Laurette TUCKERMAN laurette@pmmh.espci.fr

Rayleigh-Bénard Convection and Lorenz Model

Rayleigh-Bénard Convection

Rayleigh-Bénard Convection

Boussinesq Approximation

Calculation and subtraction of the basic state

Non-dimensionalisation

Boundary Conditions

Linear stability analysis

Lorenz Model

Inclusion of nonlinear interactions

Seek bifurcations

Boussinesq Approximation

 μ (viscosity ~ diffusivity of momentum), κ (diffusivity of temperature), ρ (density) constant except in buoyancy force. Valid for $T_0 - T_1$ not too large.

$$egin{array}{rcl}
ho(T) &=&
ho_0 \left[1-lpha(T-T_0)
ight]
onumber
onumb$$

Governing equations:

$$\rho_0 \left[\partial_t + (\mathbf{U} \cdot \nabla)\right] \mathbf{U} = \mu \Delta \mathbf{U} - \nabla P - g\rho(T) \mathbf{e}_z$$
$$\left[\partial_t + (\mathbf{U} \cdot \nabla)\right] T = \kappa \Delta T$$
$$\uparrow \qquad \uparrow \qquad \uparrow$$
advection diffusion buoyancy

Boundary conditions:

$$egin{array}{lll} \mathrm{U}=0 & ext{at} & z=0,d \ T=T_{0,1} & ext{at} & z=0,d \end{array}$$

Calculation and subtraction of base state

Conductive solution:
$$(U^*, T^*, P^*)$$

Motionless: $U^* = 0$
uniform temperature gradient: $T^* = T_0 - (T_0 - T_1) \frac{z}{d}$
density: $\rho(T^*) = \rho_0 \left[1 + \alpha (T_0 - T_1) \frac{z}{d} \right]$

Hydrostatic pressure counterbalances buoyancy force:

$$egin{array}{rcl} P^{*} &=& -g \int \, dz \;
ho(T^{*}) \ &=& P_{0} - g
ho_{0} \left[z + lpha (T_{0} - T_{1}) rac{z^{2}}{2d}
ight] \end{array}$$

Write:

$$T = T^* + \hat{T}$$
 $P = P^* + \hat{P}$

Buoyancy:

$$egin{aligned} &
ho(T^*+\hat{T}) \ = \
ho_0(1-lpha(T^*+\hat{T}-T_0)) \ &= \
ho_0(1-lpha(T^*-T_0))-
ho_0lpha\hat{T} \ &= \
ho(T^*)-
ho_0lpha\hat{T} \ &= \
ho(T^*)-
ho_0lpha\hat{T} \ &= \
ho(T^*)-
onumber
ho^2
ho(T^*)-
abla
ho^2
ho(T^*)-
abla
ho^2
ho(T^*) \ &= \ -
abla
ho^2
ho^2
ho^2
ho^2
ho^2
ho_2
ho^2
ho^2
ho_2
ho^2
ho_2
ho^2
ho_2
ho^2
ho_2
ho_2
ho^2
ho_2
ho_2$$

Advection of temperature:

$$egin{aligned} &(U\cdot
abla)T \ &= \ &(oldsymbol{U}\cdot
abla)oldsymbol{T}^* + (oldsymbol{U}\cdot
abla)oldsymbol{\hat{T}} \ &= \ &(oldsymbol{U}\cdot
abla) \left(oldsymbol{T}_0 - (oldsymbol{T}_0 - oldsymbol{T}_1) rac{oldsymbol{z}}{oldsymbol{d}}
ight) + (oldsymbol{U}\cdot
abla) oldsymbol{\hat{T}} \ &= \ &- rac{T_0 - T_1}{oldsymbol{d}} oldsymbol{U}\cdot oldsymbol{e}_{z} + (oldsymbol{U}\cdot
abla) oldsymbol{\hat{T}} \end{aligned}$$

