay  (1) + R ( y  (~ (3.5a) 
dt 

y(1)(O)=O (3.5b) 

Techniques for evaluating R ( y )  and for solving (3.5a) and (3.5b) are 
described below. Given that this can be done, a sequence of solutions y(m) 
can be generated until the desired degree of accuracy is achieved. 

3.2. Solution of Linear Equation with Constant Term 

The exact solution of Eqs. (3.4a) and (3.4b) is 

y(~ = e At _ I b 

A 
(3.6) 

We approximate this within the Krylov space via the expression 

e a t _  I 
y(~ = gtU -s  U-I~[J?b (3.7) 
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Here, the Krylov space is formed by acting successively with A on b, i.e., 
O 1 = b~ Ilbll, and 0 k is the result of orthonormalizing A0 k- 1 to all previous 
0's. As in (2.3-4), ~U*Agt= UAU -1. The notation (eAt--I)/A serves as 
shorthand for diag [(e xk'-  1)/2k]. For small values of 2~t, this expression 
must be evaluated via a truncated Taylor series to avoid loss of accuracy. 

Like many other iterative methods, the Krylov algorithm is especially 
advantageous when acting with A (the Jacobian of f )  is inexpensive 
relative to other operations, such as inversion. At present, the user must 
write a routine to do this, although it is possible to use a finite difference 
approximation as do, for example, Brown and Hindmarsh (1986). 

3.3. Evaluation of the Convolution Integral 

The closed-form solution (3.6) for the linear problem is no longer 
available in solving equation (3.2). However, it now appears as part of an 
integral equation equivalent to (3.2): 

eA~_ I b t 
y(t) = A + ;o eA(t-~)R(y(T)) dr (3.8) 

Our iteration procedure for solving (3.2) can be written formally as follows: 

e~ ' -  I b fo y(")(t)-  ~ + e A(~-~)R(y (m-~)(z')) d~ (3.9) 

using (3.6) as an initial guess. 
The new problem here is the evaluation of the integral on the 

right-hand side of Eq. (3.9). Our strategy is to approximate the nonlinear 
functional R(y TM 1)(z)) by an expansion of the form 

P 

j - - 1  

where the ~bj are smooth analytic functions of time and the @ are vector 
coefficients. The formulation is quite general and any set of functions can 
be employed. In our present implementation, we utilize polynomials. Equa- 
tions (3.2b) and (3.3) guarantee that both R and its time derivative vanish 
at t = 0. Thus R(y(z)) contains no constant or linear term in time and the 
polynomials used in the fitting procedure begin at second order, i.e., 
~+(~) = ~++~. 

The coefficients cj are obtained via collocation. We evaluate R on a 
grid of points rp, p = 1 ..... P, and solve the collocation equations 

P 

R(y(~))= y~ cj~:(~) (3.10) 
j =  1 
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for each spatial variable. The grid is constructed as follows. Given the next 
time tl to which we expect to advance the integration during this step, we 
choose a (possibly longer) time interval At  such that t o < tl <~ to + A t .  The 
procedure we use for choosing tl and At will be described in more detail 
below. The collocation points must lie within this interval, i.e., 
0 < ~1 < "'" < rp = At. The best placement is determined by the basis func- 
tions and properties of the integrand. The Chebyshev points 

"L'p = T - -  COS 

are theoretically optimal for polynomial interpolation. Indeed, we have 
found empirically (in a small number of cases) that this grid, in which 
points are more densely located near both end points of the interval, yields 
substantially better results than uniformly spaced points. 

