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Faraday instability on a sphere: Floquet analysis
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Standing waves appear at the surface of a spherical viscous liquid drop subjected to
radial parametric oscillation. This is the spherical analogue of the Faraday instability.
Modifying the Kumar & Tuckerman (J. Fluid Mech., vol. 279, 1994, pp. 49–68)
planar solution to a spherical interface, we linearize the governing equations about
the state of rest and solve the resulting equations by using a spherical harmonic
decomposition for the angular dependence, spherical Bessel functions for the radial
dependence and a Floquet form for the temporal dependence. Although the inviscid
problem can, like the planar case, be mapped exactly onto the Mathieu equation, the
spherical geometry introduces additional terms into the analysis. The dependence of
the threshold on viscosity is studied and scaling laws are found. It is shown that
the spherical thresholds are similar to the planar infinite-depth thresholds, even for
small wavenumbers for which the curvature is high. A representative time-dependent
Floquet mode is displayed.
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1. Introduction
The dynamics of oscillating drops is of interest to researchers in pattern formation

and dynamical systems, as well as having practical applications over a wide variety
of scales in areas as diverse as astroseismology, containerless material processing for
high purity crystal growth and drug delivery and mixing in microfluidic devices.

Surface tension is responsible for the spherical shape of a drop. In the absence of
external forces, if the drop is slightly perturbed, it will recover its spherical shape
through decaying oscillations. This problem was first considered by Kelvin (1863)
and Rayleigh (1879), who described natural oscillations of drops of inviscid fluids.
Rayleigh (1879) and Lamb (1932) derived the, now classic, resonance mode frequency
resulting from the restoring force of surface tension:

ω2 = σ
ρ

`(`− 1)(`+ 2)
R3

, (1.1)

where ω is the frequency, σ and ρ the surface tension and density, R is the radius
and ` is the degree of the spherical harmonic

Ym
` = Pm

` (cos θ)eimφ (1.2)
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describing the perturbation. Linear analyses including viscosity were carried out by
Reid (1960), Chandrasekhar (1961) and Miller & Scriven (1968). These authors
demonstrated the equivalence of this problem to that of a fluid globe oscillating
under the influence of self-gravitation, generalizing the previous conclusion of Lamb.
Chandrasekhar showed that the return to a spherical shape could take place via
monotonic decay as well as via damped oscillations. The problem was further
investigated by Prosperetti (1980) using an initial-value code. Weakly nonlinear
effects in inviscid fluid drops were investigated by Tsamopoulos & Brown (1983)
using a Poincaré–Lindstedt expansion technique.

The laboratory realization of any configuration with only spherically symmetric
radially directed forces is difficult. Indeed such experiments have been sent into
space, e.g. (Wang, Anilkumar & Lee 1996; Futterer et al. 2013) and in parabolic
flight (Falcón et al. 2009) in order to eliminate or reduce the perturbing influence
of the gravitational field of the Earth. Wang et al. (1996) were able to confirm the
decrease in frequency with increasing oscillation amplitude predicted by Tsamopoulos
& Brown (1983). Wang et al. (1996) mention, however, that the treatment of viscosity
is not exact. Falcón et al. (2009) produced spherical capillary wave turbulence and
compared its spectrum with theoretical predictions.

In the laboratory, drops have been levitated by using acoustic or magnetic forces
and excited by periodic electric modulation (Shen, Xie & Wei 2010); drops and
puddles weakly pinned on a vibrating substrate (Brunet & Snoeijer 2011) have
produced star-like patterns. One of the purposes of such experiments is to provide
a measurement of the surface tension. Trinh, Zwern & Wang (1982) visualized the
shapes and internal flow of vibrating drops and compared the frequencies to those
of Lamb (1932) and the damping coefficients to those derived by Marston (1980).
These experimental procedures cannot produce a perfectly spherical base state, and
indeed, Trinh & Wang (1982) and Cummings & Blackburn (1991) discuss differences
between oscillating oblate and prolate drops, and the resulting deviations from (1.1).
Because the experimentally observed frequencies remain close to (1.1), it seems likely
that the results of our stability analysis are also only mildly affected by a departure
from perfect spherical symmetry.

Here, and in a companion paper, we consider a viscous drop under the influence
of a time-periodic radial bulk force and of surface tension. Our investigation relies
on a variety of mathematical and computational tools. Here, we solve the linear
stability problem by adapting to spherical coordinates the Floquet method of
Kumar & Tuckerman (1994). At the linear level, the instability depends only on
the spherical wavenumber ` of (1.2) as illustrated by the Lamb–Rayleigh relation
(1.1). Thus, perturbations which are not axisymmetric (m 6= 0 in (1.2)) have the
same thresholds as the corresponding axisymmetric (m= 0) perturbations. Indeed, the
theoretical and numerical investigations listed above have assumed that the drop shape
remains axisymmetric. The fully nonlinear Faraday problem, however, usually leads
to patterns which are non-axisymmetric. In our complementary investigation (Ebo
Adou et al. 2016), we will describe the results of full three-dimensional simulations
which calculate the interface motion and the velocity field inside and outside the
parametrically forced drop and interpret them in the context of the theory of pattern
formation.

