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Numerical simulation of Faraday waves
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We simulate numerically the full dynamics of Faraday waves in three dimensions for two
incompressible and immiscible viscous fluids. The Navier–Stokes equations are solved
using a finite-difference projection method coupled with a front-tracking method for the
interface between the two fluids. The critical accelerations and wavenumbers, as well as
the temporal behaviour at onset are compared with the results of the linear Floquet
analysis of Kumar & Tuckerman (J. Fluid Mech., vol. 279, 1994, p. 49). The finite-
amplitude results are compared with the experiments of Kityk et al. (Phys. Rev. E, vol.
72, 2005, p. 036209). In particular, we reproduce the detailed spatio-temporal spectrum
of both square and hexagonal patterns within experimental uncertainty. We present the
first calculations of a three-dimensional velocity field arising from the Faraday instability
for a hexagonal pattern as it varies over its oscillation period.

1. Historical introduction
The Faraday experiment consists of shaking vertically a container holding two immis-

cible fluids (the lighter of which can be air) thereby inducing oscillations of the fluids
and the interface between them. Beyond a certain threshold, the interface can form many
kinds of standing wave patterns, including crystalline patterns and others which are more
complex. This phenomenon was first studied by Faraday (1831) who noticed that the vi-
bration frequency of the interface was half that of the forcing. The results of Faraday
were confirmed by Rayleigh (1883a,b). Benjamin & Ursell (1954) carried out the first
theoretical linear analysis of the Faraday waves, restricted to inviscid fluids. They decom-
posed the fluid motion into normal modes of the container and showed that the evolution
equation of each mode reduced to a Mathieu equation whose stability diagram is well
known.

In the 1990s, new behaviours of the interface were discovered, such as quasi-crystalline
eight-fold patterns seen by Christiansen, Alstrøm & Levinsen (1992). By introducing
a forcing which is the sum of two periodic functions with commensurable frequencies,
Edwards & Fauve (1994) were able to produce twelve-fold quasi-patterns. Triangular
patterns were observed by Müller (1993) and superlattice patterns by Kudrolli, Pier
& Gollub (1998), also using two-frequency forcing. Spatio-temporal chaos was studied
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by Kudrolli & Gollub (1996), who also surveyed the occurrence of lattice patterns –
stripes, squares or hexagons – as a function of viscosity and frequency. Binks, Westra
& van de Water (1997) demonstrated the dependence of the pattern on the depth of
the layer. In addition to patterns or quasi-patterns, very localized circular waves called
oscillons may occur, as seen by Lioubashevski et al. (1996). The Faraday instability is the
first macroscopic system in which such structures have been observed. These discoveries
endow the Faraday instability with a very great fundamental interest for understanding
the natural formation of patterns.

A number of theoretical or semi-numerical analyses were inspired by these experi-
ments. Kumar & Tuckerman (1994) extended the linear stability analysis of Benjamin &
Ursell (1954) to viscous fluids. This analysis was experimentally confirmed by Bechhoe-
fer et al. (1995) and used by Kumar (1996) to predict cases in which the response would
be harmonic rather than subharmonic. The method was extended by Besson, Edwards &
Tuckerman (1996) to calculate the stability tongues in the case of two-frequency forcing.
Integral equation formulations of the viscous linear stability problem were derived by
Beyer & Friedrich (1995) and Müller et al. (1997), who also studied the harmonic re-
sponse case. Cerda & Tirapegui (1998) used the lubrication approximation and the WKB
method to study shallow viscous layers, obtaining a Mathieu equation that was later used
by Huepe et al. (2006) to derive analytic results about the response to multifrequency
forcing.

Linear analysis provides no information about the shape of the patterns which ap-
pear; other means are necessary to understand the occurence of a given pattern or the
amplitude of stabilization. Weakly nonlinear approximations have been derived from the
Navier–Stokes equations by Viñals and co-workers, e.g. Zhang & Viñals (1997), Chen
& Viñals (1999) and by Skeldon & Guidoboni (2007), focusing on the competition be-
tween different patterns. Vega, Knobloch & Martel (2001) derived equations governing
the interaction between Faraday waves and the mean flow. There has been a great deal
of analysis of lattices, superlattices and quasi-patterns using equivariant dynamical sys-
tems theory, as well as model equations designed to produce specific patterns, e.g. Porter,
Topaz & Silber (2004). The approximation of quasipatterns in spatially periodic domains
has also been addressed in Rucklidge & Silber (2009).

Investigation of the full nonlinear viscous problem, however, requires numerical sim-
ulations, of which there have been very few up to now, specifically those of Chen &
Wu (2000), Chen (2002), Murakami & Chikano (2001), Valha, Lewis & Kubie (2002),
Ubal, Giavedoni & Saita (2003) and O’Connor (2008). With the exception of O’Connor
(2008), all previous simulations have been two-dimensional. The most extensive sim-
ulation thus far has been that of Chen & Wu (2000) and Chen (2002), who used a
finite-difference method applied to a boundary-fitted time-dependent coordinate system.
At each timestep, the surface is advected and a new 2D grid, adapted to the surface, is
recomputed. The amplitude of their numerically computed Faraday waves confirmed the
weakly nonlinear analysis of Chen & Viñals (1999), including their prediction of a range
of subcriticality. Their calculations also predicted qualitatively new phenomena, such as
disconnected solution branches and slow modulated dynamics.

Murakami & Chikano (2001) used a method similar to that of Chen & Wu (2000) and
Chen (2002). Although they reproduced some features of the experiments by Liouba-
shevski et al. (1996), their calculations were limited to accelerations only 0.5 % above
critical. The investigation by Ubal et al. (2003) focused on the influence of liquid depth
in two-dimensional simulations using a Galerkin finite-element method in transformed
coordinates. In addition to comparing their linear stability predictions with those of Ben-
jamin & Ursell (1954) and Kumar & Tuckerman (1994), they calculated instantaneous
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surface profiles and velocity fields, as well as the temporal evolution and spectrum. Valha
et al. (2002) examined the response of a liquid layer in a vertical cylindrical vessel us-
ing the MAC (Marker-and-Cell) method of Harlow & Welch (1965). Surface tension was
treated by the continuum surface force model of Brackbill, Kothe & Zemach (1992).
O’Connor (2008) conducted numerical simulations using an ALE (Arbitrary Lagrangian-
Eulerian) spectral-element code in both two and three dimensions; a visualization of a
square pattern was presented.