We next act with e x p [ A ( t -  r)]  on each cj by forming a small Krylov 
space. That is, for each N-vector cj, we form ~&and the Krylov matrix 
Aj=  ~]Ai~Pj., and its diagonal representation A j =  U j A j U f  1. Approxi- 
mating the action of A as in (3.7), we arrive at 

e~',~ ' % ~  %UjeA'"-~ui l%~cj 

which leads to the following expression for the integral: 

O C A(t-  ~l R (  y('c ) ) dr 

= ~ g p i U j ( f s  (3.12) 
J 

For polynomial ~b, each time integral 

s 1i= ea ( ' - ' ) r  i & (3.13) 

can be calculated analytically via 

1 [e~, - 1] (3.14) Io = X 

and the recursion relation 
1 

I j =  ~ [ j l i _  1 - t i ] (3.15) 

For small )~t, the integral must be evaluated instead by Taylor expansion 
of the exponential in (3.13) to prevent loss of accuracy, as was done in 
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(3.7) for the linear term. Another numerical pitfall arises in connection with 
the collocation (3.10): the matrix whose elements are (rp) j+l  can be ill-con- 
ditioned. A more stable procedure is to calculate coefficients ?j satisfying 

R(y('Cp)) --]=, ~j \A t ]  

and then to rescale the coefficients. 
There exists the option of using fewer functions ~bj than gridpoints rp, 

i.e., taking in the sum (3.12) an upper limit aT, with J <  P. The coefficients 
@ may be determined by a least-squares fit. Alternatively, the coefficients 
may still be determined via (3.15) or (3.16), but then not used in the sum. 
This allows the neglected, high-order functions to be used for dealiasing 
purposes (including them can make the low-order coefficients more 
accurate) without the expense of forming the corresponding Krylov spaces 
and integrating; in this way we also retain the convenience of a single grid 
and collocation procedure. 

Equation (3.8) is an integral equation for the exact correction to the 
linear approximation obtained from Eq. (3.7). The method of evaluation of 
the integral described above introduces limitations to the accuracy of the 
solution, dependent upon the size of each Krylov space and the number 
and type of time-dependent functions utilized in the expansion of R. In 
practice, a small number of iterations is often sufficient to yield good 
results. 

4. IMPLEMENTATION 

4.1. Error Analysis 

The final functional form for y is assembled as 

e At -- I 
y(  t ) = ~ U  U -  l ~Cffb 

A 

j = l  

Equation (4.1) can be differentiated analytically: 

dy (t) = gtUeA'U le+b 
dt 

-~ E ~JjUjAj cAj(t-~)~j(~)d"c gjl~J~cj 
j = l  

J 
+ Y 

] =  1 

(4.1) 
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The first two terms in the above expression are easily evaluated at the 
gridpoints, i.e. for t = rp, at negligible additional cost as by-products of the 
evaluation of the linear solution (3.7) and the integral (3.12). The third 
term is seen to be merely R(y(t)) if J =  P, since 

gJjVf)j(t) U71~Jcj= ~uj ~U~cj~bj(t) = ~je ,r  

Thus dy/dt is given by 

dy (t) = g luea tu - l~*b  
dt 

, ) + y %VjAj (4.2) 
j = ,  

Given values y(~p), the right-hand side of the original differential equation 
(3.1) can also be computed as f (xo+y(rp) ) ,  to be compared with the 
evaluation of (4.2). We define a residual vector via 

Ay = rp -~ (Zp) - f (xo  + y(rp)) (4.3) 

This local error estimator has proven to be quite accurate in numerous test 
cases. We have chosen at present to use as our criterion for acceptable 
accuracy the r.m.s, norm of the relative error used by LSODE (Hindmarsh 
and Brown, 1987): 

[ ~ i (  Ay i ~2~ 1/2 
,=, \ ~ j  j ~<RTOL (4.4) 

where RTOL is a relative error tolerance, and 6 = ATOL/RTOL the ratio 
of absolute to relative error tolerances [necessitated by small values of 
I Y(i)[], both supplied by the user. We have also obtained satisfactory 
results using a maximum component error of the form 

m a x l ~ i ~ x  13y,I 
~< RTOL \ 1/2 

i=1 

4.2. Control Structure 

We first describe the step-by-step procedure that is used to advance 
the solution from a time to where it is known to a new time tl. The interval 
At determines a grid via (3.11). Evaluation of the convolution integral via 
the collocation procedure outlined above requires that the solution be 
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calculated at each of the grid points. Thus a set of possible tl values are 
available at each stage of the calculation. At the end of a step, the latest 
time rp compatible with the user-specified error tolerance is selected. The 
new time interval is chosen so that the middle point rmid of its collocation 
grid is equal to the previously accepted time step. If none of the solutions 
is acceptable, the solution is not advanced: a smaller interval is chosen and 
the solution calculated on the new grid. 