2. Governing equations
2.1. Equations of motion

We consider a drop of viscous, incompressible liquid bounded by a spherical free
surface that separates the liquid from the exterior in the presence of an uniform radial
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Faraday instability on a sphere: Floquet analysis 593

oscillatory body force. The fluid motion inside the drop satisfies the Navier–Stokes
equations

ρ

[
∂

∂t
+ (U · ∇)

]
U=−∇P+ η∇2U− ρG(r, t)er, (2.1a)

∇ ·U= 0, (2.1b)

where U is the velocity, P the pressure, ρ the density and η the dynamic viscosity.
G(r, t) is an imposed radial parametric acceleration given by

G(r, t)= (g− a cos(ωt))
r
R
, (2.2)

which is regular at the origin.
The interface is located at

r= R+ ζ (θ, φ, t). (2.3)

Conservation of volume leads to the requirement that the integral of ζ over the sphere
must be zero.

The boundary conditions applied at the interface are the kinematic condition, which
states that the interface is advected by the fluid[

∂

∂t
+ (U · ∇)

]
ζ =Ur|r=R+ζ (2.4)

and the interface stress balance equation, which is given by

n · Π̂ − n ·Π = σn(∇ · n)−∇σ , (2.5)

where σ is the surface tension coefficient and n represents the unit outward normal
to the surface, both defined only on the interface.

The tensors Π (drop) and Π̂ (medium) denote the stress tensor in each fluid and
are defined by

Π =−PId + η[∇U+ (∇U)T]. (2.6)

For simplicity, we consider a situation in which the outer medium has no effect on
the drop, and so we set the density, pressure and stress tensor Π̂ outside the drop to
zero. The boundary conditions corresponding to the case of drop forced in a medium
are described in the appendix. We assume that the surface tension is uniform, so
∇σ = 0. The tangential stress balance equation at the free surface then reduces to

n ·Π · t= 0 (2.7)

for both unit tangent vectors t.
The normal stress jump boundary condition determines the curvature of the

deformed interface. The Laplace formula relates the normal stress jump to the
divergence of the normal field, which is in turn equal to the mean curvature:

−n ·Π · n= σ∇ · n= σ
(

1
R1
+ 1

R2

)
, (2.8)

with R1 and R2 the principal radii of curvature at a given point of the surface.
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594 A. Ebo Adou and L. S. Tuckerman

For a sphere, R1 = R2 = R and (2.8) becomes

P|r=R = 2
σ

R
(2.9)

and the solution to the governing equations (2.1a) and boundary conditions (2.4), (2.7),
(2.8) is the motionless equilibrium spherical state at r= R with

Ū= 0, (2.10a)

P̄(r, t)= 2
σ

R
−
∫ R

r
ρG(r′, t) dr′, (2.10b)

where P̄ is continuously differentiable at the origin because G(0, t)= 0.

2.2. Linearizing the governing equations
We linearize the Navier–Stokes equations about the unperturbed state (2.10) by
decomposing the velocity and the pressure

U= Ū+ u, (2.11a)
P= P̄+ p, (2.11b)

which leads to the equation for the perturbation fields u and p

ρ
∂u
∂t
=−∇p+ η∇2u, (2.12a)

∇ · u= 0. (2.12b)

We write the definitions in spherical coordinates of various differential operators:

∇H·≡ 1
r sin θ

∂

∂θ
sin θ êθ ·+ 1

r sin θ
∂

∂φ
êφ, (2.13a)

∇H ≡ êθ
r
∂

∂θ
+ êφ

r sin θ
∂

∂φ
, (2.13b)

∇2
H ≡

1
r sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r sin θ
∂

∂φ
. (2.13c)

For a solenoidal field satisfying (2.12b), definitions (2.13c) lead to

(∇2u)r =
(

1
r2

∂

∂r
r2 ∂

∂r
+∇2

H −
2
r2

)
ur − 2

r
∇H · uH

=
(

1
r2

∂

∂r
r2 ∂

∂r
− 2

r2
+ 2

r3

∂

∂r
r2 +∇2

H

)
ur

=
(

1
r3

∂

∂r
r2 ∂

∂r
r+∇2

H

)
ur ≡ L̃ 2ur. (2.13d)

We can then eliminate the horizontal velocity uH = (uθ , uφ) and the pressure p from
(2.12a) in the usual way by operating with er · ∇×∇× on (2.12a), leading to:

L̃ 2

(
∂

∂t
− νL̃ 2

)
ur = 0. (2.14)
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Faraday instability on a sphere: Floquet analysis 595

Since we are interested in the linear stability of the interface located at r = R + ζ
with ζ � R, we Taylor expand the fields and their radial derivatives around r = R
and retain only the lowest-order terms, which are evaluated at r = R. The kinematic
condition (2.4) becomes

∂

∂t
ζ = ur|r=R. (2.15)

We now wish to apply the stress balance equations at r= R. The components of the
stress tensor which we will need are

Πrθ = η
(

1
r
∂ur

∂θ
+ r

∂

∂r

(uθ
r

))
, (2.16a)

Πrφ = η
(

1
r sin θ

∂ur

∂φ
+ r

∂

∂r

(uφ
r

))
, (2.16b)

Πrr = 2
∂ur

∂r
. (2.16c)

We have from (2.7) that the tangential stress components must vanish at r=R, leading
to:

Πrθ |r=R =Πrφ|r=R = 0. (2.17)

Taking the horizontal divergence of Πrθ êθ +Πrφ êφ leads to

0 = [∇H · (Πrθ êθ +Πrφ êφ)]r=R

= η

[
∇H ·

(
1
r
∂ur

∂θ
êθ + 1

r sin θ
∂ur

∂φ
êφ

)
+∇H ·

(
r
∂

∂r

(uθ
r

)
êθ + r

∂

∂r

(uφ
r

)
êφ

)]
r=R

= η

[
∇H · ∇Hur + ∂

∂r
∇H ·

(
uθ êθ + uφ êφ

)]
r=R

= η
[(
∇2

H −
∂

∂r
1
r2

∂

∂r
r2

)
ur

]
r=R

,(2.18)

which is the form of the tangential stress continuity equation that we impose.
We now wish to linearize the normal stress balance equation:

