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We consider a spherical variant of the Faraday problem, in which a spherical drop
is subjected to a time-periodic bulk force, as well as surface tension. We use a full
three-dimensional parallel front-tracking code to calculate the interface motion of the
parametrically forced oscillating viscous drop, as well as the velocity field inside and
outside the drop. Forcing frequencies are chosen so as to excite spherical harmonic
wavenumbers ranging from 1 to 6. We excite gravity waves for wavenumbers 1 and 2
and observe translational and oblate-prolate oscillation, respectively. For wavenumbers
3 to 6, we excite capillary waves and observe patterns analogous to the Platonic solids.
For this low-viscosity case, both subharmonic and harmonic responses are accessible.
The patterns arising in each case are interpreted in the context of the theory of pattern
formation with spherical symmetry.

1. Introduction

The Faraday (1831) instability, in which the interface between two superposed fluid
layers subjected to periodic vertical vibration of sufficient amplitude forms sustained
standing wave patterns, has been instrumental in the study of pattern formation, leading
to the discovery and analysis of hydrodynamic quasipatterns (Edwards & Fauve 1994;
Rucklidge & Skeldon 2015), superlattices (Kudrolli et al. 1998; Silber & Proctor 1998;
Arbell & Fineberg 2002), supersquares (Douady 1990; Kahouadji et al. 2015) and other
exotic patterns (Périnet et al. 2012; Rajchenbach et al. 2011).

Here, we consider a spherical analogue to the Faraday instability, that of a fluid
drop subjected to a time-periodic radial bulk force. The laboratory realization of any
configuration with only spherically symmetric radially directed forces is difficult, if not
impossible. Indeed such experiments are sent into space (Wang et al. 1996; Futterer et al.
2013) in order to eliminate or reduce the perturbing influence of the vertically directed
gravitational field of the Earth. Investigations of acoustically levitated drops excited
by electric modulation (Shen et al. 2010) or of drops and puddles weakly pinned on a
vibrating substrate (Brunet & Snoeijer 2011) have produced star-like patterns, but in
both configurations the basic state is necessarily oblate rather than spherical. The study
of such problems therefore relies particularly on numerical simulation.

Numerical studies of axisymmetric oscillating viscous drops have been carried out by
Lundgren & Mansour (1988) via a boundary-integral method, by Patzek et al. (1991) and
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Meradji et al. (2001) via a Galerkin/finite-element method, and by Basaran (1992) via
a marker-in-cell initial-value problem. Indeed, the problem of axisymmetric ellipsoidal
drop oscillation and decay has now come to be seen as a routine validation test case
for numerical codes and interface methods for multiphase flows. However, the full non-
linear problem is non-axisymmetric and requires three-dimensional numerical simulation
with interface algorithms that ensure volume conservation and precise calculation of
capillary forces as well as the ability to integrate highly spatially resolved systems over
long physical times.

Recent advances have led to powerful general purpose codes such as Popinet’s Gerris
code (Popinet 1993) and BLUE (Shin et al. 2015). It is with the multiphase code BLUE,
which is based on recently developed front-tracking interface methods implemented on
parallel computer architectures, that we conduct the current study. We have previously
used this code to study large-scale square patterns of Faraday waves (Kahouadji et al.
2015). Here, we use BLUE to carry out the first numerical investigation of the Faraday
problem on a sphere.

One of the most appealing aspects of the Faraday instability is that the pattern length
scale is not set by the geometry, but by the imposed forcing frequency. (It is this feature
which has allowed the generation of quasipatterns and superlattices, since multiple length
scales can be excited simultaneously over the entire domain by superposing different
frequencies.) This means that for a drop with a fixed radius R, patterns can be created
with any wavenumber ¢, where the interface is described via its spherical harmonic
decomposition

co m={
C(t,0,0) =R+>_ > Cm(®)Y(60,9) (1.1)
=1 m=—¢
For fixed R, the length scale associated with ¢ is R/¢. More importantly, ¢ is associated
with a set of allowed patterns; each value of ¢ leads to a qualitatively different situation.
We will explore the motion and shape of an oscillating drop for values of £ up to 6.

2. Methods
2.1. Pattern formation on a sphere

Our companion paper (Ebo Adou & Tuckerman 2015) concerns the linear stability,
via Floquet analysis, of the spherical Faraday problem. As is the case for all spherically
symmetric problems, the equation governing the linear stability does not depend on
the order m of the spherical harmonic. Therefore, a bifurcation from the spherically
symmetric state involves 2¢ + 1 linearly independent solutions (Y, with —¢ < m < ¢)
with the same growth rate. The combination of these modes, i.e. the pattern, that can
result from such a bifurcation is determined by the nonlinear terms. A pattern with a
given £ cannot be associated with a unique combination of modes m, since rotation of a
spherical harmonic changes m (but not £). Spherical harmonics are sometimes classified
as zonal (m = 0, independent of ¢, nodal lines which are circles of constant latitude),
sectoral (m = £/, independent of #, nodal lines which are circles of constant longitude),
or tesseral (m # 0, £¢, checkered). This classification as well depends on the orientation
of the spherical harmonic.