The hexagonal patterns, quasi-patterns and oscillons which motivate our investiga-
tion are intrinsically three-dimensional, and have never been calculated numerically from
the fluid-dynamical equations. Here we report on the results of fully nonlinear, three-
dimensional simulations of Faraday waves using a finite-difference front-tracking method.
In the classic Faraday problem the lighter fluid is usually taken to be air whose effects
can be neglected. However, in contrast to the previously cited investigations, the numer-
ical method described here solves the Navier–Stokes equations for the general case of
two distinct superposed fluids. The capability of the method to simulate the motion of
both fluids is important in that it permits comparison of numerical results with those
of certain experimental configurations, namely those of Kityk et al. (2005) where the
lighter fluid cannot be ignored. These experiments were the first to provide quantitative
measurements of the complete spatio-temporal Fourier spectrum of Faraday waves and
thus form an excellent basis for quantitative comparison with our numerical results in
the nonlinear finite amplitude regime, i.e. interfaces with steep slopes.

In the next two sections of this article, we present the hydrodynamic equations that
govern the Faraday instability and then describe the computational method. The two
sections following these are dedicated to the comparison of our results with the linear
theory of Kumar & Tuckerman (1994) and with the experiments of Kityk et al. (2005,
2009). After comparing numerical and experimental spatio-temporal spectra for squares
and hexagons, we present the three-dimensional velocity field for the hexagonal pattern.

2. Equations of motion
The mathematical model of the Faraday experiment consists of two incompressible

and immiscible viscous fluids in a three-dimensional domain x = (x, y, z) ∈ <2 × [0, h],
bounded at z = 0 and z = h by flat walls. The two fluids, each uniform and of densities
ρ1, ρ2 and viscosities µ1 and µ2, initially form two superposed horizontal layers with an
interface between them. This two-dimensional interface is defined by x′ = (x, y, ζ(x, y, t)).
Within the parameter range we wish to simulate, the height ζ remains a single-valued
function of (x, y, t).

The container is shaken vertically in z. In the reference frame of the container the
boundary conditions for the fluid velocities u = (u, v, w) are

u(x, y, 0, t) = 0, (2.1a)
u(x, y, h, t) = 0. (2.1b)

The gravitational acceleration g is augmented by a temporally periodic inertial acceler-
ation

G = (a cos(ωt)− g)ez, (2.2)
where a is the amplitude of the forcing and ω is its frequency.

The Navier–Stokes equations for incompressible, Newtonian fluids are

ρ
Du
Dt

= −∇p+ ρG+∇ · µ
(
∇u +∇uT

)
+ s, (2.3a)
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∇ · u = 0. (2.3b)

Here p is the pressure and s is the capillary force (per unit volume) and is defined below.
Equations (2.3a) and (2.3b) are valid for the entire domain, including the interface, in
spite of the fact that the density and viscosity change discontinuously and the surface
tension acts only at the interface. In this single-fluid formulation, the density and viscosity
fields are defined in terms of the densities and viscosities of the two fluids

ρ = ρ1 + (ρ2 − ρ1)H, (2.4a)
µ = µ1 + (µ2 − µ1)H, (2.4b)

with the aid of a Heaviside function,

H (x− x′) =
{

0 if z < ζ(x, y, t)
1 if z > ζ(x, y, t) , (2.5)

where we recall that x = (x, y, z) is a point anywhere in the three-dimensional volume
and x′ = (x, y, ζ(x, y, t)) is the vertical projection of x onto the interface. The capillary
force is

s =
∫
S′(t)

σκn δ (x− x′) dS, (2.6)

where σ is the surface tension coefficient, assumed to be constant, n is the unit normal
to the interface (directed into the upper fluid) and κ its curvature. δ (x− x′) is a three-
dimensional Dirac distribution that is nonzero only where x = x′. S′(t) is the surface
defined by the instantaneous position of the interface.

To complete the system of equations we need an expression for the motion of the
interface. One such expression can be easily derived by noting that mass conservation in
an incompressible flow requires Dρ/Dt = 0, which in view of the discontinuous density
field (2.4a), is equivalent to

DH/Dt = 0. (2.7)

Thus the interface is represented implicitly by H and advected by material motion of the
fluid.

3. Computational methods
The computational domain is a rectangular parallelepiped, horizontally periodic in x

and y and bounded in z by flat walls for which we impose no-slip boundary conditions.
The entire domain is discretized by a uniform fixed three-dimensional finite-difference
mesh. This mesh has a standard staggered MAC cell arrangement (Harlow & Welch
1965) where the u, v and w velocity nodes are located on the corresponding cell faces
and scalar variables are located at the cell centres. Each cell is of dimension ∆x×∆y×∆z.

Within the domain, the two distinct immiscible fluids are separated by a two-dimensional
interface which is discretized by a second mesh as sketched in figure 1. This moving and
deformable mesh is composed of triangular elements whose motion is treated by a front-
tracking/immersed-boundary method (Peskin 1977; Tryggvason et al. 2001). Because we
have assumed that ζ(x, y, t) is single valued, the nodes of the mesh can be fixed in x and
y and only their vertical displacements need to be calculated, which is a considerable
simplification to the general front-tracking method.

After setting appropriate initial and boundary conditions, the computational solution
algorithm for each timestep is composed of three main phases. First, the interface is
advected and the density and viscosity fields updated according to the new interface
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Figure 1. Spatial discretization of the domain.

position. The capillary force s is then calculated. Finally, the velocity and pressure are
found by means of a standard projection method. Each of these steps is described below.

3.1. Advection of the interface
Purely Eulerian interface methods such as Volume of Fluid (Hirt & Nichols 1981) or
Level Set (Osher & Sethian 1988) use a form of (2.7) to advect a scalar field such as
H, or a level-set function that implicitly represents the interface. However, in the front-
tracking approach that we use here, the interface markers themselves (the nodes of the
triangular mesh) are advected. H is then constructed from the position and geometry of
the interface. Taking (2.7) as a starting point, we develop an equivalent expression for
the vertical displacement of the triangular interface mesh.