At present, the parameters determining the size of the Krylov spaces 
and number of fitting polynomials in the convolution term are fixed at the 
start of the simulation for all time. We have optimized the parameters by 
hand for each problem studied in this article The objective of this is to 
demonstrate the potential of the method given a proper optimization 
scheme. If a closely related set of problems is to be extensively studied, 
one can imagine this approach being worthwhile for real applications. 
However, for use as a general package it is clearly essential to install 
automatic optimization methods. This will be the subject of future com- 
munications. 

For future reference, we define the complete parameter set needed to 
concretely specify the algorithm. The number of self-consistent convolution 
iterations is M, and the number of polynomial powers in a given iteration 
m is Jm" The dimension of the linear Krylov space is denoted KL, while 
those for the convolution integral are labeled Kmj, where m is the iteration 
number and j labels the polynomial in time. 

With these values defined, the algorithm proceeds as follows: 

(1) Initialize t o and Xo=-X(to). Define y ( t ) - X ( t o + t ) - x  o. Estimate a 
time interval At. 

(2) Evaluate the right-hand side of the differential equation b =-f(xo) at 
the current time. 

(3) Act repeatedly with the Jacobian A-Df(xo)  on b to form the linear 
Krylov space of size Kr, i.e., form ~g, U, A according to Eqs. (2.3) and 
(2.4). 

(4) Form the Chebyshev grid ,Cp of size P corresponding to At according 
to Eq. (3.11). 

(5) Obtain the linear solution y(O)(~) via Eq. (3.7) at each grid point. 

For m = 1, 2 ..... M: 

(6) Evaluate the remainder term R(y(~ at each grid point. 

(7) Solve the collocation equations (3.16) for the vector polynomial 
coefficients c i. 
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For j =  1, 2 . . . . .  Jm: 
(8) Form a Krylov space of size Kmj for each polynomial. 

(9) Evaluate the convolution integrals via Eqs. (3.13)-(3.15) at 
each grid point and add to y(0). 

(10) Determine the local error at each grid point via Eqs. (4.2)-(4.4). 

(11) Select the largest time ~ on the grid whose error is less than the 
value RTOL set by the user, and advance the solution to this point. 
That is, set 

t 1 ~ t o + "Ep 

Xl ,'-- Xo + y('c,o) 

A t  ~ At('C~/Zmid) 

Redefine y ( t )  =- x ( t l  + t) - x l  

(12) If none of the errors are sufficiently small, set At ~ d ( 2  and repeat 
steps (4)-(11). 

5. KROGH MODEL 

5.1. Description of the Model 

Our first test of the new integrator is based on a set of equations 
proposed by Krogh (Gear, 1971). It is particularly well suited as a test case 
since an exact solution is known at all times, and it has been used 
previously for testing BDF schemes (Gear and Saad, 1983). Following 
Gear and Saad we begin with a set of N functions, zi, i = 1, 2 ..... N defined 
by 

dzi ~,zi+~z~ (5.1) 
dt 

where the /~i are a set of negative constants and 7 is a parameter 
determining the magnitude of the nonlinearity. The exact solution for all 
times is 

z , ( t )  (5.2) 
y _}_ Oi e flit 

with c~ determined by the initial values z~(0). A linear transformation is 
made by defining a vector 

x = Vz (5.3a) 
2uv* 

V - l - - -  (5.3b) 
/)?u 
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where u and v are N-vectors. It is easy to construct an equivalent set of dif- 
ferential equations for x, which are to be integrated numerically, and then 
to transform x back to the variables zi for comparison with the exact solu- 
tion (5.2). We investigate several values of ~ and the /~i in what follows. 
Although V is an N x N matrix, multiplication by V is inexpensive because 
of its form (5.3b). Our choice of V follows that of Gear and Saad. 

