Stability of periodic arrays of vortices
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The stability of periodic arrays of Mallier—Maslowe or Kelvin—Stuart vortices is discussed. We
derive with the energy-Casimir stability method the nonlinear stability of this solution in the inviscid
case as a function of the solution parameters and of the domain size. We exhibit the maximum size
of the domain for which the vortex street is stable. By adapting a numerical time-stepping code, we
calculate the linear stability of the Mallier—Maslowe solution in the presence of viscosity and
compensating forcing. Finally, the results are discussed and compared to a recent experiment in
fluids performed by Tabelingt al. [Europhy. Lett.3, 459 (1987)]. Electromagnetically driven
counter-rotating vortices are unstable above a critical electric current, and give way to co-rotating
vortices. The importance of the friction at the bottom of the experimental apparatus is also
discussed. ©1996 American Institute of Physid$$1070-663(96)00102-5

I. INTRODUCTION (i) At low current corresponding to weak forcing and
hence low Reynolds number, the flow consists of a linear
The problem of vortex dynamics is important for the array of counter-rotating vortices.
field of chaotic motion and dynamical systems theory, but the  (ii) This state becomes unstable beyond a critical current.
discovery of coherent structures in turbulence has fostere@he linear array is now composed of nonuniform tilted vor-
the hope that the study of vortices will also lead to a bettetices, alternately large and small.
understanding of turbulent flowsThe emergence of coher- (iii ) A further increase in the current leads to a state with
ent flow structures is a well-known feature of quasi-half the number of co-rotating vortices as compared to the
geostrophic flowé, soap films or two-dimensional initial state.
turbulencé and, because of their relevance to large-scale  This experiment has led to a number of studies concern-
geophysical flows, the dynamics of these structures has atig chaotic regimed’ Let us present another point of view.
tracted attention during the past two decades. Geophysicdlhe first question we want to address is the following: what
fluid flows often appear to be dominated by a strong buis the connection between the patterns of the Navier—Stokes
localized vortical structure that lasts for many circulationequation and the exact solutions of the Euler equation, where
times even when relatively turbulent flows are impingingsolutions of this type are known to exist? The second ques-
upon it. Experimental evidence indicates also that the plandfon is to determine the stability of such coherent structures
free shear layer has an organized two-dimensional structui@ the presence of viscosity and forcing.
over a wide range of Reynolds numbé&rswhen modelling We have organized the article in the following way. In
steady-state configurations of geophysical flows as solutiongec. Il, we review some steady-state solutions of the two-
of a dynamical system, it is important to analyze their stabil-dimensional inviscid and incompressible fluid motion. We
ity in order to see if they can describe physically observableVill also present the Mallier—Maslowe vortex street that we
situations. Indeed, in the real world, many random forces acd/ill study in the remainder of the article. Sections Ill, IV and
on the system and the stationary situations we observe mu¥form the heart of the paper. In Sec. Ill, we derive analyti-
be stable under these perturbations. cally explicit sufficient conditions for the nonlinear stability
The dynamics of coherent structures in two-dimensionafStimates in the inviscid case, using Casimirs and convexity
geometry has been studied in many different experimenthOpert'es- In Sec. IV, we dISCUSS. the two-dimensional vis-
using rotating or stratified fluidsee Ref. 6 and references c0US flows and present the numerical method used for study-
therein, in a shallow layer of mercufyor of electrolyté N9 t.he linear stability. Section IV C discusses the results.
subjected to a magnetic field. Here let us recall the experiS€ction IV D sets up the correspondence between the results
ment proposed by Tabelingt al® A periodic array of and the experiment. Finally, in Sec. V, the nonlinear evolu-

counter-rotating vortices is driven by electromagnetic forc-ion of an unstable Mallier—Maslowe solution is presented.

ing. By passing a current through a cell containing a solution N results are then discussed in connection with the experi-

; 9
of sulfuric acid and an array of permanent magnets of alterMenNts of Tabelingt al.
nating polarity at the bottom of the cell, the Lorentz force

stirs the fluid, producing the vortices. The two-

d|menS|onaI|ty_of the flow is ensured using a shallow fIU|d“_ INVISCID ELOW
layer. The basic results can be summarized as follows:

For two-dimensional incompressible fluid motion, one

atdauxois@physique.ens-lyon.fr obtains from the Navier—Stokes equation, by elimination of
PPermanent address: LIMSI, BP 133, 91403 Orsay Cedex, France. the pressure, the equation for the stream function
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where J(A,B)=A,By,—AB, is the usual Poisson bracket
and v the kinematic viscosity. The last terf.,; is due to
possible external forcing.