The material derivative of (2.5) gives:

DH
Dt

=∇H · Dx
Dt

+∇′H · Dx′

Dt
, (3.1)

where ∇′ = ∂x′ and

∇H = −∇′H =
∫
S′(t)

nδ(x− x′)dS. (3.2)

(For a derivation of (3.2) see Tryggvason et al. 2001.) Factoring (3.1) by ∇H

DH
Dt

=∇H ·
(

u− Dx′

Dt

)
. (3.3)

The right-hand side of (3.3) can only be zero everywhere, including on the surface, x = x′,
if

Dx′

Dt
= u(x′, t), (3.4)
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which establishes the material motion of the explicit interface representation x′. Further-
more

∂x′

∂t
= (I−∇x′) · u(x′, t), (3.5)

where I is the identity tensor. The specific choice of x′ = (x, y, ζ(x, y, t)) made here gives
for ∇x′ 

1 0 0
0 1 0
∂ζ

∂x

∂ζ

∂y
0

 . (3.6)

With this, (3.5) leads to the specific displacement relations:

∂x/∂t = 0, (3.7a)

∂y/∂t = 0, (3.7b)

∂ζ

∂t
= w − u∂ζ

∂x
− v ∂ζ

∂y
. (3.7c)

The application of this advection to the triangular mesh we use for tracking the interface
is straightforward. At each vertex the horizontal displacement is zero and for the vertical
displacement we compute a first-order approximation to (3.7c):

ζn+1 − ζn

∆t
= wn(x′e)−

∂ζn

∂x
un(x′e)−

∂ζn

∂y
vn(x′e). (3.8)

The superscripts n and n + 1 denote, respectively, the old and new time levels. The
derivatives on the right-hand side are evaluated using a simple upwind scheme which
requires the usual CFL (Courant-Friedrichs-Lewy) time step restriction. The vertical
displacement of the interface mesh requires knowledge of the velocities at the element
nodes x′e. These in general do not coincide with the Eulerian grid nodes xijk, whose
indices correspond to discretized coordinates along the respective directions x, y and z.
The problem of communicating Eulerian grid velocities to the element nodes is over-
come by interpolation between the two grids as is typically done in front-tracking and
immersed-boundary methods. Here we use the particular interpolation

u(x′e) =
∑
ijk

u(xijk)δh(xijk − x′e)∆x∆y∆z. (3.9)

The kernel δh is a smoothed version of the three-dimensional Dirac delta function with
compact support of four grid nodes in each direction (for details of the front-tracking
method, see Tryggvason et al. 2001, and for the immersed-boundary method, see Peskin
1977). In (3.9) the weighted information collected from nearby Eulerian grid nodes is
interpolated to a given element node.

We now seek to update the density and viscosity fields needed in (2.4), which require
H. The equation for H, based on the updated values of x′ and n, is formulated by taking
the divergence of (3.2):

∇2H =∇ ·
∫
S′(t)

n δ (x− x′) dS, (3.10a)

H(x, y, 0, t) = 0, (3.10b)

H(x, y, h, t) = 1. (3.10c)
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Figure 2. A triangular element of the interface mesh illustrating the action of the capillary
forces according to (3.13). For the shaded triangle the forces act perpendicular to the triangle’s
edges (unlabelled solid arrows), the dashed arrows are the corresponding forces on the edges
of neighboring triangles. The net capillary force at the shared edge between any two triangles
(the sum of the solid and dashed vectors) is directed into the fluid on the concave side of the
interface.

The discretized version of the Poisson problem (3.10a) is

∇2Hijk =∇ ·
∑
e

neδh(xijk − x′e)∆Se, (3.11)

where standard central differencing is used for the gradient and divergence operators.
This numerically calculated Heaviside function is a smoothed transition from 0 to 1
across a distance of 4 grid cells in the direction normal to the interface. In contrast to
(3.9), the summation above serves to distribute weighted information from an element
node to nearby Eulerian grid nodes. Since an element is triangular, its vertices lie in
the same plane, its normal vector is unique and the three tangent vectors are simple to
calculate:

ne =
t2 × t1

||t2 × t1||
(3.12)

where t1 and t2 are the tangents on two distinct edges of the triangle (see the sketch in
figure 2). We solve (3.11) by fast Fourier transform. Finally, ρn+1 and µn+1 are updated
using (2.4a) and (2.4b).

3.2. Capillary force

From (2.6), the capillary force involves the curvature of the interface and its normal
vector. However, from a computational point of view, curvature is a difficult quantity
to compute accurately. It is more accurate and physically appealing to calculate the
force pulling on the edge of each individual triangular surface element and then sum
the contributions for all the elements over the surface. For a given surface element e of
surface area δA and perimeter δl, we can write:

se = σ

∫
δA

κn dA,

= σ

∫
δA

(n×∇)× n dA, (3.13)
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= σ

∮
δl

t× n dl,

where the last integral represents the sum of the capillary forces exerted around the
element perimeter. As sketched in figure 2, the directions of these forces are oriented
along the surface and normal to the element’s edges. The net force at the shared edge
between any two triangles (the sum of the solid and dashed vectors) is directed into the
fluid on the concave side of the interface. Following Peskin’s immersed boundary method
(Peskin 1977), the discrete version of (2.6) becomes

sijk =
∑
e

seδh(xijk − x′e), (3.14)

where we use the same smoothed δh as in (3.9) and (3.11). Thereby, several interfacial
elements contribute to the calculation of the force applied to a single Eulerian node, and
a single element influences more than one Eulerian node.

3.3. Solution of the Navier–Stokes equations
The Navier–Stokes equations are solved by a projection method (Chorin 1968; Temam
1968) with incremental pressure correction (Goda 1979) applied to a finite-difference
scheme which is first order in time and second order in space. In addition a semi-implicit
scheme is chosen for the velocities to relax the stability restriction on the time step due
to viscous diffusion. All spatial derivative operators are evaluated using standard centred
differences, except in the nonlinear term where we use a second-order ENO (Essentially-
Non-Oscillatory) scheme (Shu & Osher 1989; Sussman et al. 1998). (For an overview
of projection methods for the incompressible Navier–Stokes equations, see Guermond,
Minev & Shen 2006.) The time stepping algorithm is thus

un+1 − un

∆t
= −un · ∇un +

1
ρn+1
∇ · µn+1

(
∇u +∇uT

)n+1

− 1
ρn+1
∇pn+1 +

sn+1

ρn+1
+ G n+1,

(3.15)

with the boundary conditions on the top and bottom walls

un+1
∣∣
Γ

= 0. (3.16)

In (3.15), ρ, µ and s depend on x via (2.4–2.6) and have already been updated by (3.8).
We decompose the solution of (3.15) in three steps. The first step is a semi-implicit
calculation of an intermediate unprojected velocity ũ, involving only velocities and their
gradients:

ũ− un

∆t
= −un · ∇un+

1
ρn+1
∇ · µn+1

(
∇ũ +∇ũT

)
(3.17a)