5.2. Implementation of the Krylov Integrator 

As our methods are principally aimed at integrating large sets of equa- 
tions, we study Krogh models with N =  800. An explicit Euler code and 
LSODE were used for comparison with the Krylov integrator. All methods 
were given the same initial conditions and integration was carried out for 
2 model seconds using a Cray X-MP supercomputer. 

Because of the large number of equations to be integrated and the lack 
of sparsity in the Jacobian, the most efficient version of LSODE is one that 
utilizes an internal diagonal approximation to the Jacobian (method 
flag 23): we have verified this explicitly. We examined six cases, charac- 
terized by three possible values of ~(7 = 3, 7 = 10, and 7 = 100) and two 
possible sets of the ]~i: 

or 

fll = --5000, ~2 = -4000,  f13 = -2500, ~4 = -1500  

fll = -1000,  f 1 2  = -800,  ~3 = -500,  and f14 = -300  

All remaining / ~ i - - 1 0 0 ( N - i +  1 ) / ( N - 5 )  for i~>5. The equations were 
integrated in the transformed variable x, and comparison to the exact solu- 
tion (5.2) for z could be made at any time via the transformation z = V - i x .  

Table I presents a "manual" determination of the optimal Krylov 
integrator parameters for each of the six combinations of 7 and/~i presen- 
ted above. The optimal set of parameters is that which yields the maximum 
efficiency, i.e., model seconds per CPU seconds. Three levels of accuracy 
were investigated, controlled by the three values of RTOL [see Eq. (4.4)] 
given in the first row. For all runs, we set ATOL = 10 lo. The first column 

Fig. 1. (a) Efficiency versus global error for Krogh problem (5.1) using three integration 
methods. Efficiency is defined as number of model seconds per CPU seconds. The global error 
is defined by Eq. (5.4). Model parameters are 7 = 100, f lmin = --5000. Triangles denote Euler 
integration, squares denote LSODE integration using an internal diagonal approximation to 
the Jacobian (method flag 23), and circles denote Krylov integration using the optimized 
parameters given in Table I. (b) Same as Fig. la with model parameters ~ = 3  and 

]~min = --1000. 
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in each box gives the values of m, the number of self-consistent convolution 
iterations, as in Eq. (3.9) (here, m = 0  specifies linear propagation). The 
second column lists the number of polynomial powers, Jm, for each con- 
volution iteration, m >~ 1. Column three gives the size KL of the linear 
Krylov space; below it is the size Kml of the Krylov space used to 
propagate the lowest power in the nonlinear term. Subsequent columns 
give the sizes Kmj corresponding to higher powers. We began with M =  2 
and adjusted the values of Jm, Kmj, M, and KL. Each parameter was varied 
in turn so as to maximize efficiency while retaining the desired global 
accuracy. This rather crude approach to optimization has undoubtedly not 
led to definitive results; however, it is sufficient to illustrate the order of 
magnitude improvement in performance of which the exponential propaga- 
tion method is capable. 

Figures la and lb compare the performance of the Krylov integrator 
with forward Euler integration and LSODE for the model values ? = 100 
and/~1 = -5000, and for 7 = 3 and/~1 = -1000,  respectively. The measure 
used for the error requires some explanation. The local error estimator 
(4.4) used internally by both LSODE and the Krylov integrator is a func- 
tion of 6, which in turn depends on the absolute and relative error toleran- 
ces selected by the user, i.e., 6 -= ATOL/RTOL. In order to define an exact 
global error for the evaluation of each method, regardless of the values of 
RTOL or ATOL used for local error control during the integration, as well 
as for the Euler integration with fixed step size, we fix the value 6 = 10 4 
for this purpose, and define the exact global error in all cases to be 

( xexact -- X~omputed ~ 2~ 1/2 

i=1 

where x . . . .  t is computed from (5.2) and (5.3). 
The Krylov method tended to produce exact global errors close to the 

imposed value of RTOL. Indeed, all solutions considered for the optimiza- 
tions in Table I had an exact global error of less than 10 x RTOL. This was 
not the case for LSODE: surprisingly, it proved to be difficult to improve 
the accuracy of LSODE beyond the limits shown in Figs. la and lb. To 
achieve a global error of 10 -5 in the case of Fig. la, RTOL was chosen to 
be 10 -6, but smaller values of RTOL did not reduce this error by another 
order of magnitude. In the case of Fig. lb, attaining an exact global 
error of 4 x 1 0  -5 using LSODE required setting A T O L = 1 0  -12 and 
RTOL = 10-14, and the global error could not be further reduced. This dif- 
ficulty in integrating the second case is unexpected, since the nonlinearity 
is smaller and the set of differential equations less stiff than in the first case. 