In the absence of external forcing and viscosity, the vor- __
ticity equation reduces to the Euler equation:

V2
=W V2). v
For steady-state flows, this gives B = : ;'O | EE
Q=

I, V2)=0. 3 : : .

Hence it follows that the vorticityw=—V?y is constant
along contours of constant stream functign The study of
planar steady-state flows in an ideal incompressible liquid is
consequently reduced to solving the following equation:

y
©
%

Py P i 1
2= + = s ]
Viy=—2 Fva F(y) (4)
whereF is an arbitrary function. This is a nonlinear elliptic —el = 75 e

equation fory and therefore admits a continuous multiplicity
of solutions associated with the arbitrarinesskgf/). The . _
problem of finding steady states of two-dimensional vorticeg G- 1. Steady Flows(a) represents the streamlines of the Mallier—
. inviscid fluid is then equivalent to solving the I:)OissonMaslowe solution(6) for £=0.3. (b) represents the streamlines of the
In-an .mVISCI q ; ) 9 Kelvin—Stuart solutior(7) for e=0.3. The dashed curves are negative con-
equation for the electrostatic potential with the charge dentour lines and the solid curves are positive ones.

sity self-consistently determined.

The simplest choice foF is a linear function, which

already gives many different patterns. Indeed Kolmogorov

flows, cellular structures with square or hexagonal cells and coshey—e cosx € COSX

. p M= =—2 arctan
even quasi-crystal patterns are solutidrsf the Helmholtz coshey+e cosx coshgy
equationV2y= — . Many other solutions have been studied (6)

in the literature such as the Lamb diptté® and the non-
symmetric Chaplygin dipolar solutior.

A possible choice for the functiofR which has been
proposed in the literatute’is

which describes a stationary pattern in the form of a street of
counter-rotating vortices, arranged periodically along the
x-axis at intervals ofr. A typical solution is shown in Fig.
1(a) for £=0.3. The parametes characterizes the vorticity
PV ) (1-¢2?) density: whene=*1, we recover the point vortex solution
—t = sinh(2¢). (5>  and where =0 we havey=0. Thus, ag ranges from 0 to 1,
X ay 2 .
the flow represented by E¢6) ranges from the fluid at rest,

This w— ¢ sinh-relationship is very important because, usingto the flow due to a set of point vortices on thexis.
a statistical approach, one can shdthat it characterizes the A third choice for the functiorF- of Eq. (4) is that of J.
most probable state of a two-dimensional system of ideal. Stuart? an exponential function:
point vortices. Published data showing the functional depen- Py P
dence of vorticity on stream function in long-lived structures, — + ——5=(1—¢?)e 2/, (7)
seen in experiments and simulations, seem qualitatively con- ox= 9y
sistent with hyperbolic-sin¢as in Eq.(5)] or exponential If we use the change of variable proposed above, this equa-
profiles [as in Eq.(7) below] which follow from entropy tion is directly related to the well-known Liouville equation
maximization'® These studies have been verified by veryfor a real scalar fields(y,t), studied by both Liouvill& and
long-time high resolution numerical studies; however, recenby Poincareé*
work shows some evidence that this result depends on the The exact nonlinear solution to E):
initial conditions®® Another recent experimental stifdyted
to the conclusion that the maximum entropy state is unlikely
to be reached since the observed final states of flow displaig called Kelvin—Stuart’s cat's ey&sand is illustrated in Fig.
characteristics that conflict with the statistical theory. 1(b). This solution can be derived in an elegant way with the