−[n ·Π · n]r=R+ζ = [n · (PId − η[∇U+ (∇U)T]) · n]r=R+ζ = σ
(

1
R1
+ 1

R2

)
. (2.19)

The right-hand side of (2.19) is σ times the curvature of a deformed interface and
can be shown (Lamb 1932, § 275) to be, up to first order in ζ ,

σ

(
1
R1
+ 1

R2

)
r=R+ζ

≈ 2σ
R
− σ

(
2
R2
+∇2

H

)
ζ . (2.20)

For the left-hand side of (2.19), we use (2.10) to expand the pressure as

(P̄+ p)r=R+ζ ≈ (P̄+ p)r=R +
(
∂P̄
∂r

)
r=R

ζ = 2
σ

R
+ p|r=R − ρG(R, t)ζ . (2.21)

Adding the term resulting from the viscosity leads to

−n ·Π · n|r=R+ζ ≈ 2
σ

R
+ p|r=R − ρG(R, t)ζ − 2η

(
∂ur

∂r

)
r=R

. (2.22)
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596 A. Ebo Adou and L. S. Tuckerman

Setting (2.20) equal to (2.22) leads to the desired linearized form:

p|r=R − ρG(R, t)ζ − 2η
(
∂ur

∂r

)
r=R

=−σ
(

2
R2
+∇2

H

)
ζ . (2.23)

It will be useful to take the horizontal Laplacian of (2.23):

∇2
Hp|r=R = 2η∇2

H
∂

∂r
ur|r=R + ρG(R, t)∇2

Hζ − σ∇2
H

(
2
R2
+∇2

H

)
ζ . (2.24)

We can derive another expression for ∇2
Hp|r=R by taking the horizontal divergence of

(2.12a):

∇2
Hp= 1

r2

(
ρ
∂

∂t
− η∇2

)
∂

∂r
(r2ur). (2.25)

Setting equal the right-hand sides of equations (2.25) and (2.24), we obtain the
pressure jump condition[

1
r2

(
ρ
∂

∂t
− η∇2

)
∂

∂r
(r2ur)− 2η∇2

H
∂

∂r
ur

]
r=R

= ρG(R, t)∇2
Hζ − σ∇2

H

(
2
R2
+∇2

H

)
ζ .

(2.26)
This is the only equation in which the parametrical external forcing appears explicitly;
note that only the value G(r = R, t) on the sphere is relevant. We now have a set
of linear equations (2.14), (2.15), (2.18) and (2.26) involving only ur(r, θ, φ, t) and
ζ (θ, φ, t), which reduce to those for the planar case (Kumar & Tuckerman 1994) in
the limit of R→∞.

3. Solution to linear stability problem
3.1. Spherical harmonic decomposition

The equations simplify somewhat when we use the poloidal–toroidal decomposition

u=∇× ( fTer)+∇×∇× ( f er). (3.1)

The radial velocity component ur depends only on the poloidal field f and is given
by

ur(r, θ, φ, t)=−∇2
Hf (r, θ, φ, t). (3.2)

Using (
1
r3

∂

∂r
r2 ∂

∂r
r+∇2

H

)
︸ ︷︷ ︸

L̃ 2

∇2
H =∇2

H

(
∂2

∂r2
+∇2

H

)
︸ ︷︷ ︸

L 2

(3.3)

we express (2.14) in terms of the poloidal field

∇2
H

(
∂

∂t
− νL 2

)
L 2f = 0. (3.4)

Functions are expanded in series of spherical harmonics Ym
` (θ, φ) = Pm

` (cos θ)eimφ

satisfying

∇2
HYm

` (θ, φ)=−
`(`+ 1)

r2
Ym
` (θ, φ). (3.5)
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Faraday instability on a sphere: Floquet analysis 597

We write the deviation of the interface ζ (t, θ, φ) and the scalar function f as

ζ (t, θ, φ)=
∞∑
`=1

`∑
m=−`

ζm
` (t)Y

m
` (θ, φ) and f (r, θ, φ, t)=

∞∑
`=1

`∑
m=−`

f m
` (r, t)Ym

` (θ, φ).

(3.6a,b)
The equations do not couple different spherical modes (`,m), allowing us to consider
each mode separately. The term multiplying σ∇2

Hζ in the normal stress equation (2.26)
becomes (

2
R2
+∇2

H

)
ζm
` =

(
2
R2
− `(`+ 1)

R2

)
ζm
` =−

(`− 1)(`+ 2)
R2

ζm
` . (3.7)

The value ` = 0 corresponds to an overall expansion or contraction of the sphere,
which is forbidden by mass conservation and is therefore excluded from (3.6). The
value ` = 1 corresponds to a shift of the drop, rather than a deformation of the
interface, so that surface tension cannot act as a restoring force; it is included in this
study only when the surface tension σ is zero and the constant radial bulk force g is
non-zero.