Symmetry groups provide a classification of patterns which does not depend on
orientation. A number of researchers (Busse 1975; Busse & Riahi 1982; Riahi 1984;
Thrig & Golubitsky 1984; Golubitsky et al. 1988; Chossat et al. 1991; Matthews 2003)
have studied the patterns which are allowed and those which are preferred for various



Faraday instability on a sphere: numerical simulation 3

values of £. Patterns that appear at bifurcations can be associated with a subgroup of
the group O(3) of symmetries of the sphere. The subgroups of interest are O(2), D,
and the exceptional subgroups T', O, and I. O(2) consists of the symmetries of a circle;
patterns which are axisymmetric (for some orientation) are in this category. Dy, describes
the symmetries of an k-gon, and thus patterns which are invariant under reflection and
rotation by 27/k (about a fixed axis). The three exceptional subgroups are associated
with the five Platonic solids: T (tetrahedron), O (octahedron or cube), and I (icosahedron
or dodecahedron).

The Platonic solids are regular polyhedra. Although a drop does not have angular ver-
tices and flat faces, a polyhedron with the same symmetry properties can be constructed
from a drop in a T, O, or I configuration by assigning a local maximum on the surface
to a vertex and a local minimum to a face. The dual of a polyhedron is obtained by
inverting its vertices with its faces, an operation which preserves symmetry. Similarly,
the dual of a drop can be formed by inverting maxima and minima. An oscillating drop
provides an ideal opportunity to observe duality: since a location which is the site of a
maximum contains a minimum after half of an oscillation period, the interface alternates
between a pattern and its dual. For the Platonic solids, the dual of an octahedron is a
cube, that of an icosahedron is a dodecahedron and the dual of a tetrahedron is another
tetrahedron.

The patterns are highly dependent on the value of ¢ considered. Axisymmetric (zonal)
solutions are never stable if £ > 2 (Chossat et al. 1991). For odd ¢, solutions exist which
are stable at onset. In contrast, for even ¢, all solutions are unstable near the bifurcation
point. In this case, the preferred solution is considered to be that with the smallest
number of unstable eigenvalues (Matthews 2003). Unstable solution branches produced
at a transcritical bifurcation can be stabilized, for example at a saddle-node bifurcation
some distance from the threshold.

The theory of pattern selection with O(3) symmetry differs from the framework of
our simulations in some important ways. First, the theory applies to steady bifurcations
rather than oscillatory solutions resulting from time-periodic forcing. The underlying
application is usually Rayleigh-Bénard convection in a sphere (Busse 1975; Busse &
Riahi 1982; Riahi 1984) and the steady symmetry-breaking bifurcations it undergoes.
However, many of the conclusions can be generalized to the time-periodic context, by
considering the discrete-time dynamical system derived by sampling the continuous-time
system at a single phase of the forcing period.

A second difference is numerical: in particular, our simulations do not respect spherical
symmetry. An initial set of simulations was carried out in a cubical domain, with a
surrounding fluid whose density is much lower than that of the drop so as to minimize
its effect on the drop. In order to correct this, and as our computational capabilities
expanded, a solid bounding sphere was inscribed in the cubical domain, providing an
approximation to a spherical boundary. Nonethless, the Cartesian grid remains and
continues to exert a cubical influence on our simulations.

Finally, the theory applies close to the threshold. Our simulations are carried out far
from threshold, so that instabilities can grow on a reasonable timescale and stabilize at an
amplitude that can be clearly seen. Our patterns contain modes generated by nonlinear
interactions which are absent from the theory, and their existence or stability may result
from secondary bifurcations.

Despite these differences, we will see that there is a great deal of common ground
between the patterns we observe and those predicted by theory.
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2.2. Problem formulation, governing equations and numerical scheme

The governing equations for an incompressible two-phase flow can be expressed by a
single field formulation:

p(%ltl—ku~Vu>:—VP+pG+V~u(Vu+VuT)+F, V-u=0 (2.1)

where u is the velocity, P is the pressure, p is the density, p is the dynamic viscosity and
F is the local surface tension force at the interface. Here, G is an imposed time-dependent
radial acceleration:

G = — (g + acos(wt)) %er (2.2)

where g is a constant acceleration, referred to for simplicity as gravitational, e, is the
radial unit vector, R is the radius of the drop, and a and w are the amplitude and
frequency of the oscillatory forcing.

Material properties such as density or viscosity are defined in the entire domain:

p(x,t) = p1 + (p2 — p1) 1(x,1)
u(x,t) = p1 + (u2 — 1) I(x, t). (2.3)

The indicator function, I, is a numerical Heaviside function, ideally zero in one phase
and one in the other phase. I is resolved with a sharp but smooth transition across 3 to
4 grid cells and is generated using a vector distance function computed directly from the
tracked interface (Shin & Juric 2009).

