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Abstract. Nonlinear spiral vortices in fluid flow between counter-rotating cylinders are shown to induce an average
axial pressure gradient when experiments are conducted between closed ends where the axial mean velocity must
be zero. Previous calculations for spiral vortices have assumed periodic boundary conditions on the pressure,
which in general is not compatible with zero mean axial velocity. Such calculations predicted wavespeeds which
differed from experiment at leading nonlinear order, typically by 10% at 5% above criticality. In contrast, our
numerical calculations with the constraint of zero mean axial flow agree well with the measured wavespeeds in
the weakly nonlinear regime. Our results suggest a minor modification of previous analyses could incorporate the
new constraint: the periodicity of the pressure could be replaced by periodicity of the pressure gradient, chosen

to yield zero axial mean flow.

1 Introduction

Recently there has been much interest in the nonlinear traveling waves which arise in some incompressible
fluid flows in simple geometries. Two experimental paradigms have received special attention; they are
convection in binary fluid mixtures[Cross, 1986, 1988; Fineberg et al, 1988; Kolodner et al, 1986; Kolodner
& Surko, 1988] and the flow between counter-rotating cylinders (the Couette-Taylor system). We have
investigated the latter, which gives rise to spiral vortices for some parameters. These vortices arise as
a primary instability of the basic laminar flow state known as circular Couette flow. For wide ranges
of parameters they are observed to be spatially periodic with a nearly uniform wavelength in the axial
direction.

The linear theory of spiral vortices has been well studied[Krueger et al, 1966; Langford et al, 1988;
Tagg et al, 1990] and the results are in good agreement with experiment[Snyder, 1968; L et al, 1988].
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Several authors[DiPrima & Grannick, 1971; Babenko, Afendikov & Yur’ev, 1982; Demay & looss, 1984;
Chossat & Iooss, 1985; Golubitsky & Stewart, 1986; Friederich et al, 1987; Golubitsky & Langford, 1988]
have investigated the nonlinear behavior of spiral vortices and their mode interactions. To date these
results have not been reconciled quantitatively with experimental observations (cf. [Tagg et al, 1989)),
although there have been some successes in predicting qualitatively the observed behaviors. ‘

In this article we compare quantitatively the experimentally measured wavespeeds of nonlinear spiral
vortices with the predictions of a cubic-order amplitude equation and with fully nonlinear numerical
calculations. Both the amplitude équation and fully nonlinear models assume periodic boundary conditions
(in the axial direction) on the velocity field. Fully nonlinear numerical calculations with periodic pressure
boundary conditions yield amplitudes and wavespeeds which agree with the amplitude equation near onset.
However, when we compare wavespeeds from experiments with closed ends (such that no axial mean flow
is allowed), we find differences at leading nonlinear order. We show that by constraining the solution in the
numerical model to have zero axial mean velocity (by imposing an overall pressure gradient), we recover
quantitative agreement with experimental wavespeeds.

2 Problem Statement

An incompressible fluid of kinematic viscosity v occupies the annular region between cylinders of radii a and
b, with b > a. The inner and outer cylinders rotate with angular velocities 2y and 0, respectively, where by
convention ), is positive, and thus for the counter-rotating cases we consider (2, will be negative. We define
three dimensionless parameters (R, u,n) which are respectively the Reynolds number R = Qya(b— a)/v,
the speed ratio g = 2/Q; and the radius ratio n = a/b. In this study the radius ratio is fixed at
n = 0.7992. We focus on comparisons of wavespeeds because these are easily measured experimentally
to high precision and thus they provide a sensitive test of theoretical models. The problem, then, is to
measure experimentally and to compute theoretically the wavespeeds of spiral vortices both at criticality
and for several Reynolds numbers in the nonlinear regime beyond criticality.

3 Experiments

Experiments were performed in an apparatus with annulus length L = 36(b — a) which supports typically
18 axial wavelengths of the spiral pattern. The apparatus is oriented vertically and the end boundary
conditions are established by teflon rings which rotate with the outer cylinder. There is a very narrow
gap between each of these rings and the inner cylinder, through which fluid is free to pass; however, the
bottom of the apparatus is sealed and thus no mean mass flux is possible. The spiral flow states were
prepared by following a parameter path of fixed p, beginning with circular Couette flow and increasing R
slowly through the critical Reynolds number R.(p) at which spirals first appear. The working fluid was a
mixture of 65% glycerol, 34% water and 1% Kalliroscope AQ-1000 visualiza,tigori material. Wavespeeds were
measured by a photodetector which monitored the intensity of light from a 10 milliwatt He-Ne laser that
reflected from the visualization material in a small volume of the fluid. The signal from the reflectance
probe was digitized and Fourier analyzed to determine the frequency w of the wave. In all cases the
dominant peak in the Fourier spectrum was sharp and was clearly that of the rotating helical pattern.
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4 Weakly nonlinear analysis
Close to onset, the velocity field (minus Couette flow) is given by
U(r,0,z,t) = AL(t)UL(r)e"(m‘:Hk“) + AR(t)UR(r)ei(mce’k‘z) +c.c.+ U'(r,0,2,t; AL, Ar, €) (1)