The complete linear problem given by (3.4), (2.15), (2.18) and (2.26) is expressed
in terms of f m

` (r, t) and ζm
` (t) as:(

∂

∂t
− νL 2

`

)
L 2
` f m
` = 0, (3.8)

∂

∂t
ζm
` =

`(`+ 1)
R2

f m
` |r=R, (3.9)(

L 2
` −

2
r
∂

∂r

)
f m
` |r=R = 0, (3.10)[(

ρ
∂

∂t
∂

∂r
− η

(
∂3

∂r3
+ 2

r
∂2

∂r2
− `(`+ 1)

(
3
r2

∂

∂r
− 4

r3

)))
f m
`

]
r=R

=−
(
ρG(R, t)+ σ (`− 1)(`+ 2)

R2

)
ζm
` , (3.11)

where we have used (3.2), (3.5) and

L 2
` ≡

∂2

∂r2
− `(`+ 1)

r2
(3.12)

and have divided through by `(`+ 1)/R2.
The value of m does not appear in these equations, in much the same way as the

Cartesian linear Faraday problem depends only on the wavenumber k and not on its
orientation.

3.2. Floquet solution
The presence of the time-periodic term in (3.11) means that (3.8), (3.9), (3.10),
(3.11) comprise a Floquet problem. To solve it, we follow the procedure of Kumar
& Tuckerman (1994), whereby ζm

` and f m
` are written in the Floquet form:

ζm
` (t)= e(µ+iα)t

∑
n

ζneinωt and f m
` (r, t)= e(µ+iα)t

∑
n

fn(r)einωt, (3.13a,b)
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598 A. Ebo Adou and L. S. Tuckerman

where µ + iα is the Floquet exponent and we have omitted the indices (`, m).
Substituting the Floquet expansions (3.13) into (3.8) gives, for each temporal
frequency n

(µ+ i(nω+ α)− νL 2
` )L

2
` fn = 0 (3.14)

or
(L 2

` − q2
n)L

2
` fn(r)= 0, (3.15)

where
q2

n ≡
µ+ i(nω+ α)

ν
. (3.16)

In order to solve the fourth-order differential equation (3.15), we first solve the
homogeneous second-order equation

(L 2
` − q2

n)f̃n = 0, (3.17)

which is a modified spherical Bessel, or Riccati–Bessel, equation (Abramowitz &
Stegun 1965). The general solutions are of the form

f̃n(r)= B̃nr1/2J`+1/2(iqnr)+ D̃2
nr1/2J−(`+1/2)(iqnr), (3.18)

where J`+1/2 is the spherical Bessel function of half-integer order `+ 1/2.
The remaining second-order differential equation is

L 2
` fn = f̃n (3.19)

whose solutions are the general solutions of (3.15) and are given by

fn(r)= Anr`+1 + Bnr1/2J`+1/2(iqnr)+Cnr−` +Dnr1/2J−(`+1/2)(iqnr). (3.20)

Note that ur ∼ fn/r2 satisfies (2.14). Eliminating the solutions in (3.20) which diverge
at the centre, we are left with:

fn(r)= Anr`+1 + Bnr1/2J`+1/2(iqnr). (3.21)

The constants An and Bn can be related to ζn by using the kinematic condition (3.9)
and the tangential stress condition (3.10) which, for Floquet mode n, are

(µ+ i(nω+ α))ζn = `(`+ 1)
R2

fn|r=R, (3.22)(
∂2

∂r2
− 2

r
∂

∂r
+ `(`+ 1)

r2

)
fn|r=R = 0. (3.23)

Appendix A gives more details on the determination of these constants and also
presents the solution and boundary conditions in the case for which the exterior of
the drop is a fluid rather than a vacuum.

There remains the normal stress (pressure jump) condition (3.11), the only equation
which couples temporal Floquet modes for different n. Writing

a cos(ωt)
∑

n

ζneinωt = a
eiωt + e−iωt

2

∑
n

ζneinωt = a
2

∑
n

(ζn+1 + ζn−1)einωt (3.24)
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Faraday instability on a sphere: Floquet analysis 599

and inserting the Floquet decomposition (3.13) into (3.11) leads to[(
ρ(µ+ i(nω+ α)) ∂

∂r
− η

(
∂3

∂r3
+ 2

r
∂2

∂r2
− `(`+ 1)

(
3
r2

∂

∂r
− 4

r3

)))
fn

]
r=R

+
(
ρg+ σ (`− 1)(`+ 2)

R2

)
ζn = ρ a

2
(ζn+1 + ζn−1). (3.25)

Using (A 9) and (A 10) to express the partial derivatives of fn as multiples of ζn, (3.25)
can be written as an eigenvalue problem with eigenvalues a and eigenvectors {ζn}

A ζ = aBζ . (3.26)

The usual procedure for a stability analysis is to fix the wavenumber (here the
spherical mode `) and the forcing amplitude a, to calculate the exponents µ+ iα of
the growing solutions and to select that whose growth rate µ(`,a) is largest. Following
Kumar & Tuckerman (1994), we instead fix µ = 0 and restrict consideration to two
kinds of growing solutions, harmonic with α= 0 and subharmonic with α=ω/2. We
then solve the problem (3.26) for the eigenvalues a and eigenvectors {ζn} and select
the smallest, or several smallest, real positive eigenvalues a. These give the marginal
stability curves a(`, µ= 0, α=ω/2) and a(`, µ= 0, α= 0) without interpolation. Our
computations require no more than 10 Fourier modes in representation (3.13). This
method can be used to solve any Floquet problem for which the overall amplitude
of the time-periodic terms can be varied. The detailed procedure for the solution of
the eigenvalue problem (3.26) is described in Kumar & Tuckerman (1994), Kumar
(1996).