ũ|Γ = 0 (3.17b)
In the second step, we include the capillary, acceleration and old pressure gradient terms
to calculate the unprojected velocity u∗:

u∗ − ũ
∆t

= Gn+1 +
sn+1

ρn+1
− 1
ρn+1
∇pn. (3.18)

Finally we perform a projection step to find the divergence free velocity un+1:

un+1 − u∗

∆t
= − 1

ρn+1
∇
(
pn+1 − pn

)
, (3.19a)
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∇ · un+1 = 0, (3.19b)

un+1 · n
∣∣
Γ

= 0. (3.19c)
Equations (3.19) imply the following elliptic problem for the pressure increment

∇ · u∗

∆t
=∇ · 1

ρn+1
∇
(
pn+1 − pn

)
, (3.20a)

∂
(
pn+1 − pn

)
∂n

∣∣∣∣∣
Γ

= 0, (3.20b)

which we solve with an iterative biconjugate gradient stabilized algorithm (Saad 1996).
In the horizontal directions, periodic boundary conditions are imposed on the velocity
and pressure, thus excluding a net horizontal pressure gradient. For the simulations we
will present here, this choice is consistent with the requirement of no mean horizontal
flux in a large but bounded container.

We note that in the implicit solution of (3.17), we apply the same biconjugate gradient
stabilized solver used for the pressure to each component of ũ = (ũ, ṽ, w̃) separately.
Thus only the diagonal terms of the diffusion operator are treated fully implicitly. The
off-diagonal terms are treated quasi-implicitly in that the newest available values of
(ũ, ṽ, w̃) are used in the evaluation of the cross derivatives. To ensure symmetry, we
permute the order of solution for each component.

4. Results: linear analysis
4.1. Floquet analysis

In the absence of lateral boundaries, the equations are homogeneous in the horizontal
coordinates and the solutions can be represented by a spatial Fourier transform:

ζ(x, y, t) =
∑
k

ζ̂(k, t)eik·x (4.1)

The linear instability of the interface between two fluids is described by (2.2)–(2.7) lin-
earized about a zero velocity field and flat interface ζ = 〈ζ〉. The linearized equations
depend only on the wavenumber k ≡ ||k|| of each wave and not on its orientation and
hence the coefficient of eik·x can be written as ζ̂(k, t); additionally the dynamics of each
ζ̂(k, t) is decoupled from the others. Linear partial differential equations with constant co-
efficients have solutions which are exponential or trigonometric in time. For the Faraday
instability ζ̂(k, t) is instead governed by a system of linear partial differential equations
with time-periodic coefficients, i.e. a Floquet problem, whose solutions are of the form

ζ̂(k, t) = e(γ+iαω)tf(k, t mod T ), (4.2)

where T = 2π/ω, γ is real and α ∈ [0, 1[. The Floquet modes,

f(k, t mod T ) =
∞∑

n=−∞
fn(k)einωt, (4.3)

are not trigonometric, but remain periodic with fundamental frequency ω. Thus, the
linearized behavior for a single mode is

ζ(x, y, t) = eik·xe(γ+iαω)t
∞∑

n=−∞
fn(k)einωt. (4.4)
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Analogous expressions hold for the velocity u.
Equation (4.2) shows that if γ is non-zero or α is irrational, the evolution of the

interface motion is not periodic. A non-zero γ indicates that the motion grows or decays
according to the sign of γ. An irrational α yields a quasi-periodic evolution function.
For the Faraday instability, it can be shown that α can only take two values: 0 and 1/2.
As the imposed acceleration a is increased, one encounters regions in the (k, a) plane in
which γ > 0 for one dominant temporal frequency, jω/2, where j = 1, 2, 3, ... (see figure
3). Within each instability tongue, the amplitude of the mode grows exponentially. These
tongues are called harmonic if α = 0 and subharmonic if α = 1/2. As k is increased,
one encounters an alternating sequence of subharmonic and harmonic tongues, which are
bounded by neutral curves (k, ac(k)) on which γ = 0. On the neutral curves, the solutions
are periodic:

ζ̂(k, t) =
∞∑

n=−∞
fn(k)ei(n+ 1

2 )ωt, subharmonic case, (4.5a)

ζ̂(k, t) =
∞∑

n=−∞
fn(k)einωt, harmonic case. (4.5b)

4.2. Computation of the neutral curves
We first compare our numerically calculated instability thresholds with those found by
Kumar & Tuckerman (1994) for the same parameter values. The physical parameters
are ρ1 = 519.933 kg m−3 and µ1 = 3.908 × 10−5 Pa s for the lower fluid and ρ2 =
415.667 kg m−3 and µ2 = 3.124 × 10−5 Pa s for the upper fluid. The other parameters
are σ = 2.181 × 10−6 N m−1 and g = 9.8066 m s−2. The frequency of the forcing is
ω/2π = 100 Hz and thus its period is T = 0.01s. The capillary length is defined as
lc =

√
σ/(|ρ1 − ρ2|g). The container height is taken to be 5lc = 0.231 mm, and the

interface, when unperturbed, is equidistant from the top and bottom boundaries. We
consider several wavenumbers k and set the x dimension of the box in each case to one
expected wavelength λ = 2π/k, i.e. to between 0.074 and 0.224 mm, as listed in Table
1. We can estimate the importance of various physical effects for these parameters by
defining dimensionless quantities with length k−1 and forcing period T . The Bond number
Bo = (klc)−2 = |ρ1 − ρ2| g/(σk2) measures the relative importance of gravitational to
capillary effects and ranges between 0.0649 and 0.598. The Reynolds number Re =
ρ/(µk2T ) is a nondimensional measure of viscous damping and ranges between 0.184
and 1.70 for both fluids.

We have computed the critical acceleration from our fluid-dynamical simulation for
the wavenumbers listed in Table 1. Initially, the interface is sinusoidal with wavevector
k parallel to the x-axis and the velocity is zero. Moreover, to ensure that the solution
corresponds initially to the linear solution, we require the amplitude of the interface
displacement to be small compared to λ. In order to maintain a roughly cubic mesh and
a minimum x-resolution of about 50 grid cells per wavelength, we vary the resolution
in the z direction between 126 and 144 points. Since k points along the x direction, ζ
does not depend on y (neither do the velocity nor the pressure) and so the size of the
domain and resolution in y are arbitrary. The acceleration a is taken near ac(k), the
expected critical acceleration corresponding to each wavenumber. At the threshold, the
flow undergoes a pitchfork bifurcation. Since the growth rate is proportional to a − ac
close to the neutral curve, it is sufficient to find the growth rates for two values of a and
to interpolate linearly between these points.