where c.c. denotes complex conjugate and where the residual field U’(r, 8, z,t; AL, AR, €) is “slaved” to the
complex amplitudes Ay and Ag of the unstable left- and right-handed spiral eigenmodes U, (r)ei(mef+ke)
and Ug(r)e!(m<?=*<2); m_ and k, are respectively the critical azimuthal and axial wavenumbers. Symmetry
considerations lead to the coupled amplitude equations

AL = —iw.Ap+ 75 (1 +ico)eAr — g(1 4+ icy)|ALl* AL — h(1 + ic3)|Ap|* AL + - - - (2)
Ap = —iwAr+ 75 (1 +ico)eAr — g(1 +ico)|Ar|*AR — h(1 + ics)|AL|*AR + - -- , (3)

Here ¢ = (R — R.)/ R, is a small parameter measuring the distance from criticality.

Formal reductions of the Navier-Stokes equations have been carried out by various workers [D & I,
1984; G & L, 1988; F et al, 1987] to arrive at numerical values for the nonlinear coefficients. On this
basis, the lowest-order nonlinear correction to amplitude and frequency can be quantitatively predicted.
For this analysis we have used the code of [D & I, 1984] to compute the values of g, ¢y, h and ¢z for
our parameters. In the following we assume the left-handed spiral solution Ay # 0, Agp = 0. We further
represent Ay, = pe'® and obtain (to leading nonlinear order):

p = To‘lep —gp° . (4)
w = —q.ﬁ = wc——TJlCoE—l-gCsz (5)
For steady-state modulus of the amplitude (p = 0),
p = (rog) 2! (6)
= w,—15 " (co—c2)e (7)

By scaling the frequency w by the inner cylinder angular velocity €4, experimental uncertainty in viscosity
is removed. We therefore write

w/Ql = wc/Ql —To_l(CO—Cg)E/Ql
we/ [Que(1 +€)] = 757" (co — c2)e/ [ue(l + )]
= we/Me — [ (o — €2)/ Qe + we/Duc] € + O(e?) | (8)

Equations (6) and (8) respectively were used to produce the dotted curves in figure 1(a) and (b).

\

5 Fully nonlinear numerical calculations

Solutions of the fully nonlinear incompressible Navier-Stokes equations were obtained by pseudo-spectral
calculations performed with periodic boundary conditions on the velocity field (in the axial direction). The
computational domain was of fixed axial length A = 27 /k. where k. is the critical wavenumber from linear
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theory. Thus the calculations did not model any nonlinear wavelength change. The velocity field U =
U(r,0, z,t) with components (U, Uy, U,) was assumed to have a helical symmetry, U = (m./k.)9;U.
In the cases we studied m, was always 2 in both experiment and numerics. The imposition of the helical
symmetry allowed the numerical problem to be posed on a two-dimensional (r, z) domain with a <r <b
and 0 < z < XA. We used an accurate spectral discretization with 25 Chebyshev modes in r and 27 Fourier
modes in z. The time-asymptotic traveling-wave solutions were found by time-evolving the discretized
Navier-Stokes equations using a general nonlinear stiff-equation solver[Friesner et al, 1989] and by quasi-
Newton iteration. Details of our numerical method will be published elsewhere[Edwards et al, to appear];
here we note only that the accurate solution of this quasi-two-dimensional Navier-Stokes problem in a
simple geometry and at low Reynolds numbers (less than 200) poses no serious technical challenge and
can be accomplished by a variety of methods. For the case of periodic pressure boundary conditions,
wavespeeds obtained with our code were compared with those calculated with the fully three-dimensional
code of [Marcus, 1984], which also assumes periodic pressure. The two codes produced wavespeeds that
agreed to four significant figures. ’

For the zero-mean-flow calculations, we added to the equations of motion a mean pressure gradient
term —pé,, where p is a constant independent of position. The value of p was adjusted until the mean
axial flow < U, > of the traveling-wave solution was zero.