In the case of an infinite box, the solution to E®) Hirota method, assuming a vortex spacing ef.2This solu-
introduced by Mallier and Maslovi&which we will discuss tion is of interest because the solution corresponds qualita-
in the remainder of the article is: tively to the co-rotating vortices seen by Tabelieigal®

s=In(coshy+e cosx). (8)
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Analytical expressions of the co-rotating or counter-
rotating vortex streets are especially useful for studying the DH@(w)-aw:f f (fw)+P'(0))dwdx dy. (12
stability of the experimental fluid flowslescribed before. It P
would be of interest to find an analytic function connectingWe wish to choose® so that DHg(wy)=0, where
the co-rotating and counter-rotating solutions. As written bywy=— V2, and iy, is defined by Eq(6). We obtain
Mallier and Maslowé! if such a function exists, it is likely

that at the best the general equation will be the following: ” , 1
g a S 0= d(0) = s (13
Py Py 2 2 V4w +(1—¢g?)
+ =AeV+Be Y. 9
X2 ay? © © leading to (1 &2) " 1=—®"(w)=0. We will need to bound
It can be shown that, rather than interpolating between qu—<1> away from zero. Eqs(5-6) state that
(5) and Eq.(7), Eq. (9) reduces to the sinh-Poisson equation 1-82 _
(5) for all nonzero values oA. Therefore a solution of Eq. w=—7— sinh(4 Arcth g(x,y)) with
(9) is
coshey—e COSX | _ |8 cosXx
- _ 9(x,y)|= <e (14)
y=n coshey+e COSX Yo, (10 coshey

where e=(1—4J—AB) 2 and = 1/2 arccosh(B o) that o is bounded by |o|<omnx
—A)/2(—Aé) vy Vo K = (1—&2/2)sinh(4 Arcthe). The calculation

Moreover, it is possible to treat the Liouville equation \/ms(l—sz)cosrm Arcth &)

(7) corresponding to the limiting casé=0, as a singular

limit of the sinh-Poisson equatiéhby making the substitu- 1+6e%+¢*

tion 1—e2=\2%e 2 andy=u— B in Eq. (5), and then tak- T 12 (15)

ing B— +oo. By carefully following what happens in this _

highly singular limit, Tracyet al?® succeeded in exhibiting '€ads to the improved bounds

the Liouville solution as a singular limit of the sinh-Poisson -1 —(1-¢?)

solution. However, to our knowledge, the function connect- s<P"(w)S ————7.

ing the two solutions has not been found. At this point, let us —e 1+6s7+e

turn our attention to determining the nonlinear stability of the ~ However, the bounds i116) apply only to]w|< wmax,

Mallier—Maslowe solutions. whereas we will require such bounds to hold over the entire
real line. We therefore construct a functidn to coincide
with @ for | w|< wmay and with

(16)

ll. NONLINEAR STABILITY OF THE COUNTER-
ROTATING VORTICES B(w)=—

wz
7+au_,w+,3i (17)

1-¢2
1+6e%+¢*

We are interested in the stability of the Mallier—
Maslowe solution(6) in order to explain the experimental
results presented by Tabeliegal® To establish explicit suf-
ficient stability condition%’ for all values ofs and to study
the nonlinear stability of the counter-rotating vortices in a
domainD of the plane R, in the former articlé?’ we used Fla(80)=Ha(wy+ 80)— Ha(wy) — DH(wy). 5o
the total energy on this domain

H(w)=f fD;Mde dy :f JD

—D(wy)— D (wy).dw

for |w|= wmax. The constants.. andB. are determined by
continuity, so thatb is a G-function.