4. Ideal fluid case and non-dimensionalization
For an ideal fluid drop (ν = 0) and for a given spherical harmonic Ym

` , system (3.8)
reduces to

∂

∂t
L 2
` f (r, t)= 0. (4.1)

We make the customary assumption that L 2
` f (r, t) is not only constant, as implied by

(4.1), but zero. In this case, the solution which does not diverge at the drop centre is
of the form

f (r, t)= F(t)r`+1. (4.2)

As the tangential stress is purely viscous in origin, only the kinematic condition (3.9)
and the pressure jump condition across the interface (3.11) are applied. Using (4.2),
these are reduced to:

ζ̇ (t)= `(`+ 1)
R2

F(t)R`+1, (4.3)

(`+ 1)Ḟ(t)R` =−
(

G(R, t)+ σ
ρ

(`− 1)(`+ 2)
R2

)
ζm
` (t). (4.4)

By differentiating (4.3) with respect to time and substituting into (4.4), we arrive at

ζ̈ =−
(

g
`

R
+ σ
ρ

`(`− 1)(`+ 2)
R3

− a
`

R
cos(ωt)

)
ζ . (4.5)
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Focusing for the moment on the unforced equation, we define:

ω2
0 ≡
(

g
`

R
+ σ
ρ

`(`− 1)(`+ 2)
R3

)
. (4.6)

Equation (4.6) is the spherical analogue of the usual dispersion relation for gravity–
capillary waves in a plane layer of infinite depth, with the modifications

gk→ g
`

R
, (4.7a)

σ

ρ
k3→ σ

ρ

`(`− 1)(`+ 2)
R3

. (4.7b)

The transformation (4.7a) can be readily understood by the fact that the wavelength
of a spherical mode ` is 2πR/`. The transformation (4.7b) must be understood in
light of the fact that an unperturbed sphere, unlike a planar surface, has a non-zero
curvature term proportional to 2σ/R, from which (4.7b) is derived as a deviation via
(3.7). In the absence of a bulk force, g= 0, (4.6) becomes the formula of Rayleigh
(1879) or Lamb (1932) for the eigenfrequencies of capillary oscillation of a spherical
drop perturbed by a deformation characterized by spherical wavenumber `.

Using definitions (4.6) and

a0 ≡ Rω2
0

`
(4.8)

and non-dimensionalizing time via t̂ ≡ tω, equation (4.5) can be converted to the
Mathieu equation

d2ζ

dt̂2
=−

(ω0

ω

)2
(

1− a
a0

cos t̂
)
ζ (4.9)

combining the multiple parameters g, R, σ , ρ, a, ω and ` into only two, ω/ω0 and
a/a0. The stability regions of (4.9) are bounded by tongues which intersect the a= 0
axis at

ω= 2
n
ω0. (4.10)

Thus the inviscid spherical Faraday linear stability problem reduces to the Mathieu
equation, as it does in the planar case (Benjamin & Ursell 1954). In a Faraday
wave experiment or numerical simulation, `, unlike the other parameters, is not
known a priori. Instead, in light of (4.6), equation (4.10) is a cubic equation which
determines ` given the other parameters. Since ω0 and a0 are functions of `, both of
the variables ω/ω0 and a/a0 contain the unknown ` and so cannot be interpreted as
simple non-dimensionalizations of ω and a. (For the purely gravitational case, a0 = g
is independent of `.)

It is useful to examine (4.6) and (4.8) in the two limits of gravity and capillary
waves. We first define non-dimensional angular frequencies and oscillation amplitudes
which do not depend on `:

ω2
g ≡

g
R
, ag ≡ Rω2

g = g, (4.11a,b)

ω2
c ≡

σ

ρR3
, ac ≡ Rω2

c , (4.12a,b)
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FIGURE 1. (Colour online) Instability tongues of an inviscid fluid drop due to oscillatory
forcing with amplitude a and angular frequency ω. Solid curves bound subharmonic
tongues and dashed curves bound harmonic tongues. (a) Tongues corresponding to
gravitational instability with spherical wavenumbers ` = 1, 2, 3, 4 originate at ω/ωg =
2
√
`/n. (b) Tongues corresponding to capillary instability with spherical wavenumbers

`= 2, 3, 4, 5 originate at ω/ωc= 2
√
`(`− 1)(`+ 2)/n, with n odd (even) for subharmonic

(harmonic) tongues.

so that

ω2
0 =ω2

g `+ω2
c `(`− 1)(`+ 2), (4.13)

a0 = ag + ac(`− 1)(`+ 2). (4.14)

The Bond number measuring the relative importance of the two forces can be written
as:

Bo≡ ρgR2

σ
= ω

2
g

ω2
c

. (4.15)

In the gravity-dominated regime (large Bo), we write (4.10) as

ω2 =
(

2
n

)2

ω2
g

[
`+ 1

Bo
`(`− 1)(`+ 2)

]
. (4.16)

The stability boundaries for 1/Bo= 0 are given in figure 1(a). The subharmonic and
harmonic tongues originate at ω/ωg = 2

√
` and ω/ωg =

√
`.
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FIGURE 2. Same data as in figure 1, but scaled by ω0 and a0. The tongues for the
gravitational and the capillary cases and for all values of ` all collapse onto a single set
of tongues. Solid curves bound subharmonic tongues and dashed curves bound harmonic
tongue.