Governing equations:

$$egin{aligned} &
ho_0 \left[\partial_t + (U \cdot
abla)
ight] U \ &= \ -
abla \hat{P} + g
ho_0 lpha \hat{T} \mathrm{e_z} + \mu \Delta U \ &
abla \nabla \cdot U \ &= \ 0 \ & \left[\partial_t + (U \cdot
abla)
ight] \hat{T} \ &= \ & rac{T_0 - T_1}{d} U \cdot \mathrm{e_z} + \kappa \Delta \hat{T} \end{aligned}$$

Homogeneous boundary conditions:

$$egin{array}{rcl} U&=&0 & ext{at} & z=0,d\ \hat{T}&=&0 & ext{at} & z=0,d \end{array}$$

Non-dimensionalization

Scales:

$$z=dar{z}, ~~t=rac{d^2}{\kappa}ar{t}, ~~U=rac{\kappa}{d}ar{U}, ~~\hat{T}=rac{\mu\kappa}{d^3g
ho_0lpha}ar{T}, ~~\hat{P}=rac{\mu\kappa}{d^2}ar{P}$$

Equations :

$$egin{array}{ll} rac{\kappa^2
ho_0}{d^3}\left[\partial_{ar t}+(ar U\cdotar
abla)
ight]ar U&=&-rac{\mu\kappa}{d^3}ar
ablaar P+rac{\mu\kappa}{d^3}ar T{
m e_z}+rac{\mu\kappa}{d^3}ar \Deltaar U\ &rac{\kappa}{d^2}ar
abla\cdotar U&=&0\ &rac{\mu\kappa^2}{d^5g
ho_0lpha}\left[\partial_{ar t}+(ar U\cdotar
abla)
ight]ar T&=&rac{\kappa}{d}rac{T_0-T_1}{d}ar U\cdot{
m e_z}+rac{\mu\kappa^2}{d^5g
ho_0lpha}ar \Deltaar T \end{array}$$

Dividing through, we obtain:

$$\begin{bmatrix} \partial_{\bar{t}} + (\bar{U} \cdot \bar{\nabla}) \end{bmatrix} \bar{U} = \frac{\mu}{\rho_0 \kappa} \begin{bmatrix} -\bar{\nabla}\bar{P} + \bar{T}e_z + \bar{\Delta}\bar{U} \end{bmatrix}$$
$$\begin{bmatrix} \partial_{\bar{t}} + (\bar{U} \cdot \bar{\nabla}) \end{bmatrix} \bar{T} = \frac{(T_0 - T_1)d^3g\rho_0\alpha}{\kappa\mu} \bar{U} \cdot e_z + \bar{\Delta}\bar{T}$$

Non-dimensional parameters:

the Prandtl number: $Pr \equiv -\frac{\mu}{2}$

 $Pr \equiv \frac{\mu}{\rho_0 \kappa}$ momentum diffusivity / thermal diffusivity

the Rayleigh number:

$$Ra\equivrac{(T_0-T_1)d^3g
ho_0lpha}{\kappa\mu}$$

non-dimensional measure of thermal gradient

Boundary conditions

Horizontal direction: periodicity $2\pi/q$

Vertical direction: at z = 0, 1

 $T=0|_{z=0,1}$ perfectly conducting plates $w=0|_{z=0,1}$ impenetrable plates

Rigid boundaries at z = 0, 1:

 $\left. u
ight|_{z=0,1} = \left. v
ight|_{z=0,1} = 0 \quad ext{zero tangential velocity}$

Incompressibility

$$egin{aligned} &\partial_x u + \partial_y v + \partial_z w = 0 \ &\Longrightarrow \partial_z w = -(\partial_x u + \partial_y v) \end{aligned}$$

 $egin{array}{lll} u|_{z=0,1}=v|_{z=0,1}=0 \Longrightarrow & \partial_x u|_{z=0,1}=\partial_y v|_{z=0,1}=0 \ & \Longrightarrow & \partial_z w|_{z=0,1}=0 \end{array}$