With these preparations completed, we are ready to de-
fine the nonlinear constant of motion:

1 ~
E5w(—V2)_15w+q)(wM+ ow)

dx dy (18

1 1
=f —lﬂVlﬂ.ndS—f f —yYyV2ydx dy
D2 D2

and to use it to establish Liapunov stability estimates. Using

1
_ _J f Jodx dy 11 the boundg16), we get,
2 D 2 2
l-¢ Sw ~ -
where we have used the fact that the velocity, and h&hze 176e27 4% 2 = Plowtdn)+d(wy)
vanishes on the boundary &f. Since the fluid is inviscid,
this quantity is conserved. More generally, one can also s Sw< 1 5_w2
show?® that the functionals Co(w)=[[p®(w)dx dy, (oy).d0<7=" =
called Casimirs, are also conserved for any real-valued func-
tion ® (19
We define a conserved quantity,=H+Cy whose —We introducek?,,, the minimal eigenvalue of the positive

functional derivative is: operator ¢ V?2), to obtain
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1 2y-1 1 2 10
0= Di&o(—v ) ow= Ekmm||5w|||_2. (20 i
Combining(19) and (20), we have
8_
1-g2 5 2 - A
1565254 Kmin || 00]|L2=—2H§ () i
=1l wlz. (21) °r

Now consider an initial value of the perturbatidiv, .
SinceHg is a conserved quantity,

- - 1
—2Hj(8w)=~2H(wo) =< T—llwollfz. (22 !

— g2
This a priori estimate provides suitable norms bounding the 5L
growth of disturbances since we have finally |

1-¢? -2 2 1 2
Tr6e71ot  Kmin|llowlll= Tzl 0wl (23

The solution is nonlinearly stable if the term in brackets is ’ ‘ c
positive.

Consider for the domairD a rectangular box, with FIG. 2. The region A defines the domain of sufficient stability of a pair of
Iength 2N in x and 2 in y: the minimal eigenvalue of the counter-rotating vorticesN_=1) in the plgne (,s)_. / is the tr_angverse si_ze
operator VZ) is kﬁqin=(1/N2) N (77_2//2)’ since the eigen- g;tgz'kzozx@a'n& characterizes the vorticity density. The solid line is defined
functions vanishing on the boundary are
f(x,y) =cos&/N)sin(zy//). Therefore, we have derived a
maximum transverse size of the domain D for which the

: ) : for which we shall give a partial justification in Sec. IV D.
Mallier—Maslowe vortex street is nonlinearly stable. TheWith the choice(26), if is a stationarv solution to the
sufficient conditional stability is the following: 1T Y

Euler equation(3), then ), is also a solution to the full

iy 1+6e2+e* 1 Navier—Stokes equatiof25). Viscosity plays an important
7> 1—-s2  NZ (24 role, however, in determining thstability of the solution

. ) o N v - Our strategy is to linearize the Navier-Stokes equations
Figure 2 presents the region of sufficient stability of the;round the steady states and to seek eigenmodes of the lin-
counter-rotating vortices in the’(e) plane forN=1. earized equations. The linearized equation governing the

evolution of a perturbationp is
IV. VISCOUS AND FORCED FLOW &V2d)

A. Introduction 7t =J(u,V2h)+ (¢, Vi) + vV (27)

It would be interesting to extend the previously pre-
sented results in the presence of viscosity and forcing. More-
over the viscosity imposes a minimum scalé/gupw)*?, ~ B. Numerical procedure
the diffusion length for the eddy turnover period at the maxi- Al of our calculations are performed on a two-
mum realized vorticity. Thus, a small viscosity avoids somegimensional &,y) plane. In the periodig-direction we use a
difficulties concerning the continuum limit of Euler flow. To Fqyrier representation with, modes(from 16 to 64; we
fully understand the nonlinear evolution, we can follow themapy e (—o,+») to (—1,4+1) via a tanh mapping with
time evolution of the system from various initial conditions; N, gridpoints (from 65 to 123. Boundary conditions are

however, it is useful to obtain the eigenspectrum of theautomatically satisfied in this representation:
steady states, since they are associated with transitions angty 1 2 vy = #(x,y) anddp/ay(x,y=+=)=0.

loss of stabi_lity. _ _ For stability, the viscous terfi¢ in Eq. (27) is inte-
In the viscous case, we have the full two-dimensionalyrated implicitly by the backward Euler scheme. The remain-
Navier—Stokes equation e e ntontoted oxolily, WWe have
2 —
07Zt¢+J(V2l/ly'J/)=VV4,T/,+Gext_ (25) V2¢n+1=(|—VAtV2) l[V2¢n+At(J(lIlM,V2¢n)
+3(bn, V)] (29)

In what follows, we will choose the external forcing to coun-

terbalance the viscosity: whereAt is the time step.