Figures la and lb show that the efficiency of the Krylov integrator 
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exceeds that  of L S O D E  by at least a factor of  10. The efficiency of  the 
Krylov  integrator  is also at least 5 times that of Euler integration, with a 
much higher advantage for high accuracy. While the efficiency of Euler 
integrat ion increases rapidly with decreased demands  in accuracy and 
correspondingly increased step size, it becomes unstable and so is useless in 
obtaining global errors larger than 10 -3 . Results for the remaining sets of 
model  parameters  7 and/~i  (which lie between the two cases of Fig. 1) are 
quite similar. 

We turn now to a study of the efficiency and accuracy of exponential  
p ropaga t ion  as a function of the different internal parameters of the 
integrator. Only  one Krogh  model  (? = 100,/31 = - 5 0 0 0 )  optimized to an 
accuracy level a round  10 6 is discussed below; other cases yield similar 
results. All parameters except the one being varied are held at the 
previously optimized values given in Table I. 

3 -4.5 
I I 

2 

"2 

-5.0 

%- 
m 

-5.5 

0 t i -6.0 

0 1 2 3 

M convolution iterations 

Fig. 2. Efficiency and global error  for the Krylov method as a function of M, the total num-  
ber of convolution iterations. Model parameters here and in all subsequent figures are ? = 100, 
~mi~= -5000, and N= 800; RTOL is set to 10 -6. Efficiency (scale on left) is denoted by 
circles; error (scale on right) is indicated by squares. Optimal efficiency is attained at M= 2 
(see also Table I). When M = 0 (linear propagation only), efficiency is an order of magnitude 
!ower, and error an order of magnitude higher than cases with nonzero M. 
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Figure 2 plots performance as a function of M, the number of self- 
consistent iterations [Eq. (3.9)]. Note that the efficiency and accuracy are 
substantially inferior for M =  0; this demonstrates the importance of the 
nonlinear correction procedure. The maximum in efficiency coupled with 
no loss of accuracy at M = 2 indicates that this value is optimal, given the 
assumed values of the parameters; see also Table I. The fact that M- -  1 and 
M =  3 are nearly as good suggests that the efficiency of the method is 
not overly sensitive to parameter choice, an important consideration in 
designing robust automatic procedures in which the parameters are chosen 
without human intervention. 

The sharpest behavior is observed in Fig. 3, for the number Jm of poly- 
nomials in the time-dependent fitting. The optimization of this aspect of the 
method will require careful consideration. Figure 5 displays a curious 
feature not shared by Figures 2, 3, or 4: the global error actually increases 
somewhat with KL, especially after the maximum efficiency is attained at 
KL = 10; if it persists, this behavior could prove useful in automating the 
optimal choice of KL. 

3 -4.0 

O 

I I 

5" 
cJ~ 

-5.5 

1 I I - 7 . 0  

2 3 4 5 
polynomial power Jm 

Efficiency (circles) and global error (squares) for the Krylov method as a function of Fig. 3. 
J,~, the number of polynomial powers used to calculate the convolution integral, with conven- 
tions as in Fig. 2. Both quantities display a strong dependence on Jm" 
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Fig. 4. Efficiency (circles) and global error (squares) as functions of K2j, the size of the 
Krylov spaces used for propagating the nonlinear term in the final convolution integration, d m 

is held constant, and K2j is increased or decreased by the same amount for eachj. 