Free surfaces at z = 0, 1 to simplify calculations:

$$egin{aligned} & [\partial_z u + \partial_x w]_{z=0,1} & = \left[\partial_z v + \partial_y w
ight]_{z=0,1} = 0 \ & ext{zero tangential stress} \end{aligned}$$

$$\begin{split} w|_{z=0,1} &= 0 &\implies \partial_x w|_{z=0,1} = \partial_y w|_{z=0,1} = 0 \\ &\implies \partial_z u|_{z=0,1} = \partial_z v|_{z=0,1} = 0 \\ &\implies \partial_x \partial_z u|_{z=0,1} = \partial_y \partial_z v|_{z=0,1} = 0 \\ &\implies \partial_{zz} w|_{z=0,1} = -\partial_z (\partial_x u + \partial_y v)|_{z=0,1} = 0 \end{split}$$

Not realistic, but allows trigonometric functions $\sin(k\pi z)$

Two-dimensional case

$$U =
abla imes \psi ext{ e}_{ ext{y}} \Longrightarrow \left\{egin{array}{c} u = -\partial_z \psi \ w = \partial_x \psi \end{array}
ight\} \Longrightarrow
abla \cdot U = 0$$

No-penetration boundary condition:

$$0=w=\partial_x\psi\Longrightarrowiggl\{egin{array}{cc}\psi=\psi_1& ext{at}\ z=1\\psi=\psi_0& ext{at}\ z=0\end{array}iggr\}$$
al flux:

Horizontal flux:

$$\int_{z=0}^{1} dz \; u(x,z) = -\int_{z=0}^{1} dz \; \partial_z \psi(x,z) = - \; \psi(x,z)]_{z=0}^{1} = \psi_0 - \psi_1$$

Arbitrary constant $\Longrightarrow \psi_0 = 0$ Zero flux $\Longrightarrow \psi_1 = 0$

Stress-free: $0 = \partial_z u = -\partial_{zz}^2 \psi$ Rigid: $0 = u = \partial_z \psi$ at z = 0, 1

Two-dimensional case

Temperature equation:

$$\partial_t T + oldsymbol{U} \cdot oldsymbol{
abla} T = RaU \cdot \mathrm{e_z} + \Delta T$$

$$egin{aligned} oldsymbol{U} \cdot oldsymbol{
abla} T &= u \; \partial_x T + w \; \partial_z T \ &= -\partial_z \psi \; \partial_x T + \partial_x \psi \; \partial_z T \equiv oldsymbol{J}[oldsymbol{\psi}, T] \end{aligned}$$

 $\partial_t T + oldsymbol{J}[oldsymbol{\psi},oldsymbol{T}] = Ra \; \partial_x \psi + \Delta T$

Velocity equation

 $\partial_t U + (U \cdot \nabla) U = Pr \left[-\nabla P + T \mathbf{e_z} + \Delta U \right]$

Take $e_y \cdot \nabla \times$:

 $\begin{array}{lll} \mathbf{e}_{\mathrm{y}} \cdot \nabla \times \partial_{t} U &= \, \mathbf{e}_{\mathrm{y}} \cdot \nabla \times \nabla \times \partial_{t} \psi \mathbf{e}_{\mathrm{y}} = -\partial_{t} \Delta \psi \\ \mathbf{e}_{\mathrm{y}} \cdot \nabla \times \nabla P &= \, 0 \\ \mathbf{e}_{\mathrm{y}} \cdot \nabla \times T \mathbf{e}_{\mathrm{z}} &= \, -\partial_{x} T \\ \mathbf{e}_{\mathrm{y}} \cdot \nabla \times \Delta U &= \, \mathbf{e}_{\mathrm{y}} \cdot \nabla \times \Delta \nabla \times \psi \mathbf{e}_{\mathrm{y}} = -\Delta^{2} \psi \end{array}$