In the capillary-dominated regime (small Bo) it is more appropriate to write (4.10)
as

ω2 =
(

2
n

)2

ω2
c [`(`− 1)(`+ 2)+ Bo `] . (4.17)

The stability boundaries for Bo = 0 are given in figure 1(b) in terms of ω/ωc and
a/ac. These consist of families of tongues, which originate on the a = 0 axis at
ω/ωc = 2

√
`(`− 1)(`+ 2)/n for ` = 2, 3, 4, 5 and for n = 1, 2, . . . within which

the drop has one of the spatial forms corresponding to the spherical wavenumber
` and oscillates like einωt/2. The solid curves bound the first subharmonic instability
tongues, which originate on the a= 0 axis at ω/ωc = 2

√
`(`− 1)(`+ 2) for `= 2, 3,

4, 5, within which the drop oscillates like eiωt/2. The dashed curves bound the first
harmonic tongues, originating at ω/ωc =

√
`(`− 1)(`+ 2) describing a response like

eiωt. Tongues for higher n are located at still lower values of ω.
The curves in figure 1 for different `, g, σ/ρ, R all collapse onto a single set of

tongues when they are plotted in terms of ω/ω0 and a/a0. This is shown in figure 2,
in which the various tongues correspond to the temporal harmonic index n. In order
to use figure 2 to determine whether the drop is stable against perturbations with
spherical wavenumber ` when a radial force with amplitude a and angular frequency
ω is applied, the following procedure must be used.

For each `, formulas (4.6) and (4.8) are used to determine the values of (ω0, a0).
If (ω/ω0, a/a0) is inside one of the instability tongues (usually, but not always,
that corresponding to an ω/2 response with n = 1) then the drop is unstable to
perturbations of that `. The drop is stable if (ω/ω0, a/a0) lies outside the tongues for
all ` and all n. This is the procedure described by Benjamin & Ursell (1954) and
carried out by Batson, Zoueshtiagh & Narayanan (2013) in a cylindrical geometry.

Because (ω/ω0, a/a0) depends on the unknown `, an experimental or numerical
choice of parameters cannot immediately be assigned to a point in figure 2,
rendering its interpretation somewhat more obscure. It is perhaps because of this
that investigations of the Faraday instability are often presented in dimensional terms.
Figures like 1(a,b), in which the two axes are non-dimensional quantities defined in
terms of known parameters, represent a good compromise between universality and
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FIGURE 3. (Colour online) Instability tongues due to oscillatory forcing of amplitude a
and angular frequency ω for a viscous fluid drop. Solid curves bound subharmonic tongues
and dashed curves bound harmonic tongues. (a) Tongues corresponding to gravitational
instability with viscosity ν/

√
gR3 = 0.08. Spherical wavenumbers are ` = 1 (magenta),

2 (blue), 3 (red), 4 (green), 5 (black). (b) Tongues correspond to capillary instability with
viscosity ν/

√
σR/ρ = 0.08. Spherical wavenumbers are ` = 2 (blue), 3 (red), 4 (green),

5 (black), 6 (purple).

ease of use. This treatment can also be applied to non-spherical geometries in which
the unperturbed surface is flat and the depth is finite.

5. Viscous fluids and scaling laws
We now return to the viscous case. For a viscous fluid, it is not possible to reduce

the governing equations to a Mathieu equation even with the addition of a damping
term (Kumar & Tuckerman 1994). As described in § 3.2, the governing equations and
boundary conditions are reduced to an eigenvalue problem, whose solution gives the
critical oscillation amplitude a as an eigenvalue.

Figure 3 displays the regions of instability of a viscous drop using the same
conventions as we did for the ideal fluid case, i.e. treating capillary and gravitational
instability separately and plotting the stability boundaries in units of ωc, ωg, ac, ag.
Viscosity smoothes the instability tongues and displaces the critical forcing amplitude
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604 A. Ebo Adou and L. S. Tuckerman

towards higher values, with a displacement which increases with `. The viscosity
used in figure 3 is ν/

√
σR/ρ = 0.08 and ν/

√
gR3= 0.08, the Ohnesorge number and

the inverse square root of the Galileo number for the capillary and the gravitational
cases, respectively. This value is chosen to be high enough to show the important
qualitative effect of viscosity, but low enough to permit the first few tongues to be
shown on a single diagram. It can be seen that the effect of viscosity is greater on
tongues with higher `; this important point will be discussed below. For low enough
frequency, i.e. ω/ωc . 1.2 in figure 3(a) and ω/ωg . 4 in figure 3(b), it can be
seen that the instability is harmonic rather than subharmonic, as discussed by Kumar
(1996).

Figure 4 shows the variation with viscosity of the Faraday threshold, more
specifically of the coordinates (ω, a) of the minimum of the primary subharmonic
tongue, for `= 2, 4, 6 for the capillary and gravitational Faraday instability. The first
column shows this dependence using non-dimensional quantities that are independent
of `. (We explained the motivation for such a choice in § 4, namely that ` is not
known a priori in an experiment or full numerical simulation.) The second column
shows the non-dimensionalization that best fits the data for all values of `. The
appropriate choice for the non-dimensionalization of viscosity is

ν̃ ≡ ν`(`+ 1)
R2ω0

or ν̃ ≡ νk2

ω0
(5.1a,b)

in the spherical or planar geometries, respectively, based on the wavelength. See
Bechhoefer et al. (1995), who studied the influence of viscosity on Faraday waves.
The choice of (5.1) is guided by comparing the viscous and oscillatory terms in
(3.25) and corroborated by the fact that the curves in the second column have
only a weak dependence on ` and on ν̃. We recall that the ratio of the horizontal
(angular) wavelength 2πR/` to the depth (radius) R goes to zero as ` increases,
and the curvature of the sphere is less manifested over a horizontal wavelength.
With increasing `, the curves for the spherical case can be seen to approach the
corresponding quantities in the planar infinite-depth case, shown in the third column,
despite the fact that we are far from the large ` limit.