In figure 3, we plot the values of ac obtained from our fluid-dynamical simulation
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Figure 3. Critical acceleration ac/g as a function of the wavenumber k. The solid curves
represent the neutral curves obtained by Kumar & Tuckerman (1994). The ac found with the
simulation are indicated by the circles.

k( mm−1) λ( mm) No. of gridpoints in x/z ac/g (Theor.) ac/g (Comp.) Error(%)
28 0.224 124/128 4.375 4.407 0.7

32.5 0.193 96/128 3.777 3.800 0.6
35 0.180 100/128 3.960 3.954 -0.1
48 0.131 72/126 12.506 12.207 -2.4

60.9 0.103 56/126 19.760 19.922 0.8
85 0.074 48/144 41.953 42.358 1.0

Table 1. Comparison of the computed ac with Floquet theory for various wavenumbers k.

for several values of k, along with the curves (k, ac(k)) obtained from the method of
Kumar & Tuckerman (1994). Figure 3 shows that these thresholds are in good agreement,
despite whatever inaccuracies in ac are introduced by spatial discretization and linear
interpolation. The relative error in the critical acceleration at the conditions previously
stated is of the order of a few per cent as shown in Table 1.

The results suggest that there is a k below which calculation of the growth rates is
not possible. Some zones of the diagram are not accessible because a domain of width
2π/k necessarily accommodates all wavenumbers which are integer multiples of k up
to the resolution limit π/k∆x. The coefficients of the Fourier expansion of the initial
condition differ slightly from zero due to finite-difference spatial approximations and if
the growth rate of one of these is greater than that of k itself, then it will quickly come
to dominate k. This difficulty is exacerbated by the fact that several forcing periods
are required for γ to stabilize. Then the amplitude, whose evolution was expected to
be almost periodic, starts to rise before the precise determination of γ is possible, for
example in the range of k between 0 and roughly 15 mm−1. As we see in figure 3, the
critical forcing is substantially lower for one of its multiples closer to 32.5 mm−1. The



12 N. Périnet, D. Juric and L. S. Tuckerman

amplitude corresponding to this wavelength, although initially negligible, increases and
rapidly dominates the mode we wish to study, making the calculation of γ unfeasible.
In contrast, for k = 48 mm−1, the growth rate did not vary significantly after having
reached a value near zero (relative fluctuations of about 0.1% of the growth rate’s limit
value were recorded after the stabilization).

4.3. Temporal profile of a mode

We recall from section 4.1 that the time dependence of a Floquet mode is not sinusoidal.
As a further validation, we can compare the results of our fluid-dynamical simulations
to the entire temporal behavior over a period. This is a stronger validation than merely
predicting the threshold since it provides a comparison at every time instead of once per
period.

In figures 4–6, we plot the deviation ζ − 〈ζ〉 from the flat interface as a function of
time at a fixed spatial location from our fluid-dynamical simulation, for values k = 48,
60.9 and 85 mm−1 belonging to the first three tongues. On the same figures, we plot
the behavior of (4.5), where the temporal coefficients fn(k) of the Floquet modes have
been calculated by the method in Kumar & Tuckerman (1994). The value of a is set to
the interpolated critical acceleration ac(k), so the oscillations approximately retain their
initial amplitude as long as they remain small. The comparisons in figures 4–6 show a
nearly perfect agreement. The differences observed initially, due to the phase difference
between the initial conditions and acceleration, vanish remarkably quickly, in well under
one period of oscillation of the container.

Figures 4–6 correspond to tongues jω/2, with j =1, 2, 3, respectively, which show j
zero crossings per forcing period T . Odd (even) values of j correspond to subharmonic
(harmonic) oscillations, with period 2T (T ). The temporal spectrum fn(k) becomes richer
as k increases, leading to increasingly more complex modes, as can be observed by com-
paring figures 4–6. This strong anharmonicity of the curves is due to the increasing
contribution of higher frequency trigonometric functions to the Floquet modes as a in-
creases. The Floquet mode corresponding to kc = 32.5 mm−1, with the smallest value of
a = ac, should be closer to trigonometric, with a fundamental frequency of ω/2.

5. Results: nonlinear analysis
In the full nonlinear evolution of the interface for a > ac, the amplitude of the interface

height grows in time until nonlinear terms in (2.2)–(2.7) become important. After that,
the mode whose linear growth rate is maximal gives rise, via nonlinear resonances, to a
series of other discrete modes, selected according to the magnitudes and orientations of
their wavevector k. This selection is responsible for the formation of patterns that will
be the object of our further validations. We seek to compare our calculations with the
experimental results of Kityk et al. (2005, 2009) where quantitative data concerning the
Fourier spectrum ζ̂(k, t) are available for squares and hexagons.

We run our numerical simulations with the same experimental parameters as Ki-
tyk et al. (2005): ω/2π = 12 Hz (T = 0.0833 s), ρ1 = 1346 kg m−3, µ1 = 7.2 mPa s
for the lower fluid and ρ2 = 949 kg m−3, µ2 = 20 mPa s for the upper fluid. The surface
tension at the interface is σ = 35 mN m−1, the total height of the vessel is 1.0 cm and the
mean height of the interface, the initial fill height of the heavy fluid, is 〈ζ〉 = 1.6 mm (with
some uncertainty; see below). The Floquet analysis for these parameters yields a critical
wavelength of λc = 2π/kc = 13.2 mm and a critical acceleration of ac = 25.8 m s−2. Here,
the Bond number defined in section 4.2 is Bo = |ρ1 − ρ2| g/(σk2

c ) = 0.49. The Reynolds
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Figure 4. Linear evolution of the surface height deviation ζ(t) − 〈ζ〉 for k = 48 mm−1, in
the first instability tongue. Our simulation results are plotted with symbols and those derived
from a Floquet analysis with the solid line. The height and time are nondimensionalized by the
wavelength λ = 2π/k and forcing period T , respectively.

Figure 5. Linear evolution of the surface height deviation ζ(t)− 〈ζ〉 for k = 60.9 mm−1, in the
second instability tongue. Same conventions used as figure 4.