 $\partial_t \Delta \psi - \mathrm{e_y} \cdot
abla imes (oldsymbol{U} \cdot
abla) oldsymbol{U} = Pr[\partial_x T + \Delta^2 \psi]$

$$abla imes
abla imes f =
abla
abla \cdot f - \Delta f$$

${ m e}_{ m y}\cdot abla imes (U\cdot abla) U \ = \ \partial_z (U\cdot abla) u - \partial_x (U\cdot abla) w$

$$= \partial_{z}(u\partial_{x}u + w\partial_{z}u) - \partial_{x}(u\partial_{x}w + w\partial_{z}w)$$

$$= \partial_{z}u \partial_{x}u + \partial_{z}w \partial_{z}u - \partial_{x}u \partial_{x}w - \partial_{x}w \partial_{z}w$$

$$+ u \partial_{xz}u + w \partial_{zz}u - u \partial_{xx}w - w \partial_{xz}w$$

$$= \partial_{z}u (\partial_{x}u + \partial_{z}w) - \partial_{x}w (\partial_{x}u + \partial_{z}w)$$

$$+ u \partial_{x}(\partial_{z}u - \partial_{x}w) + w\partial_{z}(\partial_{z}u - \partial_{x}w)$$

$$= (-\partial_{z}\psi)\partial_{x}(-\partial_{zz}\psi - \partial_{xx}\psi)$$

$$+ (\partial_{x}\psi)\partial_{z}(-\partial_{zz}\psi - \partial_{xx}\psi)$$

$$= (\partial_{z}\psi)\partial_{x}(\Delta\psi) - (\partial_{x}\psi)\partial_{z}(\Delta\psi)$$

 $=-J[\psi,\Delta\psi]$

 $egin{aligned} \partial_t \Delta \psi + oldsymbol{J}[\psi,\Delta \psi] &= Pr[\partial_x T + \Delta^2 \psi] \end{aligned}$

Linear stability analysis

Linearized equations:

$$egin{array}{lll} \partial_t \Delta \psi &=& Pr[\partial_x T + \Delta^2 \psi] \ \partial_t T &=& Ra \; \partial_x \psi + \Delta T \end{array}$$

Solutions:

$$egin{array}{rl} -\lambda \gamma^2 \hat{oldsymbol{\psi}} &=& Pr[-q \hat{oldsymbol{T}} + \gamma^4 \hat{oldsymbol{\psi}}] \ \lambda \hat{oldsymbol{T}} &=& Ra \; q \; \hat{oldsymbol{\psi}} - \gamma^2 \hat{oldsymbol{T}} \end{array}$$

$$\lambda \left[egin{array}{c} \hat{oldsymbol{\psi}} \ oldsymbol{\hat{T}} \end{array}
ight] = \left[egin{array}{c} -Pr \ \gamma^2 & Pr \ q/\gamma^2 \ Ra \ q & -\gamma^2 \end{array}
ight] \left[egin{array}{c} \hat{oldsymbol{\psi}} \ oldsymbol{\hat{T}} \end{array}
ight]$$

Steady Bifurcation: $\lambda = 0$

$$Pr \ \gamma^4 - Pr \ Ra \ rac{q^2}{\gamma^2} = 0$$
 $Ra = rac{\gamma^6}{q^2} = rac{(q^2+(k\pi)^2)^3}{q^2} \equiv Ra_c(q,k)$