Figure 4(a–f ) shows that the frequency ω which favours waves (corresponding to
the bottom of the tongue) is a non-monotonic function of ν, for which an explanation
is proposed by Kumar & Tuckerman (1994). At lower viscosities, the flow is assumed
to be irrotational, as in (4.2), and equation (4.6) is modified merely by subtracting
a term proportional to ν2. This leads to a decrease in the critical ω from 2ω0. At
higher viscosities, it is assumed that the response time 4π/ω approaches the viscous
time scale, here O(`(`+ 1)R2/ν), leading to an increase in ω with ν when the other
parameters are fixed. Experimental values for ν̃ are, however, rarely greater than one.

Concerning the oscillation amplitude a, we find that the appropriate choice for non-
dimensionalization is

ã≡ a`
Rω2

0
or ã≡ ak

ω2
0
. (5.2a,b)

This non-dimensionalization causes the three curves in each of figure 4(g,j) to collapse.
For small viscosities, ã increases linearly with ν̃; for this reason we plot

ã
ν̃
= a`

Rω2
0

(
ν`(`+ 1)

R2ω0

)−1

= aR
νω0(`+ 1)

or
ã
ν̃
= a
νω0k

(5.3a,b)

in figure 4(h,k). The form of this curve for higher viscosities shows that ã contains
terms of higher order in ν̃, as demonstrated by Vega, Knobloch & Martel (2001).
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FIGURE 4. (Colour online) Viscosity dependence of ω (rows 1 and 2) and a (rows 3
and 4) at threshold. Gravitational (rows 1 and 3) and capillary (rows 2 and 4) Faraday
instability shown for `= 2 (blue), 4 (green) and 6 (purple). Left column (a,d,g,j) ω and
a non-dimensionalized in terms of experimentally imposed quantities ωg, ωc, ag and ac.
Non-dimensionalization of middle column (b,e,h,k) uses (5.1) and (5.2). It can be seen
that a ∼ ν for ν small. Right column (c, f,i,l) shows analogous quantities for the planar
infinite-depth case, calculated using (5.1b) and (5.2b); the scaling is seen to be exact in
this case.
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FIGURE 5. (Colour online) Spherical harmonics for `= 4.

Cube Sphere Octahedron Sphere

FIGURE 6. (Colour online) Subharmonic ` = 4 standing wave pattern oscillates in time
between cubic and octahedral shapes.

The viscosity dependence of ω and a, once they are non-dimensionalized, are
practically identical for the capillary and gravitational cases. The difference between
these, as well as the dependence on `, is taken into account exclusively via ω0(`),
just as it is for the inviscid problem.

6. Eigenmodes

Thus far we have not discussed the spatial form of the eigenmodes on the interface,
beyond stating that they are spherical harmonics. Visualizations of the spherical
harmonics, while common, are inadequate or incomplete for depicting the behaviour
of the interface in this problem for a number of reasons. First, as stated in the
introduction, the linear stability problem is degenerate: the 2`+ 1 spherical harmonics
which share the same ` all have the same linear growth rates and threshold. Second,
for ` > 4, the patterns actually realized in experiments or numerical simulations,
which are determined by the nonlinear terms, are not individual spherical harmonics,
but particular combinations of them. Finally, in a Floquet problem, the motion of the
interface is time dependent.

Figure 5 shows the spherical harmonics for ` = 4. Spherical harmonics can be
classified as zonal (m= 0, independent of φ, nodal lines which are circles of constant
latitude), sectoral (m = ±`, independent of θ , nodal lines which are circles of
constant longitude) or tesseral (m 6= 0, ±`, checkered). Figure 6 depicts the pattern
that is realized in numerical simulations for ` = 4. The pattern oscillates between a
cube and an octahedron and is a combination of Y0

4 and Y4
4 . This pattern is the result

of nonlinear selection; at the linear level, many other patterns could be realized. Our
companion paper is devoted to a comprehensive description of the motion of the
interface and of the velocity field for ` between 1 and 6.
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7. Discussion

We have considered a configuration similar to the classic problem of freely
oscillating liquid drops, that of a viscous drop under the influence of a time-periodic
radial bulk force and of surface tension. Here, we have carried out a linear stability
analysis, while in a companion paper Ebo Adou et al. (2016), we describe the results
of a full numerical simulation. We believe both of these investigations to be the first
of their kind.

Our investigation relies on a variety of mathematical and computational tools.
We have solved the linear stability problem by adapting to spherical coordinates the
Floquet method of Kumar & Tuckerman (1994). The solution method uses a spherical
harmonic decomposition in the angular directions and a Floquet decomposition in
time to reduce the problem to a series of radial equations, whose solutions are
monomials and spherical Bessel functions. We find that the equations for the inviscid
case reduce exactly to the Mathieu equation, as they do for the planar case (Benjamin
& Ursell 1954), with merely a reassignment of the parameter definitions. In contrast,
for the viscous case, there are additional terms specific to the spherical geometry.

The forcing parameters for which the spherical drop is unstable are organized into
tongues. The effect of viscosity is to raise, to smooth and to distort the instability
tongues, both with increasing ν and also with increasing spherical wavenumber `.
Our computations have demonstrated the appropriate scaling for the critical oscillation
frequency and amplitude with viscosity, substantially reducing the large parameter
space of the problem.