The fluid variables u and P are calculated by a projection method (Chorin 1968).
The temporal scheme is first order, with implicit time integration used for the viscous
terms. For spatial discretization we use the staggered-mesh marker-in-cell (MAC) method
(Harlow & Welch 1965) on a uniform finite-difference grid with second-order essentially
non-oscillatory (ENO) advection (Shu & Osher 1989). The pressure and distance function
are located at cell centers while the x, y and z components of velocity are located at
the faces. All spatial derivatives are approximated by standard second-order centered
differences. The treatment of the free surface uses a hybrid Front-Tracking/Level-Set
technique which defines the interface both by a discontinuous density field on the Eulerian
grid as well as by triangles on the Lagrangian interface mesh.

The surface tension F is implemented by the hybrid/compact formulation (Shin 2007)

Fr-N
F = VI =
ORHg y KE N.N

where o is the surface tension coefficient and xpg is twice the mean interface curvature
field calculated on the Eulerian grid, with

F, :/ kngdr (x —xy)ds, N:/ ngds(x —xy)ds (2.5)
() I(t)

(2.4)

Here, x; is a parameterization of the time-dependent interface, I'(t), and 7 (x — xy) is
a Dirac distribution that is non-zero only where x = x;; ny stands for the unit normal
vector to the interface and ds is the length of an interface element; sy is twice the mean
interface curvature obtained on the Lagrangian interface. The geometric information,
unit normal, ny, and interface element length, ds in IN are computed directly from the
Lagrangian interface and then distributed onto the Eulerian grid using the discrete delta
function and the immersed boundary method of Peskin (1977). A detailed description of
the procedure for calculating F, N and I can be found in Shin & Juric (2007).

The Lagrangian interface is advected by integrating dxy/dt = V with a second-order
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Runge-Kutta method where the interface velocity, V, is interpolated from the Eulerian
velocity.

The parallelization of the code is based on algebraic domain decomposition, where the
velocity field is solved by a parallel generalized minimum residual (GMRES) method for
the implicit viscous terms and the pressure by a parallel multigrid method motivated by
the algorithm of Kwak & Lee (2004). Communication across process threads is handled
by message passing interface (MPI) procedures.

The code contains a module for the definition of immersed solid objects and their
interaction with the flow, which we have used to simulate Faraday waves in a spherical
container. In order to simulate a fluid within a solid sphere we take the simple approach
of defining all grid cells whose centers lie within the solid region as solid. Then the
usual velocity and pressure boundary conditions are applied to those cell faces as in
the projection method at conventional no-slip domain boundaries. On a Cartesian grid
this necessarily creates a stair-stepped solid/fluid boundary; however it is found that the
method works well in practice and is simpler than and equivalent to other approaches
which impose a near-wall force to ensure a no-slip condition at the solid (Tryggvason
et al. 2011).

Further details are available in Shin et al. (2015).

2.3. Physical and numerical parameters

Our numerical code, like our Floquet analysis, can treat inner and outer spherical
domains of any size containing fluids of any density p, viscosity v, and surface tension o,
leading potentially to a large number of non-dimensional parameters, in addition to those
describing the forcing amplitude and frequency. We have chosen to limit the parameter
space as follows.

The high density ratio pq/pout = 8% 10* between the drop and the outer fluid minimizes
the effect of the outer fluid.

The viscosity of both fluids is sufficiently low that the stability diagram approaches
that of the Mathieu equation. (One of the conclusions of our companion paper is that the
Mathieu equation describes the inviscid Faraday instability even in a spherical geometry.)
More specifically, v4/(R?*w) is between 0.0003 and 0.0006 for the capillary cases and 0.002
and 0.0006 for the gravitational cases. Thus, the configuration we have simulated is close
to an inviscid fluid drop in a vacuum. Usually, Faraday waves are subharmonic, i.e. their
period is twice the forcing period T. However, in this low-viscosity regime, we can easily
excite harmonic waves as well (Kumar 1996), whose period is the same as the forcing
period. Although our thresholds are close to the inviscid ones, the Reynolds number is
not large, since the velocity depends on the forcing amplitude a so that Re ~ aR/(wvg) ~
0(100).