. The linear stability ofiy, is determined by the leading
Gext= vV iy (26) eigenvaluegthose with greatest real padf the operator on
490 Phys. Fluids, Vol. 8, No. 2, February 1996 Dauxois, Fauve, and Tuckerman
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the right hand side of27). The leading eigenvalues of the : : : :
operator of the differential equatidi27) become the domi- 0.10F “m .
nant ones(those with largest magnitugleof the iterative i \
scheme of Eq(28); fortunately, dominant eigenvalues are i \
those most readily calculated by iterative methods. Effec- | UnsTABLE )
tively, exact solution of Eq(27) would require exponentiat- I ‘ ]
ing the operator on its right hand side, and the numerical O'O5f

method(28) carries out an approximate exponential.

This can be abbreviated as

2
d:td’ —AV2¢ e V26(1) =AMV 24(0) =AMty 24(0)

0.00 froveeesemeesmrm e

Real part of A (growth rate)

=B"V?¢(0) (29

wheret=nAt andB=e**! is approximated by the operator
on the right hand side of E¢28).

The block power, or Arnoldi's, method is used in order |
to find thek leading eigenvalues, including complex or mul- , | , | , | , | ,
tiple eigenvalues, simultaneously, as described by Mamun 10t 1072 100 102 104
and Tuckermai? and references therein. We first integrate Viscosity v
Eq. (27) for some fairly long period of timd in order to
purge the vector of the strongly damped eigenmodes which'G- 3 Eigenvalues. Dependence_ of the growth rate for the first mode on

the viscosityr for the counter-rotating vortices whern=0.3. The squares

are not important for the linear Stablllty StUdy' We then ta‘keand the dashed curve correspond to the most unstablieast stableei-

k additional time steps, creating;=u(T), ... U 1=u(T genvalue and the asterisks and the solid curve toxtimelependent mode.
+ kdt). The vectors are orthonormalized, forming a basis for

what is called the Krylov space. A (by k) matrix H, which

represents the action & on the Krylov space, is generated In order to more clearly understand the evolution of the
and diagonalized, yielding eigenvalues and eigenvectors dhost unstable eigenmodes as a function of the viscosity, we
the linear stability problem. The eigenvaluesf A are re-  Will study the two particular cases depicted by filled squares
covered from those d (or H) by taking their logarithm and in Fig. 3, one stable ¥=10) and the other unstable
dividing by At. (v=0.01). Figure 4a) depicts the least stable eigenvector for

_0.05-  STABLE

C. Results of the linear stability analysis

Let us now study the linear stability of the Mallier— Cad
Maslowe vortices i.e., the stability of the flow, defined by T
Eq. (6) with corresponding forcing26). Figure 3 presents R &
the real part of the two first eigenvalues obtained with the

above method as a function of the kinematic viscosity when ~ ===~1 /7 (R “\\\\‘\‘\
the vorticity parameteg is 0.3 in Eq.(5). i I T “\\\\\\\\\\“‘“‘“‘“‘
n igh viscosity regimess ian term T \\\\‘\\““\‘“\
o gt s oo L
Ak A (30) ~ =P ‘
ot 10 \

i.e., a heat equation for the vorticif?¢ at v— + . In this

limit, the equation is independent of the vorticity density
parameters, so the eigenvalues are also independent.of

