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Comment on “Bifurcation Structure and the Eckhaus
Instability”

In their Letter, Tsiveriotis and Brown [1] present a
bifurcation-theoretic analysis of the Eckhaus instability
[2]. Such an analysis requires discrete spectra and well-
separated solution branches, necessitating a bounded
domain of length L. The scenario is as follows: As a con-
trol parameter R is increased, pure-mode branches, each
characterized by a single wave number k, =nn/L, bifur-
cate successively off the trivial branch. All but the first of
the pure-mode branches are unstable when created and
are then restabilized by a sequence of secondary bifurca-
tions, which in turn create unstable mixed-mode states.

For the complex version of the Swift-Hohenberg equa-
tion[3] studied in Ref. [1], the primary bifurcations are
at

R,=(1—k}?, (1)
so that the onset of instability takes place at (k.,R.)
=(1,0). The secondary bifurcations from the k, branch
are indexed by / and occur at

R = 2R, (R;+Ryu—1) —RiRon—1—3R; . )

R/+R3,—1—2R,
The following approximation to (2), valid for k = k., is
then derived:

R~ 121 —ky)?—2(k; —kn)?. 3
The maximum over / of (3) gives the final secondary bi-
furcation which renders the k, branch stable: This is the
Eckhaus instability. Tsiveriotis and Brown assert that
this maximum is

Reak,) =121 —k,)?, @
coinciding with the classic Eckhaus curve, independent of
L (except for discretization of k).

It is this last claim with which we disagree. Equation
(4) is obtained for an infinite domain by taking k; — k,
arbitrarily small in (3). Discretization forbids this in a
finite domain, and the Eckhaus instability instead corre-
sponds to setting / =n * 1 in (3), leading to

Rec(kn) =121 —k,)*—2(z/L)>. (5)
Our Fig. 1 is based on that of Ref. [1], where L =8x/k,,
and illustrates the difference between (4) and (5). The
important qualitative distinction between (4) and (5) is
this: Equation (5) is not tangent to the marginal stability
curve (1) and the minimum (k,R.) of the marginal
stability curve does not lie on (5). It might be argued
that the displacement —2(x/L)?>— 0 as L— o. How-
ever, the distance in R between successive primary or
secondary bifurcation points is of the same order.
For example, for R,=Rs=0, R,+;=~4(x/L)? and
Reck(ky+1) = 10(x/L) >

Indeed, the downward displacement is perhaps the
most important feature distinguishing the finite-domain
from the infinite-domain analysis and is its only experi-
mental consequence. This stabilizing effect was first
mentioned by Kramer and Zimmermann [4]; Ahlers et
al. [5] noted that the displacement creates a “gap,”
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FIG. 1. The bold, dashed, and thin curves denote the neutral
stability curve (1), the asymptotic Eckhaus formula (4) of Ref.
[1], and our corrected version (5), respectively. [The dotted
portion of (5) which falls below (1) has no physical sig-
nificance.] Solid and open circles denote primary and secon-
dary bifurcation points; the latter are computed from the exact
formula (2) using /=n %1 and correspond to the points in Fig.
1 of Ref. [1]. In the main figure L =8x. Note the downwards
displacement of the Eckhaus points relative to the dashed curve.
The deviation between the Eckhaus points and the thin curve is
due to the asymptotic nature (k = 1) of formula (5), and is re-
duced in the inset, for which L =32x.

where the Eckhaus curve falls below the neutral stability
curve, and whose width (n/L) accommodates exactly one
allowed wave number. The entire secondary bifurcation
structure can be viewed geometrically in terms of such
gaps. These and other aspects of the Eckhaus instability,
as analyzed for the Ginzburg-Landau equation, are dis-
cussed in our recent article [6].
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