The domain is either a cube whose half-side is 5R/3, or a sphere whose radius is
2 R inscribed in a cube of half-side 2 R. See figures 2 and 4. In both cases, the mesh is
Cartesian. The domain is divided into subdomains, each of which contains 322 gridpoints
and assigned to a process thread. Unless otherwise stated, our resolution is 642, for which
we use 22 = 8 subdomains and processes. For a few cases, we have carried out simulations
with a resolution of 2563, for which we use 8 = 512 subdomains and processes. Except
for the case described in section 3.1, we obtained the same patterns as with the lower
resolution. We take about 2000 timesteps per forcing period T

For some of our simulations, the initial condition for the interface is a sphere perturbed
only by its representation on a triangular mesh as described in section 2.2; this is the
condition designated as spherically symmetric in table 1. In other cases, the sphere is
perturbed according to one of the formulas given by Busse (1975). Axisymmetric initial
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Temporal Forcing Final

¢ Response Initial Condition Amplitude Frequency Pattern
Gravitational ajag w/wgy

1 subharmonic spherically symmetric 0.26 1.96 Translational

2 harmonic axisymmetric 0.50 1.37  Prolate-Oblate
Capillary afac w/we

3 subharmonic spherically symmetric 13.53 13.21  Tetrahedral

4 subharmonic spherically symmetric 5.07 16.61  Cubic-Octahedral

5 subharmonic axisymmetric 22.00 25.02 Dy

6 subharmonic icosahedral 16.07 30.63 Cubic-Octahedral

TABLE 1. Parameters of imposed forcing and of the observed response.

conditions are of the form
(—RxY)+cec. (2.6)

where c.c. means complex conjugate. In all cases, the initial velocity is zero.

Table 1 lists the simulations which we will describe in this paper. We study either
gravity or capillary waves, i.e. a Bond number pgR? /o of either infinity or zero. Figure 1
locates the parameter values that we have used for our simulations within the instability
tongues for the gravitational or capillary cases, where

g 2_ O

R “e = LR3
ag = ng =g ae = Rw? (2.7b)

wg (2.7a)

See Ebo Adou & Tuckerman (2015) for more details on this non-dimensionalization.
(For our low-viscosity cases, the tongues are very close to the inviscid ones; we plot the
inviscid tongues for simplicity.) Frequencies are chosen to induce instabilities from ¢ = 1
to £ = 6, as predicted from linear Floquet theory. In each case, the value of ¢ from the
full three-dimensional nonlinear direct simulations agrees with the theoretical value.

2.4. Spherical harmonic transform

In order to analyze the shape of the drop quantitatively, we present its time-dependent
spectral coefficients, both |{;*(¢)| from (1.1) and

’ 1/2
|Ce(t)] = [Z |<z,m<t>|2] (2.8)
m=0

We calculate the spherical harmonic transform as follows. The three-dimensional
Lagrangian interface consists of triangles composed of points (z;,¥;,2;) on the Carte-
sian grid. We transform each of these points to spherical coordinates ((;,6;, ;). We
interpolate the function ((6;, ¢;) = ¢; onto a regular spherical grid (6;, ¢x), discretizing
the latitudinal interval [0, 7] and longitudinal interval [0, 27] with Ny = 80 and N, = 80
points. Using the discrete data ((6;, ¢x) and truncating the series (1.1) at four times the
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FIGURE 1. Instability tongues resulting from oscillatory forcing with amplitude a and angular
frequency w for an inviscid drop with parameters given in table 1. Diamond shapes designate the
parameter values of our simulations. Solid curves bound subharmonic tongues and dashed curves
bound harmonic tongues. (a) Tongues corresponding to gravitational instability with spherical
wavenumbers ¢ = 1, 2, 3, 4 originate at w/wy = 2\/Z/n, with n = 1 for subharmonic tongues and
n = 2 for harmonic tongues. (b) Tongues corresponding to capillary instability with spherical

wavenumbers ¢ = 2, 3, 4, 5, 6 originate at w/w. = 24/£(¢ — 1)(¢ + 2)/n.
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FIGURE 2. Visualization of ¢ = 1 mode for drop. The drop is displaced alternately to the left
and the right, and finally hits the surface of the domain. The cubic domain is shown, as well as
the eight subdomains, each of which is assigned to a process thread.

dominant value of ¢, we compute the spherical harmonic coefficients (;" by the method
of least squares (Politis 2013). This procedure is carried out for each sampled temporal
snapshot of the interface.

The spectrum in m (but not in £) depends on the orientation. We can rotate a pattern
by localizing the coordinates (6, ¢) of one of its features, such as a maximum, rotating in
longitude ¢ to place it in the (z, z) plane and then rotating in colatitude 6 to place this
feature at the north pole. This allows us to interpret our spectra by using the explicit
representations given by Busse (1975) of various patterns in terms of ¥;". Conversely, if
the shape of the pattern is known or constant, the spectrum in m can be used to track
its orientation, and changes in its orientation.

3. Results
3.1. Casel =1

We study the ¢ = 1 case in the purely gravitational regime, i.e. in the presence of a
constant radial force ge, included in the time-periodic force (2.2), and without surface
tension. Our simulations of this case exhibit a periodic subharmonic translational motion
of the sphere about its original position, as shown in figure 2. This explains why the £ = 1
case is prohibited for capillary waves: translational motion does not involve deformation
of the interface, and so surface tension cannot act as a restoring force. The oscillations
increase in amplitude until the drop hits the boundary of the cubic domain; despite
decreasing the excitation amplitude, we have thus far been unable to obtain an asymptotic
regime.