The numerical results confirms that, at sufficiently large vis- =
cosity and with the forcing chosen according to E2f), the
Mallier—Maslowe solutiong6) are stable, since the growth

rate of perturbations is negative. Around the value of
v=0.5, the flow becomes unstable. The growth rate in-
creases as the viscosity decreases. The numerical method
presented in Sec. IV B is feasible only for high to moderate
viscosities since for low viscosities, stability of the explicit

part of e umerical saheme recuires  very small ime stef1e. &, Sovien, [ smries £ o e s
Ieadmg'to'a tlme'consum_mg code. However, !n the _Z,ero_ VISgurtace plot fory=10 in (&), while (b) depicts thé cont’;ur-plot when
cosity limit, we showed in Sec. Il that the instability in- ,—001. The eigenvalues associated with these eigenvectors are

creases witle. A=—0.0115 anch =0.099, respectively.
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£=0.3 andv=10. As we see, the eigenvector is reflection- B/ k3

symmetric iny and independent of. This mode resembles a (%o, V1) + (b1, Vi) = — 5 cogkx)sin(27y).
shear layer. The evolution of the eigenvalue shown in Fig. 3 (31)
attests that the-independent mode is not the least unstable
mode for low viscosity; however, it is important for the fol-
lowing discussion to notice that this mode is marginally
stable for low values of. Figure 4b) presents the contour
plot of the most unstable eigenvector fer=0.3 and
v=0.01. The eigenvector has the shift-and-reflect symmetr -
¢(x+7r,—y)=¢g(x,y) and has the same periodicityznas nstable mode found for=0.01 and shown in Fig(®).

v - The growth rates of the two different modes cross at W'.a. can go furt'her and explam the occurrence of the
around the value'=0.5, as can be seen in Fig. 3. instability. We continue to approximate the base flow by

With the use of a simplified heuristic model it is possible Yo=A sinfxjcos¢’y), with A fixed, and the perturbation by
to understand the two modes. Since the flow is mainly ¢+ ¢,=B(t)coq/y)+ C(t)cogkx)sin(2/y). (32

present in a confined region, then, for the sake of simplicity,y,s s\pstitute these approximations into E2{):
let us consider the main flow to consist of counter-rotating o

vortices in a finite boxiy,=A sinkx)cos¢’y). We approxi-  9V2($1+ b2)

The interaction of the basic floy, with the marginally
unstable mode ¢; thus generates a third term
¢,=C coskX)sin(2y), completing the triad. We therefore
consider an unstable perturbative mode of the form
@1+ ¢,), which will have the same pattern as the most

=J(ho, VA 1+ $2)) +I(h1+ b2), VZibo)

mate the marginally unstable shearing mode by at

¢,=B cosy’y), as suggested by Fig(a}. With this ansatz, 4

one can then show that the Jacobian term in 3) will TVt ¢2), (33)
give obtaining

—B/2 cog/'y) - (kK2+4/2)C cogkx)sin(2/y)

ABK/ 3
=-— ‘ cogkx)sin(2/y)— Zk/3AC[cos(/'y) + 3 cog 2kx)cog /y) +3 cog3/y) +cog2kx)cog3/y)]
+v(/*B cog/y) + (k*+4/%)2C cogkx)sin(2/y)). (34)

Projecting onto cog(y) and coskx)sin(2y) gives the tative understanding of the relationship between the marginal
following Galerkin system for the time dependent amplitudesand unstable modes, and of the onset of instability.
B andC: Figure 5 shows the evolution of the greatest eigenvalue
versus viscosity for three different valuesgbn a logarith-
B=—1/2B— 3—k/AC, (353 mic scale. We see that the results are independentimthe
4 diffusive regime(high viscosity, as explained in the preced-
3, ing section. The inset allows us to ascertain that the value of
~——AB (35p A is alinear decreasing function of the viscosity. In the low
2(k“+477) viscosity regime the evolution is qualitatively the same but
the curves are distinct. The bigger the parametethe big-
ger the leading eigenvalue and, therefore the more unstable
the flow. One can also verify that the Mallier—Maslowe vor-
3k*/2A2 tices withe=0.5 become unstable at a critical viscosity
WZO. which is slightly higher than that corresponding 4e-0.2:
(36)  the critical viscosityv, is an increasing function of.