The nonlinear problem is fully three-dimensional and must be treated numerically.
In our companion paper (Ebo Adou et al. 2016), we will describe and analyse the
patterns corresponding to various values of ` that we have computed by forcing a
viscous drop at appropriate frequencies.
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Appendix A
A.1. Boundary conditions for the two-fluid case

We describe here the modifications necessary in order to take into account the fluid
medium surrounding the drop of radius R, occupying either a finite sphere of radius
Rout or an infinite domain. The inner and outer density, dynamic viscosity and poloidal
fields are denoted by ρj, ηj and f ( j) for j = 1, 2. 1Ψ ≡ [Ψ (2) − Ψ (1)]r=R denotes the
jump of any quantity Ψ across the interface and applies to all quantities to its right
within a term. For each spherical harmonic wavenumber ` and each Floquet mode n,
the poloidal fields f ( j)

n given in (3.20) are as follows:

f (1)n (r)= A(1)n r`+1 + B(1)n r1/2J`+1/2(iq(1)n r), (A 1a)

f (2)n (r)= A(2)n r`+1 + B(2)n r1/2J`+1/2(iq(2)n r)+C(2)
n r−` +D(2)

n r1/2J−(`+1/2)(iq(2)n r), (A 1b)

where

q( j)
n ≡

[
µ+ i(nω+ α)

νj

]1/2

. (A 2)
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The introduction of four more constants requires four additional conditions. Two of
these are provided by the exterior boundary conditions. The relations

0= ur = `(`+ 1)
r2

f , (A 3a)

0=∇H · uH = 1
r2

∂

∂r
r2ur = 1

r2

∂

∂r
`(`+ 1)f (A 3b)

imply that both f (2)n and its radial derivative must vanish at Rout:

0= f (2)n (Rout)= f (2)′n (Rout). (A 4)

If the exterior is infinite, then A(2)n =B(2)n = 0; otherwise (A 4) couple the six constants.
Continuity of the velocity at r = R, together with (A 3) provides the remaining two
additional conditions:

0=1f =1f ′. (A 5)

The kinematic condition (3.22) remains unchanged:

(µ+ i(nω+ α))ζn = `(`+ 1)
R2

fn|r=R (A 6)

since f is continuous across the interface, while the tangential stress condition (3.23)
becomes

0=∆
[
η

(
∂2

∂r2
− 2

r
∂

∂r
+ `(`+ 1)

r2

)
fn

]
. (A 7)

The pressure jump condition (3.25) becomes

0 = ∆

[
ρ(µ+ i(nω+ α)) ∂

∂r
− η

(
∂3

∂r3
+ 2

r
∂2

∂r2
− `(`+ 1)

(
3
r2

∂

∂r
− 4

r3

))
fn

+
(
ρg+ σ (`− 1)(`+ 2)

R2

)
ζn − ρ a

2
(ζn+1 + ζn−1)

]
, (A 8)

where ρ, η, ∂2f /∂r2 and ∂3f /∂r3 are all discontinuous across the interface.

A.2. Differentiation relations
We express the governing equations in terms of the constants An, Bn, Cn, Dn via

fn(r)= Anr`+1 + Bnr1/2J+ +Cnr−` +Dnr1/2J−, (A 9a)

∂

∂r
fn(r) = An(l+ 1)r` + Bn

(
1
2

r−1/2J+ + iqnr1/2J′+

)
−Cn`r−`−1 +Dn

(
1
2

r−1/2J− + iqnr1/2J′−

)
, (A 9b)

∂2

∂r2
fn(r) = An`(`+ 1)r`−1 + Bn

(
−1

4
r−3/2J+ + iqnr−1/2J′+ − q2

nr1/2J′′+

)
+Cn`(`+ 1)r−`−2 +Dn

(
−1

4
r−3/2J− + iqnr−1/2J′− − q2

nr1/2J′′−

)
, (A 9c)
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∂3

∂r3
fn(r) = An(`+ 1)`(`− 1)r`−2

+Bn

(
3
8

r−5/2J+ − 3
4

iqnr−3/2J′+ −
3
2

q2
nr−1/2J′′+ − iq3

nr1/2J′′′+

)
−Cn`(`+ 1)(`+ 2)r−`−3

+Dn

(
3
8

r−5/2J− − 3
4

iqnr−3/2J′− −
3
2

q2
nr−1/2J′′− − iq3

nr1/2J′′′−

)
, (A 9d)

where J+ and J− denote J`+1/2 and J−(`+1/2), respectively, to be evaluated at iq( j)
n R. To

evaluate the derivatives of the Bessel functions, we use the recurrence relations:

J′ν(z)= 1
2(Jν−1(z)− Jν+1(z)), (A 10a)

J′′ν (z)= 1
4(Jν−2(z)− 2Jν(z)+ Jν+2(z)), (A 10b)

J′′′ν (z)= 1
8(Jν−3(z)− 3Jν−1(z)+ 3Jν+1(z)− Jν+3(z)). (A 10c)

For the two-fluid case, we express the seven conditions (A 4), (A 5), (A 6), (A 7) and
(A 8) in terms of the constants A( j)

n , B( j)
n , C( j)

n , D( j)
n and ζn. For the single-fluid case, we

express the three conditions (3.22), (3.23), (3.25) in terms of An, Bn and ζn. Omitting
the pressure jump condition leads to a 6× 6 (finite outer sphere), 4× 4 (infinite outer
sphere), or 2× 2 (single-fluid) system which can be inverted to obtain values for all
of the constants as multiples of ζn. The pressure jump condition is then a Floquet
problem in {ζn}, solved as described in § 3.2.
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