The subharmonic tongue for ¢ = 1 overlaps with the harmonic tongue for £ = 4 over a
range of forcing frequencies; see figure 1. When the driving parameters lie in this region,
we find that the mode obtained depends on the numerical resolution. For a resolution of
64> we obtain subharmonic ¢ = 1 oscillations, while for a resolution of 256% the harmonic
£ = 4 solution is obtained, but will not be presented here.

As stated by Busse (1975), there is no competition between different patterns in this
case. All solutions are obtained by rotation of a single axisymmetric pattern, which is
expected to be stable. (The three spherical harmonics Yll,Ylo,Yl_1 are also related by
rotation.)
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3.2. Casel =2

To produce a case in which £ = 2 is the dominant mode, we have simulated harmonic
oscillations in the gravitational regime. A sequence of figures from our numerical sim-
ulations showing the shape and velocity field at the interface is shown in figure 3 and
figure 4, which also shows the velocity field in the outer fluid. The interface remains
axisymmetric and spheroidal, with two principal axes of the same length, and a third of
a different length. Figure 3(a) shows a prolate shape, like a rugby ball (the third axis is
longer than the other two), while the shape in figure 3(c) is oblate, like a disk (the third
axis is shorter). During the prolate phase, the velocity is directed in the polar direction,
while during the oblate phase it is directed in the equatorial direction. At maximum
deformation, the velocity changes direction, so that the velocity is minimum when the
surface is most deformed and maximum when it is least deformed. Because the interface
is opaque, velocity vectors directed inwards cannot be seen.

Oblate-to-prolate oscillations have been studied extensively (Trinh & Wang 1982;
Tsamopoulos & Brown 1983; Patzek et al. 1991). These authors observe that the drop
spends a longer time in the prolate than in the oblate configuration. Figure 5 shows
the amplitude |(max — Cmin| as a function of time. The prolate and oblate configurations
are represented by higher and lower maximum values of |(max — Cmin|, respectively. We
observe that the drop spends about 60% of each period in the prolate configuration, in
agreement with the literature (Trinh & Wang 1982; Tsamopoulos & Brown 1983; Patzek
et al. 1991).

We present the results of the spherical harmonic transform of the interface height
¢(0, ¢,t). Figure 6 shows the time evolution of the amplitude of {;, defined in (2.8). The
most visible feature of figure 6 is its rapid oscillation. In order to examine the dynamics
on larger timescales, we extract the envelope of each (;, as shown by the bold curves in
figure 6. There is no variation in (y, since this is the mean radius, and cannot change
due to incompressibility. Although ¢ = 2 is the dominant non-zero spherical wavenumber
for this case, other even ¢ (multiples of 2) are also present. These wavenumber multiples
nf are generated by nonlinear interactions which also multiply the growth rates and
frequencies by the same factor of n.

Although we began our simulations by perturbing the sphere with an axisymmetric
initial condition, proportional to Y3 + c.c., the drop orientation quickly tilted away from
the z axis, acquiring components with m # 0. while remaining axisymmetric about its
own axis. The symmetry axis continues to oscillate periodically, with alternating phases
in which m = 2 and then m = 1 dominates, as shown in figure 7.

We have also obtained prolate-oblate oscillations in simulations (not presented here)
of subharmonic capillary waves with an axisymmetric initial condition.

According to Busse (1975); Chossat et al. (1991), the only allowed solution for ¢ = 2
is axisymmetric, and is unstable at onset. Our observation of a stable asymptotic regime
does not contradict this result since our parameter values are far from onset.

3.3. Case =3

For ¢ = 3, there exist solutions with three possible symmetries: axisymmetric, Dg,
and tetrahedral. Either the Dg or the tetrahedral solution can be stable at onset (Busse
1975; Chossat et al. 1991). Our solution for this case has tetrahedral symmetry, as can
be seen in figure 8, which shows subharmonic capillary oscillations. The initial condition
is a slightly perturbed sphere, but the same behavior is seen starting from an initial
condition proportional to Y{. Over a half oscillation period, the tetrahedron in figure
8(a) reverses its orientation, as shown in figure 8(c), since this polyhedron is self-dual.