6. A R E A C T I O N - D I F F U S I O N  SYSTEM 

6.1. Mot iva t ion  

The formation of spatiotemporal patterns in chemical reaction-diffu- 
sion systems has been the subject of much research in recent years. In the 
course of this research it is natural to study simplified models in order to 
understand the basic mechanisms leading to spatial pattern formation and 
loss of spatiotemporal coherence. The basic form of a reaction-diffusion 
equation is 

du 
d t =  f(u) + nV=u (6.1) 

where u is a vector of chemical concentrations, f(u) is a function describing 
the homogeneous chemical kinetics, and D is a diagonal matrix of diffusion 
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Fig. 5. Efficiency (circles) and global error (squares) as functions of KL, the size of the linear 
Krylov space. As in Figs. 2 and 4, there is a choice of parameter, here KL = 10, that maximizes 
efficiency for other constants fixed. In contrast to the dependence on M, J,,, and Kaj, the 
global error increases with KL. 

coefficients. Numerical treatment of such models is typically hampered by 
at least two complications: 

�9 The Laplacian operator is often discretized using a finite difference 
approximation. The most negative eigenvalue of such an operator 
discretized in this way grows quadratically with the number of grid 
points chosen, while the eigenvalue of smallest magnitude does not 
change with the grid size; the system is thus stiff for a sufficiently 
fine grid. 

�9 The dynamics of reaction-diffusion systems often involves motion 
of extremely steep fronts. Such fronts are characterized by very 
rapid variations in time-series taken at individual locations when 
the front passes. Whenever the time-series at a location undergoes 
a rapid excursion, the error control used by integration packages 
automatically decreases the time step. Since some point is under- 
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going such a rap id  excursion at any time the time step usually 
remains small. 

We chose a particular simplified "chemical" model for our tests of the 
Krylov method. The kinetic law is chosen not for its realistic modeling of 
a particular chemical reaction, but rather for its simplicity. This model has 
been used successfully by Arneodo and Elezgaray (1989) in simulating one- 
dimensional chemical patterns. The kinetic law in the absence of diffusion 
is 

du 1 
- -  = -- [-~) __ (1/2 __ U3 _jr U 5 ) ]  ( 6 . 2 a )  
dt e 

dv 
- -  = c~ - u (6.2b) 
dt 

Adding diffusion causes the formation of a sharp front parallel to the x 
axis, given the boundary conditions 

u o = u(x,  y = O) = 1.1, 

u l = u ( x ,  y =  1 ) =  -1.5,  

v(x, y = O ) = u ~  3 5 - -  U o + U o , 

~(x, y = 1 ) :  . ~ -  u~ + .~. 

Periodic boundary conditions are imposed in x. We set D--0.045 for both 
species, and ~ = 0.01, e -- 0.01. The front oscillates in the y direction with a 
period of roughly 0.2 model seconds. In all simulations described below the 
grid was 50 x 50 grid points. The initial condition was chosen to be the  
state 10 model seconds after a uniform initial condition (LSODE having 
been used to integrate to this state). By this time the front is well formed. 
The same initial condition was used in every run. 

6.2. Results 

Our choice of grid size leads to a total number of ODEs of 
N = 50 x 50 x 2 = 5000, and therefore to a large, but sparse, Jacobian. This 
constitutes the primary obstacle for integrators of the Gear  type. One 
approach to this is employed by LSODE: the user can select an internally 
generated diagonal approximation to the Jacobian. Another approach is 
that used by Brown and Hindmarsh (1986, 1987, 1989) in the experimental 
package LSODPK,  where iterative Krylov subspace methods are used to 
solve the linear systems. L S O D P K  allows the user to precondition the 
Jacobian for improved convergence. 
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All runs of LSODE were performed with the diagonal approximation 
to the Jacobian. In early runs of L S O D P K  we used two-sided precondi- 
tioning, partitioning the Jacobian into reaction (R), x-diffusion (Dx), and 
y-diffusion (Dy) parts. The left preconditioner was chosen to be (I-hR); 
the right preconditioner was (I-hDx)(I-hDy), where h is a scale factor. 
Later we performed runs of LSODPK without any preconditioning and 
obtained similar solutions, but with considerably less computational effort. 
We report here only those results of L S O D P K  without preconditioning. 
All timing runs were run for five model seconds. 