Figure 6. Linear evolution of the surface height deviation ζ(t)− 〈ζ〉 for k = 85 mm−1, in the
third instability tongue. Same conventions used as figure 4.
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number Re = ρ/(µk2
cT ) is Re1 = 9.9 and Re2 = 2.52 for the lower and upper fluid,

respectively.
Rather than starting from a sinusoidal interface, we chose to add two-dimensional

white noise of small amplitude to 〈ζ〉 to define the initial interface height ζ(x, y, t = 0)
in order to excite every mode allowed by the box’s horizontal dimensions and number of
cells. It is thus possible to check that the correct critical mode (that whose growth rate
is maximal) emerges from the linear dynamics. In order to reproduce the experimental
results in a computational domain of a minimal size, the dimensions in x and y of the
box must correspond to the periodicity and symmetries of the expected pattern. The
minimal required resolution along these directions has been found to be between 40 and
50 cells per wavelength. The number of triangles used to represent the interface is 16
times the total number of horizontal gridpoints. The number of cells in the z direction
is taken so that min

S′
ζ(x, y, t) is greater than about the height of 3–5 cells. The required

vertical resolution thus varies with the forcing amplitude. The initial velocity is taken to
be zero.

5.1. Square patterns
To compare with the experiment of Kityk et al. (2005) for their square patterns, we
choose the same forcing acceleration, a = 30.0 m s−2. Our box has horizontal dimensions
which we take both equal to 2π/kc. The timestep is ∆t = 2.78× 10−4 s. Figures 7 and 8
represent examples of the patterns obtained at saturation under these conditions and are
taken from the same simulation at the two instants shown by the two arrows in figure
10. The symmetries characterizing the squares (reflections and π/2 rotation invariance)
are clear, showing a first qualitative agreement with Kityk et al. (2005) where both
structures were observed. The pattern oscillates subharmonically, at 2T , where T is the
forcing period. Figure 7 is taken when the interface attains its maximum height, while
figure 8 is taken at a time 0.24× 2T later. At this later time, we observe the dominance
of a higher wavenumber, which will be discussed below.

Further quantitative investigations of the patterns involve the spatial Fourier transform
of the interface height. In the case of square patterns, the distribution of the spatial modes
is shown in figure 9. The modes with non-negligible amplitude are ±kcex and ±kcey, with
|k| = kc and amplitude A(kc); ±2kcex and ±2kcey, with |k| = 2kc and amplitude A(2kc);
and kc(±ex ± ey), with |k| =

√
2kc and amplitude A(

√
2kc). (For a square pattern, the

amplitude of each mode is identical to that of each of its images through rotation by any
integer multiple of π/2.) The interface height is written as:

ζ(x, t) = 〈ζ〉 + A(kc, t)
4∑
j=1

eikcej ·x +A(2kc, t)
4∑
j=1

ei2kcej ·x

+ A(
√

2kc, t)
4∑
j=1

ei
√

2kce
′
j ·x + higher order terms, (5.1)

where ej ≡ ex cos(πj/2) +ey sin(πj/2) and e′j ≡ ex cos(π/4 +πj/2) +ey sin(π/4 +πj/2)
for j = 1, . . . 4. We have chosen this notation, rather than ζ̂(k, t) as used in equation
(4.1), to facilitate comparison with Kityk et al. (2005, 2009).

We have compared the evolution of the three principal spatial modes (figure 10)
and their temporal Fourier transform (figure 11) with the experimental results (Kityk
et al. 2005). Here we turn the reader’s attention to the recent erratum by Kityk et al.
(2009) for correct quantitative comparisons of the spectra.

Figure 10 compares the experimental evolution of each spatial wavenumber to numer-
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Figure 7. Example of square pattern. Height of interface as a function of the horizontal coordi-
nates, at the instant corresponding to first arrow of figure 10, when height is maximal. Resolution
in x, y, z directions: 80× 80× 160. Note that the vertical scale is stretched with respect to the
horizontal scale. Each horizontal direction in the figure is twice that of the calculation domain.

Figure 8. Example of square pattern, at the instant corresponding to second arrow of figure
10, time 0.24× 2T after figure 7.
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Figure 9. Lattice formed by the spatial modes comprising a square pattern. The principal
modes, with wavenumbers kc, 2kc and

√
2 kc, whose evolution will be studied in figures 10 and

11 are indicated by hollow black circles.

ical calcuations for two different mean heights 〈ζ〉 = 1.6 mm and 〈ζ〉 = 1.7 mm. Our
calculations show that the results depend strongly on 〈ζ〉, which is the initial fill height
of the heavy fluid. Our discussions with Kityk and Wagner (A. Kityk & C. Wagner,
private communication) indicate that this is true as well in the experiments, and also
that 0.1 mm is within the experimental uncertainty for their mean height. Thus we chose
to vary 〈ζ〉, in preference to other parameters, in order to check whether the range of
amplitudes caused by experimental uncertainties includes those obtained numerically.

The main features found in Kityk et al. (2009) are recognized in figure 10. In particular,
both the fundamental periodicity of each mode (harmonic or subharmonic) and the form
of each numerical curve in figure 10 are very similar to the experimental data. The
amplitudes and the phases are also quite close. Most of the experimental amplitudes are
bracketed by the numerical ones. Thus, they lie in the interval of amplitudes allowed
by the range of uncertainties which is surely underestimated since only the uncertainty
in 〈ζ〉 has been taken into account. A(kc) crosses zero at times different from the two
higher wavenumbers, A(2kc) and A(

√
2kc). At these instants, the higher wavenumbers

dominate the pattern. In particular, the pattern of figure 8, taken near the second arrow
in figure 10, when A(kc) is low, contains more peaks than that of figure 7, taken when
A(kc) is high. The large ratio between the amplitude of kc and the others makes this
phenomenon very short-lived.

Figure 11 shows the temporal Fourier decomposition of the curves in figure 10. These
spectra for the experiment Kityk et al. (2009) and for the computation are quite similar
too. All of the square patterns that we have observed, once saturation is attained, remain
so for the entire duration of the calculation.

We present a brief numerical grid convergence study in figure 12. All qualitative fea-
tures, such as the square symmetry, were observed with each of the three resolutions
chosen, despite the coarseness of the 20×20×40 and 40×40×80 grids. With increasing
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Figure 10. Temporal evolution of the amplitudes of the spatial modes with wavenumbers kc,
2kc and

√
2kc. Solid curves represent the experimental results of Kityk et al. (2009), dashed

curves and crosses represent numerical results for 〈ζ〉 = 1.6 mm and 〈ζ〉 = 1.7 mm, respectively.
Resolution in x, y, z directions: 80×80×160. Arrows, from left to right, show the time at which
figures 7 and 8 have been plotted.