10 A. Ebo Adou, L.S. Tuckerman, S. Shin, J. Chergui and D. Juric

lul
I 0.14
0.1
0.05
0.00

(a) t =0 (b) t = T/4 (c) t =T/2 (d) t= /4

FIGURE 3. Drop interface and velocity field for ¢ = 2 pattern of gravitational harmonic waves
over one reponse period T. During the prolate phase, the velocity is directed in the polar
direction, while during the oblate phase it is directed in the equatorial direction. Colors indicate
the magnitude of the velocity, which is maximal when the surface is least deformed and minimal
where it is most deformed. Only outward-point velocity vectors are shown; those pointing inwards
are hidden by the opaque surface of the drop.
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FIGURE 4. Same as figure 3 but from a slightly different perspective and showing the outer
bounding sphere and the velocity field in the outer fluid.
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FIGURE 5. Timeseries of interface amplitude |(max — ¢min| for £ = 2. Insets show the projection
of the height ((0,®) on the sphere. Prolate and oblate configurations have higher and lower
maximum values of |(max — Cmin|, respectively. The drop spends about 60% of each period in
the prolate configuration.
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FIGURE 6. Timeseries of components of different £ modes when the dominant mode is £ = 2
(indicated by the boxed label). All multiples of £ = 2 are present, as well as £ = 0, which is
the constant average radius. Long-time evolution is visualized by envelopes (bold curves) of the
rapidly oscillating timeseries. The growth rate of component (4 is about twice that of (2.

0 50 100 150
/T
FIGURE 7. Timeseries of components of various m modes, when the dominant mode is ¢ = 2.
Initially, the drop is axisymmetric and the only component is m = 0. The drop remains
axisymmetric, but its axis of symmetry tilts away from the z axis, which continues to oscillate
periodically, manifested by alternating dominance of m =1 and m = 2.
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FI1GURE 8. Drop interface and corresponding velocity field for ¢ = 3 pattern seen in subharmonic
capillary waves over one reponse period 27". Colors indicate the magnitude of the velocity, which
is maximal when the surface is least deformed and minimal where it is most deformed. Only
outward-pointing velocity vectors are shown; those pointing inwards are hidden by the opaque
surface of the drop.
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FIGURE 9. Time evolution of the amplitudes of modes with different ¢ values. The principle
mode is ¢ = 3. The amplitude of mode ¢ = 4 is very close to that of the second harmonic ¢ = 6,
and that of £ =7 = 3 + 4 is close to that of the third harmonic ¢ = 9.
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FI1GURE 10. Time evolution of the amplitudes of (3*. The initial position of the pattern is tilted
with respect to the z axis. As the m = 2 component increases, the pattern aligns with the z
axis. It then decreases as the pattern tilts again.
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The pattern contains ¢ components other than ¢ = 3, as illustrated in figure 9. In
particular, an important ¢ = 4 component is present, more specifically (¢, m) = (4,0)
and (4,4), which will be seen in figure 13 to compose a cube. These components may
be due to the Cartesian grid, since they are present even in a domain bounded by an
immersed sphere rather than a cubic box.

Initially, the pattern is not aligned with the domain, but, over long times, it tilts to
become aligned with the z axis. This is illustrated in figure 10, since

(—RxYi+cec. (3.1)

corresponds to a tetrahedron aligned with the z-axis (Busse 1975). Subsequently, the
pattern again tilts out of alignment.

3.4. Casel =4

When ¢ = 4, the preferred solution possesses octahedral/cubical symmetry O (Busse
1975; Matthews 2003). Visualizations of our numerical simulations of subharmonic cap-
illary oscillations are shown in figure 11. Two initial conditions, axisymmetric or a per-
turbed sphere, gave similar results. We have also obtained a cubic pattern in simulations
(not presented here) of harmonic gravitational waves with a spherical initial condition
and a resolution of 2563. The pattern oscillates between resembling a cube, with six
square faces, of which three meet at each vertex, and resembling its dual, the octahedron
with eight equilateral triangles, four of which meet at each corner.

Figure 12 shows that, in addition to £ = 4 and its harmonics, the ¢ wavenumber
spectrum contains a large ¢ = 6 component, along with its harmonics, and modes
resulting from interactions between the ¢ = 4 and ¢ = 6 families. We observe that
the pattern is always aligned with the numerical domain, with two faces or minima (for
the cube) or two vertices or maxima (for the octahedron) located at the north and south
poles. With this alignment, Busse (1975) gives a construction of a cubic solution as a
sum of zonal and sectoral modes:

(—Rx V7Y +V5Y} +ce. (3.2)

The time evolution of ¢{ and ¢f during our simulation is shown in figure 13.

Bifurcation theory predicts two possible solutions at onset (Busse 1975; Chossat et al.
1991), with axisymmetric or cubic symmetry, produced by a transcritical bifurcation and
with neither branch stable at onset. Our simulations are far from the threshold, so it is
likely that secondary bifurcations have taken place which stabilize existing branches and
create new ones.

