Order parameter in laminar-turbulent patterns
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Over a century, and thousands of articles, after Reynolds’ description of the
transition to turbulence in pipe flow, a predictive theory of transition is still
unavailable. One of the most intriguing phenomena observed near transition is
the coexistence of well-defined and long-lived laminar and turbulent regions,
first observed in counter-rotating Taylor-Couette flow in the 1960s [1]. In
the 2000s, Prigent & Dauchot [2] showed that these coexisting regions were
part of a regular pattern of stripes, whose wavelength and orientation are
Reynolds-number-dependent and reproducible. Analogous phenomena have
been observed experimentally [2] and numerically [3] in plane Couette flow, in
stator-rotor experiments (the flow between a stationary and a rotating disk)
[4], in plane Poiseuille simulations [5], and, most recently, in simulations of
pipe flow [6].

We analyze these flows as wave patterns, measuring their strength by the
instantaneous 1D Fourier component a corresponding to their wavenumber
and phase. Since the flows are stationary only in a statistical sense, we treat a
as a random variable and construct its probability distribution function (pdf).
Timeseries and pdfs for a from simulations of plane Couette flow are shown
below. Three regimes can be distinguished. For Re 2 420, the turbulence
is uniform, extending over the entire domain; the corresponding pdf has its
maximum at a = 0. For 400 < Re < 420, the pattern is intermittent, appearing
and disappearing erratically; the corresponding pdf is neither maximal nor
zero at a = 0. For 290 < Re < 400, a statistically steady turbulent-laminar
pattern is present; the corresponding pdf is zero at a = 0.
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Fig. 1. Above: timeseries at Re = 500 (uniform turbulence), 410 (intermittent), 350
(turbulent-laminar pattern). Below: pdfs of Fourier component a.
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Fig. 2. Probability distribution function for |a| for Re = 580, 520, 420, 400, 350, 330,
in order of decreasing value at |a| = 0.