The amplitudes in figure 1(a) were obtained by projecting the numerically computed flow U(r, 9, z, 1)
onto the eigenfunction Uy (r)eime?+k2) To do this the adjoint eigenfunction Uy (r)e={m<f+ke2) was found
and the amplitude was computed according to

(On(r)e ke |U(r, 0, 2,1))
= <[~J'L(T‘)e-i(mc9+kcz) |UL(,~)ei(mcg+kcz)>

Ar(t) 9)
where (-|-) is a suitable inner product. Here the normalization of Uy (r)eimef+kez) was chosen to be
compatible with the code of [D & I, 1984] as used in the previous section, so that |Az| as computed via
(9) may be directly compared to p as computed via (6).

6 Results

Figure 1 compares results from experiment, linear theory, the cubic-order amplitude equation and fully
nonlinear numerical calculations. The experimental wave frequencies are seen to agree much better with
the nonlinear calculations when the mean axial flow is constrained to be zero. Fully nonlinear calculations
performed with periodic pressure boundary conditions yield frequencies which agree near criticality with
the nonlinear correction predicted by the amplitude equation (which also assumes periodic pressure).
However, the discrepancy between the periodic-pressure results and experiment appears to be of order
¢ = (R — R,)/R.; that is, the experimental nonlinear frequency falloff has a different slope Or(w/€21) near
criticality than the slope predicted by either of the periodic-pressure methods.

7 Conclusions

Couette-Taylor spiral vortices are an attractive paradigm for the study of weakly nonlinear behavior of
traveling waves. Theoretical predictions have been made for the nonlinear interaction of left- and right-
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Figure 1: Amplitude (a) and frequency (b) of spiral vortices at criticality and in the weakly nonlinear
regime. The figure compares results from linear stability analysis, experiment, a cubic-order amplitude
equation, and fully nonlinear numerical calculations: The parameters are n = 0.7992, p = —0.74, for which
linear stability analysis yields R, = Q;.a(b—a)/v = 145.57, m; = 2, k. = 3.6997/(b—a), we/. = 0.67664,
751 /e = 1.0328 and ¢o = —0.7536; linear stability results at criticality are shown by a square O in each
part. Diamonds o (part (b) only) are experimental results for frequencies. Dotted lines are predictions
of a center-manifold reduction to a cubic-order amplitude equation, computed using the code of [Demay
& Tooss, 1984], which assumes periodic pressure; the resulting nonlinear coupling coefficients used to
produce the dotted curves are g = 0.008557;" and ¢, = —3.38. Plus signs + connected by solid lines are
fully nonlinear numerical results assuming periodic pressure boundary conditions. Circles o connected by
dashed lines are the same except that the axial mean flow is constrained to be zero by the imposition of
a mean axial pressure gradient.

handed spirals[D & G, 1971; D & 1, 1984; C & 1, 1985], the interaction of spirals with Taylor vortices[G &
S, 1986; G & L, 1988], and the interaction of spirals of differing azimuthal wavenumbers[Chossat, Demay
& looss, 1987]. In these analyses the Navier-Stokes equations are reduced to a simpler set of nonlinear
amplitude equations which predict the dynamics of the system in the neighborhood of critical and bicritical
points. Coefficients for these amplitude equations are computed in the reduction process. These theories
all assume periodic boundary conditions on both the velocity and pressure fields. We have shown that some
features of the nonlinear spirals occurring in experiments (eg. wavespeeds) can indeed be quantitatively
modeled in a small periodic domain, but only if the velocity field is constrained to have zero axial mean
flow, which in general is not compatible with periodic pressure. Our results also suggest, however, that
the weakly nonlinear theories which have been proposed to date need only minor changes to incorporate
the new constraint; rather than assume periodicity of the pressure, one would assume periodicity of the
pressure gradient, with the mean pressure gradient chosen such that the axial mean flow is zero. The
assumption of periodic pressure boundary conditions, on the other hand, leads to nonlinear predictions
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which are incorrect at order .

We conclude that relatively minor changes in existing weakly nonlinear theories can lead to improved
quantitative agreement with experiment. Furthermore, predictions about the qualitative behavior of spiral
vortices may be affected if the zero axial mean velocity constraint changes the signs or relative sizes of -
some nonlinear coefficients. It will be interesting to see if this in fact occurs.

More general theories, which allow space-dependent amplitudes, should also incorporate the zero
mean flow constraint if they are to be compared to finite-length experiments with closed ends.

Alternatively, one may envision experiments in which fluid may enter and exit the ends of the annulus,
in which an overall mean flow or pressure gradient is imposed externally. In principle it should be possible
with such an experiment to zero the mean pressure gradient so that existing predictions based on periodic
pressure boundary conditions may again be relevant.
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