3.5. Case =5

The theoretical analysis of the ¢ = 5 case is the most complicated of those surveyed here
(Busse & Riahi 1982; Riahi 1984), since it leads to eight allowed solutions with different
symmetries (Chossat et al. 1991). Figures 14 and 15 show gravitational subharmonic
oscillations, starting from an initial condition which is an axisymmetric perturbation of
the sphere, proportional to Y. The solution is at first axisymmetric, as shown in figure
14, but is eventually replaced by another solution with Dy symmetry, shown in figure 15.
The pattern remains aligned with the z axis. The upper hemisphere contains four patches
of outward (inward) flow, and the lower hemispere contains four similar patches, located
at longitudes which are halfway between those of the patches of the upper hemisphere.
This pattern corresponds to the preferred solution F described by Riahi (1984):

(-RocV3Y2+V5Y: +ce (3.3)
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FIGURE 11. Drop interface and velocity field for £ = 4 pattern seen in subharmonic capillary
waves over one reponse period 27. The interface oscillates between (a) an octahedron, with
six maxima, and (c) a cube, with eight maxima. Colors indicate the magnitude of the velocity,
which is maximal (minimal) when the surface is least (most) deformed. Only outward-pointing
velocity vectors are shown.
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FIGURE 12. Time evolution of amplitude of different ¢ components when the dominant
wavenumber is ¢ = 4. The spectrum also contains an important ¢ = 6 component. The
spectrum contains multiples of 4, multiples of 6, and combinations of the two (10=4+6, 14=8+6,
20=8+12).
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FIGURE 13. Evolution of amplitudes of important modes m = 0 and m = 4, which together
comprise the pattern with cubical symmetry for ¢ = 4. Inset shows projection of height on the
sphere at instants at which the interface has a cubic or octahedral shape. The alignment with
the z axis can be seen, for example by the red patch at the north pole (where the longitudinal
gridlines meet) for the octahedron.
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FIGURE 14. Drop interface and corresponding velocity field for axisymmetric £ = 5 pattern

seen in subharmonic capillary waves over one reponse period 27. Colors indicate the magnitude

of the velocity, which is maximal (minimal) when the surface is least (most) deformed. Only
outward-pointing velocity vectors are shown.
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FIGURE 15. Drop interface and corresponding velocity field for ¢ = 5 pattern with D4
symmetry.
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FIGURE 16. Time evolution of the amplitudes of modes with different ¢ values when the

dominant mode is £ = 5. Components 4, 6, 8 are present, in addition to the expected multiples
of 5.
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FIGURE 17. Time evolution of the amplitudes of modes Y5". An initially axisymmetric pattern,
composed of Y2, proves to be unstable and is replaced by a D4 pattern, which is a superposition
of Y2 and Y. Insets shows projections on sphere of ¢(#, ¢) of axisymmetric pattern and two
views of D4 pattern.

Because the pattern remains aligned with the z axis, the transition from an axisymmetric
pattern to (3.3) can be tracked by following the different m modes, as is done in figure 17.
The initial plateau in ¢ indicates that the axisymmetric phase of the oscillations shown
in figure 14 comprises a solution, albeit unstable, of our system. The later decrease in ¢?
is accompanied by an increase in (2, which together comprise the stable solution with
D4 symmetry.

3.6. Case £ =6

For ¢ = 6, there exist four possible solutions: axisymmetric (O(2)), six-fold symmetric
(Dg) octahedral (O), and icosahedral (I). Of these, the icosahedral solution is preferred,
via a maximization argument (Busse 1975) or a stability argument (Matthews 2003).
Figures 18 and 19 show subharmonic capillary oscillations carried out in a domain
bounded by an outer sphere. The initial condition is an icosahedral perturbation of the
sphere (Busse 1975):

(- RxVI1YY + V14 YP +cec. (3.4)

The first phase of the solution is shown in figure 18, whose five-fold symmetry is clearly
visible. Figure 18(a) resembles a dodecahedron, i.e. pentagons which meet in sets of three
at the vertices. Figure 18(c) resembles an icosahedron, i.e. triangles which meet in sets
of five at the vertices. Further evolution leads to the solution shown in figure 19, which
oscillates between a cube and its dual, an octahedron,

Figure 20 shows the time evolution of the spectrum in ¢ for this case, while figure 21
shows the time evolution of the most important m modes associated with £ = 6. The
icosahedral pattern, consisting of modes m = 0 and m = 5, quickly tilts away from the
z axis and is then replaced by a cubic pattern, whose dominant mode is m = 4. The
subsequent increase in m = 3 is associated with the tilting of the cubic pattern away
from the z axis, rather than a change in the pattern.