C=—v(k*+4/?)C—

Finally, looking for solutionsB=B,eS! and C=C,e®!, one
gets the equation

2+ sw(k?+5/2) + 12/ 2(K2+ 4/2) -

For low values ofA (i.e., low value of the intensity of
the electric current: see Sec. I\),Ihe initial flow is stable D. Relation to the experiment
since all solutions of Eq.36) are negative. In contrast, above

In th i Tabeli 1,2 the typical veloci
the threshold value n the experiment by Tabelingt al.,” the typical velocity

V of the basic regime can be found by balancing the forcing

2u(K2+4/2) [2 with the viscous term, as we have done via our assumption
Acz—kz— 3 (37) (26). In dimensional terms, this leads to the relation
Bhl
one solution of Eq(36) is real and positive: we get a sta- \% (38

tionary bifurcation giving rise to an instability of the pertur- ‘vp
bation (¢4 + ¢,) whose pattern coincides with that shown in in which B is the maximum value of the magnetic fieldthe
Fig. 4(b). This simple approach therefore gives a good qualiintensity of the electric currenl the depth of the fluid layer,
492 Phys. Fluids, Vol. 8, No. 2, February 1996 Dauxois, Fauve, and Tuckerman
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FIG. 5. Dependence of the growth rate on viscosity for three valuesdaf
the counter-rotating vortices. The diamonds and the dash-dotted curve cor-
respond tae=0.2, the squares and the dash-triple-dotted curve correspond
to £=0.3 and the triangles and the dashed curve correspose 5. The
asterisks and the solid curve representxfindependent mode. A logarith-
mic scale is used for the viscosity; the inset uses a linear scale.

FIG. 6. Contour plot of the stream function fer=0.3 andv=0.01. (a)
initial condition, the Mallier—Maslowe}, ; (b) t=65; (c) t=200.

, . i _ ) (v/€). The solution will therefore remain stable until the
7 the width of the magnety the viscosity an the density ranormalized viscosity reaches the critical viscosity

of the fluid. Because the typical velocity varies linearly with shoun in Fig. 3. Above this threshold, the counter-rotating
I, it is reasonable to suppose that the streamfunction and i, tices will be unstable and will evolve as presented in the
derivatives will also increase linearly with We thus take eyt section. The appearance of the instability of the counter-

our streamfunctiony= £y, where ¢y is the Mallier—  ya6ing vortices for a high enough electric curréris thus
Maslowe solution(9) and ¢ is a scalar which increases with explained.

I

One can easily check that if, is any solution to the
stationary solution Euler equatiof2), then ¢y is also a
solution. Let us show that the linear stability of all the solu-  The transitions resulting from the linear instability of the
tions £y is determined by a linear stability analysisfas  \allier—Maslowe vortices are studied by time-integrating
a function of viscosity. The equation governing the evolutionihe Navier—Stokes equatié@s). This numerical experiment
of an infinitesimal perturbatio to the new inviscid solu- s constructed to resemble that of Tabeletcal, except that

V. TIME INTEGRATION AND CONCLUSION

tion Is the size of the box is infinite. As an initial condition, we add
Vi to the Mallier—Maslowe vortex flow),, a small perturbation
pn =J(Ee V) +I( b, V2Ese) + vV . (39 of the form ¢(x,y,t=0)=exp(—y?)cosx, to accelerate the
appearance of the possible unstable modes. The spatial rep-
Dividing by ¢, we get resentation is, as discussed in Sec. IV B, with a resolution of
1 V24 v Nx=32, Ny=69 andy,=15. The time stepping is carried
i A =J(e,V2P)+I(,V2iho) + EV4¢' (40)  out according to Eq(28), with At=0.01.