Figure 11. Temporal Fourier transform of the amplitudes in figure 10. Circles indicate experi-
mental results of Kityk et al. (2009), while crosses and plus signs indicate numerical data with
〈ζ〉 = 1.6 mm and 〈ζ〉 = 1.7 mm respectively.
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Figure 12. Temporal evolution of the amplitudes of the spatial modes with wavenumbers kc, 2kc

and
√

2kc for square patterns. Study of the convergence with three different spatial resolutions.
Circles indicate a resolution (in x, y, z directions) of 20×20×40, dashed curves 40×40×80 and
continuous curves 80 × 80 × 160. The timestep is the same, ∆t = 2.78 × 10−4 s, for all curves
shown.

resolution, the principal spatial modes converge to the experimental curves shown in fig-
ure 10, with only a small difference between the curves with the two highest resolutions.
The order of numerical convergence of the maximum and minimum of the amplitudes
of each of the three modes in figure 12 shows that the convergence is between first and
second order, which is expected to be the case with the immersed-boundary method. In
particular, we would expect that a further doubling of the resolution would change the
results by at most 4 % for the principal kc mode.

5.2. Hexagonal patterns

When the amplitude of the forcing acceleration a is further increased, the modes can
reorganize. The symmetries change and, in the experiments of Kityk et al. (2005), the
initial square pattern becomes hexagonal. Though kc remains constant, the horizontal
dimensions of the minimal computational box necessary to support the periodic pattern
must change too. These dimensions become 4π/kc in y and 4π/(

√
3kc) in x, as shown

in figure 13. The wavevector lattice for hexagonal patterns is shown in figure 14. The
principal modes are again of three amplitudes: kc, 2kc and

√
3kc. When a pattern is

hexagonal, a mode will have the same amplitude and temporal behaviour as each of its
images through rotations by any integer multiple of π/3. The interface height is thus

ζ(x, t) = 〈ζ〉 + A(kc, t)
6∑
j=1

eikcej ·x +A(2kc, t)
6∑
j=1

ei2kcej ·x
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Figure 13. Boxes supporting the periodic patterns in the square and hexagonal cases. In
black, the borders of the box. Light lines, pattern contained by each box; λ = 2π/kc.

+ A(
√

3kc, t)
6∑
j=1

ei
√

3kce
′
j ·x + higher order terms, (5.2)

where ej ≡ ex cos(πj/3)+ey sin(πj/3) and e′j ≡ ex cos(π/6+πj/3)+ey sin(π/6+πj/3).
for j = 1, . . . , 6.

Our simulations are carried out at acceleration a = 38.0 m s−2 and mean height 〈ζ〉 =
1.6 mm. We have used two different initial conditions: a rectangular pattern, and also
white noise, as in our previous simulations of the square patterns. In both cases, hexagons
emerge and saturate. The results shown below are those that emerge from the white noise.
The time step varies during the calculation, depending on the viscous diffusion limit and
the CFL. The spatial resolution is 58x100x180 in the x, y, z, directions, respectively.

In figures 15–18, we show visualizations of the patterns at four instances in time. A
movie of the temporal evolution of the hexagon pattern over one subharmonic oscillation
is available in the online version of this article. The π/3 rotational symmetry confirms that
the rectangular numerical grid does not forbid the formation of hexagonal patterns, which
are not aligned with this grid. The patterns reproduce several prominent features from
the visual observations of hexagons in the experiments. For example, one can observe
in figures 15 and 17 the up and down hexagons shown in the experimental snapshots
(figure 10 of Kityk et al. 2005). The pattern in figure 18, when the surface elevation is
minimal, is dominated by wavenumbers higher than kc, as is also the case in figure 10
of Kityk et al. (2005). This is reflected by the disappearance of A(kc) and the resulting



20 N. Périnet, D. Juric and L. S. Tuckerman

Figure 14. Lattice formed by the spatial modes comprising a hexagonal pattern. The principal
modes, with wavenumbers kc, 2kc and

√
3 kc, involved in later quantitative investigations are

indicated by hollow black circles. The labelled triangles illustrate resonance mechanisms leading
to harmonic contributions to higher wavenumbers.

dominance of A(2kc) and A(
√

3kc) at the corresponding instant in the spectral timeseries
of figure 19. This apparent wavenumber increase is analogous to that which occurs for
the squares, shown in figures 8 and 10.

The spectra from experiments and simulations are represented in figures 19 and 20.
Given that experimental uncertainties concerning the hexagons are greater than for the
squares (A. Kityk & C. Wagner, private communication), the agreement is remarkable.
The principal mode is well reproduced while the other two modes show rough agreement.
It is striking that, in contrast to square patterns, every wavevector is a superposition of
harmonic and subharmonic temporal modes, so that each has temporal period 2T . This
phenomenon was explained by Kityk et al. (2005) as a spatio-temporal resonance as
follows. In the case of the square lattice, two critical subharmonic modes (e.g. kcex and
kcey) interact to yield a higher wavenumber harmonic mode (e.g. kc(ex + ey)). In the
hexagonal case, two critical subharmonic modes (e.g.−kcey and kc(

√
3ex−ey)/2) interact

to yield a higher wavenumber harmonic mode (kc(
√

3ex−3ey)/2), as in triangle I of figure
14. Further interaction of this mode with a critical subharmonic mode (kc(

√
3ex+ey)/2)

yields subharmonic contributions to the higher spatial wavenumber mode (kc(
√

3ex−ey)),
as shown in triangle II. Other quadratic interactions between critical subharmonic modes
can contribute to a third harmonic mode of wavenumber kc (triangle III).

In addition to the interface height, our simulations also produce the entire velocity field,
which is the focus of figures 21–23. These figures show the velocity fields on horizontal
planes at three instants spanning the oscillation period of a hexagonal pattern, as well
as the vertical velocity on the interface. Figures 21, 22 and 23 correspond approximately
to the visualizations of figures 15, 16 and 18, where the structures are more visible since
the interface has been repeated periodically in the horizontal directions for clarity. The
parameters are the same as those given previously, except that the acceleration a has
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Figure 15. Snapshot of hexagonal pattern, taken when height of the interface peaks is
maximal. Each horizontal direction is twice that of the calculation domain.

Figure 16. Snapshot of hexagonal pattern taken t = 0.3× 2T after instant of maximal
interface height.

been decreased to 36.0 m s−2, and the number of triangles used to represent the interface
has been increased to 64 times the total number of horizontal gridpoints.