Since no exact solution to this problem is known, we could not per- 
form the same optimizations that were applied to the Krogh problem. We 
attempted to form an accurate solution by means of LSODE with a small 
value of the relative error tolerance RTOL, and an absolute error tolerance 
A T O L =  1.0 x 10 lo, and also with the Krylov method using a small 
RTOL, but found that the phase of the solution was quite sensitive to the 
setting of RTOL, and to the various Krylov space parameters, so the dif- 
ference between a test solution and the "accurate" solution was dominated 

U 

I I I 

0 
Y 

Fig. 6. The concentration of species u as a function of spatial variable y for the reaction- 
diffusion problem (6.1) and (6.2). This profile is characteristic of the solution of the model 
system at the parameter values stated, The sharp front oscillates back and forth in the y 
direction. 
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by a line of points near the front where the two solutions were out of 
phase; the steepness of the front guarantees that any small phase error will 
cause two such solutions to differ greatly near the front. Thus we 
abandoned the tactic of comparing test solutions against a more accurate 
solution. Since in our study of this model we would be interested in 
qualitative, rather than quantitative, behavior, we chose instead to com- 
pare the efficiency of LSODE, LSODPK, and the Krylov method as 
RTOL is increased until the methods become unstable or until the 
character of the solution no longer agrees with that obtained at tighter 
tolerance. 

Runs with the Krylov method were done with a single self-consistent 
iteration, i.e., M = 1. It was found that increasing the number of such itera- 
tions did not qualitatively improve the solution, but increased computa- 
tional effort significantly. The size KL of the linear Krylov space was varied 
between 5 and 7. The number of powers J was varied between 3 and 5, and 
the sizes K1,/'22, and K3 of the polynomial Krylov spaces were also varied 
between 3 and 5. It was found that the choice of KL influenced the 
efficiency of the method most. The optimum choice of the other K's was 3. 

U 

Fig. 7. 

I 

I J 
0 

Y 
Solution produced by LSODE with RTOL = 0.05 after 3.5 model seconds, illustrating 

the numerical instability. The solution at 3.0 sec was the same as that in Fig. 6. 
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A typical solution generated by this model is shown in Fig. 6. It is 
interesting to note that when LSODE or LSODPK began to give poor 
results it usually followed that they were unstable, and the solutions grew 
rapidly without bound. Figure 7 shows the field after 3.5 model seconds 
using LSODE and an RTOL of 0.05. When the Krylov method began to 
give unsatisfactory results, it typically produced fields in which there was a 
large line of spikes parallel to the front, which died down within a few time 
steps (see Fig. 8). Thus, while the solution was no longer satisfactory, the 
method continued to integrate without instability. 

A summary of the results of our comparison is given in Table II. It can 
be seen from these results that whereas LSODPK and LSODE require d at 
least 62.5 CPU seconds and 39.8 CPU, respectively, satisfactory results 
were obtained using the Krylov method in as few as 8.8 CPU seconds. For 
this problem, it appears that the iterative solution (either with or without 
preconditioning) of the backwards difference formulas performed by 
LSODPK is not advantageous. 

We have also carried out a similar set of numerical experiments for 
this model using a forward Euler code. This is typically the method of 
choice (e.g., Jahnke, Skaggs, and Winfree, 1989) for problems of the type 
considered in this section, viz., those involving a large number of variables, 
rapid spatial and temporal variation of the solution at every time step, and 
an accuracy requirement only for qualitatively faithful simulation. The 
maximum time step before the onset of instability is 1.0x 10 -3 sec, in 
agreement with the largest eigenvalue of the Jacobian found by the Krylov 
integrator. A total of 14 CPU seconds were required to integrate the five 
model seconds, as compared to 8.8 CPU seconds for the Krylov method. 
This again illustrates the fact that the Krylov method is able to take time 
steps considerably larger than that prescribed by the explicit stability limit. 