If the simulation is carried out with=0.3 andv=5, the
Thus, studying the linear stability of the solutigiy, for  patterns are stable, confirming the linear stability analysis
viscosity v is equivalent to studying the linear stability of the presented in the previous section. When the parameters
solution ¢, for viscosity (v/§), except that the eigenvalue and v are fixed at 0.3 and 0.01 respectively, the evolution,
will also be modified by. depicted in Fig. 6, is clearly different. We see in Figb%
Using this insight, it is then possible to understand thethat att=65 we have a linear array of tilted vortices of
appearance of the instability. Recall from Fig. 3 that thepositive sign and the size of the vortices has doubled as
counter-rotating vortex flowy, is stable for sufficiently high  occurred in the experiment. The negative vortices have been
v. Thus &y, is stable for sufficiently highw/é, i.e., for  ejected away from the center of the box.
sufficiently low electric current. Increasing the electric cur- If we plot the deviationg=(— ¢) from the initial
rent | in the experiment corresponds to increasih@nd, condition ¢y, we find in the initial stagéatt=50 for ex-
therefore, to decreasing the “renormalized” viscosity ample the stream function presented in Figa)7 confirming
Phys. Fluids, Vol. 8, No. 2, February 1996
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FIG. 9. Contour plot of the stream function for £¢=0.3, »=0.01 and
©=0.01 att=5000.

This explains why the system does not reach a final equilib-
rium state: Sincep is then itself a solution of the stationary
inviscid Eq. (3) J(¢,V2¢) =0, the nonlinear saturation ef-
fect disappears ang continues to grow in time. A similar
case was found in zero Prandtl number convection, where
the linearly unstable roll modes are exact nonlinear
solutions®!

One possible reason that our simulation, unlike the ex-
periment of Tabelinget al,® does not reach a final equilib-
rium state could be that we considered the flow to be per-

the linear stability analysifsee Fig. 4b)]. After this linear  féctly two-dimensional. In  the experiment, two-
transient growth, the flow continues to evolve until it ap_d|menS|onaI|ty is enforced by using a shallow fluid layer: a

proaches the pattern depicted in Figc)s However, the am- frictional force proportional to the velocity could capture this
] .. 2,33 . 2
plitude continues to increase with tinisee Fig. 8 while ~ Pottom-friction effect’ " The addition of a term-uV*=y
preserving the pattern. Figuréby depicts the deviatiogy at ~ Proportional to the velocity on the right hand side of E2p)
t=200 and we note that the pattern around %haxis re- will change the evolution of the flow. The eigenvalues in the

sembles somewhat the Kelvin—Stuart vortifsse Fig. 1b)]. presence of linear friction differ from those of the problem
without friction only by a shift & ) of the growth rate: thus

the determination of the dependence of the eigenvalue spec-
trum onu does not require additional numerical studies and,
in addition, the linear friction is always stabilizing.

We therefore time-integrate this system, including the
linear friction term as well as the ordinary viscosity. The
external force is now chosen as

Gex= — vV 4+ uV2ihy (41)

so that, as in the previous section, the viscosity only acts on
the perturbation not the basic flow. The resulting streamfunc-
tion att=300 is shown in Fig. 9 for a small value pf fixed
at 0.01. Contrary to the case without linear friction=€0,
see Fig. 6, the flow attains an equilibrium state with co-
rotating vortices along the&-axis as demonstrated by the
time series in Fig. 8. Thus, the linear friction term stabilizes
the row of co-rotating vortices as was obtained in the experi-
ment. The necessity of this linear friction term in reproduc-
ing the final state of the experiment could be a reason why
the final maximum entropy state is not often reached by Mar-
. oo pros s s i teauet al?° in their experiment: in their small 2D lattice of
TIME electromagnetically forced vortices, the bottom-friction ef-
fect should also be important.
FIG. 8. Evolution of the norm of the deviatidig||=||¢— || from the The pgrpose of _thls Wo_rk was to.understand and eéplaln
Mallier—Maslowe solution foe=0.3, »=0.01 versus time. The solid curve the€ behavior of the instructive experiment of Tabeletgal.
corresponds ta.=0 and the dashed curve jo=0.01. First, we derived explicitly the nonlinear stability condition

FIG. 7. Contour plot of the deviationp=¢— ¢, from the Mallier—
Maslowe solution fore=0.3, v=0.01 andu=0. (a) t="50; (b) t=3000.
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