Figure 21 is taken at t = 0.07×(2T ), just after the interface reaches its maximum height
(at t = 0), when the peaks are beginning to descend. Consequently, the fluid converges
horizontally towards the interface peaks, then descends dramatically below them. The
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Figure 17. Snapshot of hexagonal pattern taken t = 0.48× 2T after instant of maximal
interface height.

Figure 18. Snapshot of hexagonal pattern taken t = 0.68× 2T after instant of maximal
interface height.

fluid then diverges horizontally outwards near the bottom and moves upwards in the large
regions between the peaks. The motion shown in figure 22, at t = 0.41 × (2T ), is quite
different from that in figure 21. The peaks of figure 21 have collapsed into wide flat craters.
The fluid converges inwards horizontally above the peaks, then descends into the craters
and diverges outwards horizontally just below them. Figure 23, at t = 0.73× (2T ), shows



Numerical simulation of Faraday waves 23

Figure 19. Temporal evolution of the amplitudes of the spatial modes with wavenumbers kc,
2kc and

√
3kc. Solid curves represent experimental results (A. Kityk & C. Wagner, private

communication) at a ≈ 38.5 m s−2. Dashed curves represent the simulation for a = 38.0 m s−2

at resolution (in x, y, z directions) of 58 × 100 × 180. Arrows indicate times corresponding to
figures 15–18.

Figure 20. Temporal Fourier transform of the amplitudes in figure 19. Circles represent ex-
perimental results (A. Kityk & C. Wagner, private communication) for a ≈ 38.5 m s−2. Crosses
represent numerical results for a = 38.0 m s−2 at resolution 58× 100× 180.
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Figure 21. Velocity field at time t = 0.07× (2T ) after the instant of maximum height. Interface
is colored according to the vertical velocity w. Arrows show velocity field at z = 0.53 mm and
z = 6.08 mm. (Total height is 10 mm, average interface height is 1.6 mm.) For clarity, velocity
vectors are plotted only at every fourth gridpoint in each direction. Note that the vertical and
horizontal scales are different. One computational domain is shown.

Figure 22. Velocity field at time t = 0.41× (2T ) after the instant of maximum height. Vectors
shown at z = 0.083 mm and z = 6.25 mm. Vector and color scales differ from those of figure 21.
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Figure 23. Velocity field at time t = 0.73× (2T ) after the instant of maximum height. Arrows
show velocity field at z = 1.58 mm. Vector and color scales differ from those of figures 21 and
22.

that the rims of the wide flat craters seen in figure 22 have in turn collapsed inwards,
forming circular waves which invade the craters, whose remnants are visible as dimples.
The velocity field of figure 23 shows fluid converging horizontally below these dimples.
These are erupting at velocities which are the largest in the cycle, and will eventually
reconstitute the high peaks seen in figure 21.

Figures 21–23, as well as figures 15–18, show that these cases pose great computational
difficulties. The interface periodically forms a very thin film (approximately 0.1 mm; see
wide crater in figures 17 and 22) over large portions of the lower boundary, within which
the velocity may be significant. These features make it difficult to adequately resolve the
flow in this layer. For the time being we use a uniform grid spacing; however, in this
case an adaptive grid would be more efficient and is under development. We have also
simulated hexagons with resolutions of 70 × 120 × 100 and 70 × 120 × 50. Although we
do not show these, the two highest resolutions lead to very similar spatial spectra with
a maximum difference in amplitudes of the principal modes of about 5% between the
70× 120× 100 and 58× 100× 180 resolutions. The case resolved by only 50 cells in the
z direction shows differences mainly in the 2kc mode where the difference between the
70× 120× 50 and 58× 100× 180 resolution is about 25%; for the two other modes the
difference is about 10%. Hexagonal motifs were observed for all of the resolutions.

The calculation for the hexagon case, for the resolution of 58× 100× 180 takes about
7 h per subharmonic oscillation on a 2.16 GHz Intel processor. This corresponds to 42 h
of calculation time for 1 s of physical time.

In contrast to the square patterns, all of the hexagonal patterns that we have observed
are transient. In our calculations, they last for several seconds, i.e. about 15–20 subhar-
monic oscillation periods, over which time the amplitudes and periods of the principal
modes remain constant. This is also the case for the experimental observations (A. Kityk
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& C. Wagner, private communication), although the experimental lifetimes are longer.
In our simulations, hexagonal patterns alternated with patterns with other symmetries,
whose lifetimes were long (on the order of several seconds) but irregular. This behaviour
suggests that the hexagonal state may belong to a heteroclinic orbit. A more extensive
examination of the hexagonal regime will be the subject of a future investigation.

6. Conclusion
We have carried out full nonlinear three-dimensional simulations of Faraday waves. The

incompressible Navier–Stokes equations for two fluid layers of different densities and vis-
cosities are solved using a finite-difference method. The interface motion and surface ten-
sion are treated using a front-tracking/immersed-boundary technique. The simulations
are validated in several ways. First, for small oscillation amplitudes, our computations
match the solution of Kumar & Tuckerman (1994) to the Floquet problem which results
from the linearized evolution equations. The boundaries of the instability tongues, i.e.
the critical amplitude as a function of horizontal wavenumber are calculated for several
wavenumbers on several tongues and are in good agreement with the theoretical values.
The temporal dependence of the Floquet modes is also well reproduced by our numerical
results, an even more quantitatively significant validation.

For finite oscillation amplitude, our computations reproduce the square and hexag-
onal patterns observed by Kityk et al. (2005, 2009) at moderate and high-oscillation
amplitudes, respectively. Although the domains shown in figure 13 were chosen to ac-
commodate square and hexagonal patterns respectively, we consider the emergence of
these patterns at the appropriate parameter values a non-trivial test of our program,
since these domains can also accommodate rectangles and stripes. Quantitative compar-
isons were made between experiment and simulation of the spatio-temporal spectra. Our
numerical results lie well within the experimental uncertainty. The hexagonal patterns
are long-lived transients and show intriguing dynamical behavior. Our direct numerical
simulations provide velocity fields and pressure throughout the entire domain of calcu-
lation. Thus, we have been able to ascertain precisely the fluid motion for the Faraday
waves, both above and below the interface between the two fluids.

Our future studies of Faraday waves will include a more detailed investigation of the
dynamics of the hexagonal patterns, and the simulation and interpretation of oscillons.
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