7. CONCLUSION 

The Krogh test problems best illustrate the power of the exponential 
propagation method as it is presently constituted. The solutions of these 
equations are relatively smooth, and efficient propagation of the linear part 
of the problem is crucial to the overall efficiency. The exponential method 
is able to take extraordinarily long time steps under these conditions, thus 
leading to the large gains in efficiency over the alternatives that we find 
here. As there are a substantial number of important large-scale problems 

Fig. 8. (a) Solution produced by the Krylov method at RTOL = 5.0, illustrating the typical 
behavior when the solution was no longer acceptable. This profile was obtained after 2.41 
model seconds. (b) The solution at t = 2.84; the spike evident in (a) has disappeared. 
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of this type, we expect that the exponential method will at least find a niche 
in this area. Evaluation of the performance of the method as a robust, 
problem-independent program, as is LSODE, awaits further development 
and automation, which may incur additional computational costs. 

An important point is that in order to realize these advantages the set 
of equations must be larger than the size of the Krylov space. Otherwise, 
the "reduction" to an Arnoldi matrix is insignificant, and the Jacobian may 
just as well be diagonalized directly. Numerical experiments confirm that 
exponential propagation with diagonalization of the full Jacobian is inef- 
ficient as compared to backward differentiation approaches, because 
diagonalization is much more expensive than solution of an equivalent set 
of linear equations. The larger time steps permitted cannot compensate for 
this expense when nonlinearities are substantial. 

RTOL 

Table II. Reaction-Diffusion Results 

LSODE results 

CPU seconds 

0.005 46.3 
0.01 39.8 
0.05 41.9 

RTOL 

LSODPK results 

CPU seconds 

Notes 

UNSTABLE 

0.01 62.5 
0.05 33.4 
0.1 35.1 
0.5 39.1 

Notes 

POOR solution 
POOR solution 
UNSTABLE 

RTOL KL 

Krylov results 

CPU seconds Notes 

0.5 
1.0 
5.0 
0.5 
1.0 
5.0 
0.5 
1.0 
5.0 

11.9 
8.8 
7.1 

13.2 
10.9 
6.1 

13.1 
11.6 
10.4 

POOR solution 

POOR solution 

Short-lived kink which later recovers 
POOR solution 
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The chemical front simulation illustrates a major difficulty in using the 
method for systems where the Jacobian itself is changing rapidly at all 
times in the simulation. Under such conditions, it is very difficult to 
accurately predict the field at later times using a linearized approximation 
to the evolution equations; thus, the exponential method is limited to 
much shorter time steps than were possible in the previous case. The Gear 
package is plagued by a similar difficulty, being based on a predictor- 
corrector methodology as well, and is similarly unable to take long time 
steps. This is why the advantage over forward Euler at the stability limit 
is only a factor of 2, as compared to the factor of 5-10 achieved for the 
Krogh equations. The present results are nevertheless encouraging, in that 
an advantage over both Euler and Gear methods is in fact obtained. 

In addition to the obvious course of automation and optimization of 
control parameters, a number of improvements will be pursued in the 
future. The use of time-dependent fitting functions other than polynomials 
will be investigated; such functions could be generated by various means, 
e.g., from information in the linearized solution, or from knowledge of the 
physics of the problem. The Krylov approach meshes well with adaptive 
grid technologyl as only multiplication by the Jacobian is necessary, so that 
an ordered structure for the differential operators is not crucial. This also 
suggests treating different regions of the grid with different time-dependent 
methods. For example, one could carry out accurate, short time-step 
integration at a wavefront to generate a predictor in this region, use the 
exponential method as a predictor elsewhere, and insert these results into 
the integral equation to synthesize the predictors into a globally accurate 
answer via the corrector. Such multilevel strategies are probably the only 
hope of integrating equations like those in Section 6 with a qualitatively 
greater efficiency than Euler integration. 

In summary, we have provided evidence that an algorithm based upon 
direct exponentiation in a Krylov subspace is a plausible candidate for a 
general stiff equation integrator for large systems. The method is easy to 
implement and apply to an arbitrary system of equations, on the basis of 
the description provided in this article. Further development of the method 
should improve its performance and delineate the range of problems for 
which it is the method of choice. 
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