Simulations carried out in a cubic domain from a spherical initial condition per-
turbed only by its discrete representation on a triangular mesh led directly to the
cubic/octahedral solution, even when the resolution was increased from 64% to 2563.
The preference for a cubic/octahedral pattern, even from an icosahedral initial condition
in a nominally spherical domain, contradicts the theoretical prediction of preference for
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F1GURE 18. Drop interface and corresponding velocity field for £ = 6 pattern with icosahedral

symmetry seen in subharmonic capillary waves over one reponse period 27'. Colors indicate
the magnitude of the velocity, which is maximal (minimal) when the surface is least (most)

deformed. Only outward-pointing velocity vectors are shown.
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F1GURE 19. Drop interface and corresponding velocity field for £ = 6 pattern with cubic
symmetry.
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FIGURE 20. Time evolution of the amplitudes of modes with different ¢ values when the
dominant mode is ¢ = 6. In addition to multiples of 6, the spectrum contains multiples of 4

and combinations of the two.
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FIGURE 21. Evolution of amplitudes of m modes for £ = 6. From an icosahedral initial condition
composed of modes m = 0 and m = 5, the pattern tilts away from the z axis and eventually
acquires cubic symmetry with dominant mode is m = 4. The subsequent increase in mode m = 3
is associated with a tilting of orientation of the cubical pattern away from the z axis. Insets
show projections of icosahedral and dodecahedral phases of the initial pattern, side (equatorial)
and top (polar) view of a single cubic pattern aligned with the z axis, and a tilted cubic pattern.

icosahedral patterns and may be due to the residual cubical symmetry of the underlying
Cartesian grid.

4. Discussion

Simulating our spherical Faraday problem with the parallel front-tracking code BLUE,
we have been able to produce patterns with all spherical harmonic wavenumbers, going
from £ =1to ¢ =6. For / =1 and ¢ = 2, we have simulated the gravitational regime,
while for £ = 3,4, 5,6, we have simulated capillary waves. Most of our simulations are of
the usual subharmonic regime, but we have also been able to simulate harmonic waves
in several cases, in particular ¢ = 2.

Our simulations agree in most cases with two types of theory. First, the spherical
harmonic wavenumber £ obtained in each case agrees with the results of Floquet analysis,
presented in our companion paper (Ebo Adou & Tuckerman 2015) and in figure 1.

Second, the interface shapes we observe are readily interpreted using the theory of
pattern formation on the sphere, despite the important differences with our configuration
mentioned in the introduction, i.e. the fact that our patterns are oscillatory rather than
steady and that our parameters are far above threshold. For £ = 1 and ¢ = 2, only one
type of pattern is possible, and that is the one we observe. For our vibrating drop, the
¢ =1 “pattern” is manifested as a back-and-forth motion of the spherical drop, while
the ¢ = 2 pattern alternates between an oblate and a prolate spheroid. For ¢ = 3, we
observe a tetrahedral pattern, one of the two solutions predicted to be stable (out of the
three which can exist), while for £ = 4, we observe a cubic/octahedral pattern, one of
the two solutions predicted to exist. For / = 5, we observe an unstable axisymmetric
pattern and a stable Dy pattern. These are two of the eight possible solutions; Dy is one
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of those which can be stable at onset. For ¢ = 6, the pattern which eventually emerges is
cubic/octahedral. It is only in this case that our results differ from theory, which predicts
that the icosahedral solution is the preferred solution, while in our case, it is a transient
even when it is introduced as the initial condition. We conjecture that this difference
may be due to cubical forcing by the underlying Cartesian grid.

It would be interesting to extend the results further by conducting a more detailed
bifurcation analysis. We recall that we simulate primarily subharmonic oscillations and,
in some cases, harmonic oscillations. For the discrete-time system derived by sampling the
continuous-time system at a single phase of the forcing period, harmonic oscillations are
fixed points, while subharmonic oscillations are two-cycles. Because of this, harmonic
oscillations can result from transcritical bifurcations, while subharmonic oscillations
are necessarily associated with pitchfork bifurcations. For even /¢, bifurcation theory
(Matthews 2003) predicts transcritical bifurcations, which cannot occur for subharmonic
oscillations. In this sense, bifurcations to harmonic oscillations in our time-periodic
system may more closely resemble bifurcations in steady systems.

Another avenue of exploration that has arisen in our study is that of long-term
dynamics. The ¢ = 2 (prolate-oblate), £ = 3 (tetrahedral) and ¢ = 6 (cubical-octahedral)
cases all show the drop tumbling into and out of alignment with the coordinate system,
as illustrated in figures 7, 10 and 21. One might expect a cubical pattern to remain
aligned with the coordinate system, and it does in the ¢ = 4 case, but not for ¢/ = 6.
It is possible that these long-term dynamics might be permanent, much like those in
hexagonal Faraday waves in a minimal domain (Périnet et al. 2012).

The spectral analysis of our states demonstrates the complexity of these patterns, since
large components which are not multiples of the dominant ¢ are present. Some of these
components may result from the Cartesian forcing. Others may provide evidence that
the states that we observe are not in fact those produced at the primary bifurcations,
but from secondary symmetry-breaking bifurcations that have yet to be explored.

On a practical level, we have demonstrated the feasibility of numerical simulation of an
oscillating drop. We believe that the Faraday problem serves as a rigorous proving ground
for numerical interface techniques since both qualitative and quantitative comparison of
precise quantities is necessary. We hope that this work on the spherical Faraday instability
can open up new possibilities in the study of pattern formation and that the numerical
code can serve as a useful tool in the exploration of this rich dynamical system.
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