Convection Threshold

Conductive state unstable at (q,k) for $Ra > Ra_c(q,k)$

Conductive state stable if

0

$$\begin{aligned} & \operatorname{Ra} < \inf_{\substack{q \in \mathcal{R} \\ k \in \mathcal{Z}^+}} \operatorname{Ra}_c(q, k) \\ & = \frac{\partial \operatorname{Ra}_c(q, k)}{\partial q} = \frac{q^2 3 (q^2 + (k\pi)^2)^2 2q - 2q (q^2 + (k\pi)^2)^3}{q^4} \\ & = \frac{2(q^2 + (k\pi)^2)^2}{q^3} (3q^2 - (q^2 + (k\pi)^2) \\ & \Longrightarrow q^2 = \frac{(k\pi)^2}{2} \end{aligned}$$

$$egin{split} Ra_c\left(q=rac{k\pi}{\sqrt{2}},k
ight)=rac{(k\pi)^2/2+(k\pi)^2)^3}{(k\pi)^2/2}=rac{27}{4}(k\pi)^4\ Ra_c\equiv Ra_c\left(q=rac{\pi}{\sqrt{2}},k=1
ight)=rac{27}{4}(\pi)^4=657.5 \end{split}$$

Rigid Boundaries

Calculation follows the same principle, but more complicated.

Boundaries damp perturbations \implies higher threshold

 $q_c \downarrow \Longrightarrow \ell_c = \pi/q_c \uparrow \Longrightarrow$ rolls pprox circular

$$Ra_c$$
 q_c ℓ_c stress-free boundaries $\frac{27}{4}\pi^4 = 657.5$ $\frac{\pi}{\sqrt{2}}$ 1.4 rigid boundaries ≈ 1700 $\approx \pi$ ≈ 1

Lorenz Model: including nonlinear interactions

$$egin{aligned} oldsymbol{J} \left[oldsymbol{\psi}, \Delta oldsymbol{\psi}
ight] &= J [oldsymbol{\psi}, - \gamma^2 oldsymbol{\psi}] \ &= \partial_x \psi \; \partial_z (- \gamma^2 \psi) - \partial_x (- \gamma^2 \psi) \partial_z \psi = oldsymbol{0} \end{aligned}$$

$$J[\psi, T] = \hat{\psi}\hat{T} \left[\partial_x(\sin qx \sin \pi z)\partial_z(\cos qx \sin \pi z) -\partial_x(\cos qx \sin \pi z)\partial_z(\sin qx \sin \pi z)\right]$$

$$= \hat{\psi}\hat{T} q\pi \left[\cos qx \sin \pi z \cos qx \cos \pi z + \sin qx \sin \pi z \sin qx \cos \pi z\right]$$

$$+ \hat{\psi}\hat{T} q\pi \left(\cos^2 qx + \sin^2 qx\right) \sin \pi z \cos \pi z$$

$$= \hat{\psi}\hat{T} \frac{q\pi}{2} \sin 2\pi z$$

$$\uparrow \uparrow \qquad \uparrow \uparrow$$

functions scalars

 $egin{aligned} \psi(x,z,t) &= \hat{\psi}(t)\sin qx \ \sin \pi z \ T(x,z,t) &= \hat{T}_1(t)\cos qx \ \sin \pi z + \hat{T}_2(t)\sin 2\pi z \end{aligned}$

$$egin{aligned} J[\psi,T_2] &= \hat{\psi}\hat{T}_2 \; [\partial_x(\sin qx\sin \pi z)\partial_z(\sin 2\pi z) \ &-\partial_x(\sin 2\pi z)\partial_z(\sin qx\,\sin \pi z)] \ &= \hat{\psi}\hat{T}_2 \; q \; 2\pi \; \cos qx \; \sin \pi z \; \cos 2\pi z \ &= \hat{\psi}\hat{T}_2 \; q \; \pi \cos qx \; (\sin \pi z + \sin 3\pi z) \end{aligned}$$

Including $\hat{T}_3(t) \cos qx \sin 3\pi z \Longrightarrow$ new terms \Longrightarrow Closure problem for nonlinear equations

Lorenz (1963) proposed stopping at T_2 .

Lorenz Model

Famous Lorenz Model:

$$egin{array}{lll} \dot{X}&=&\sigma(Y-X)\ \dot{Y}&=&-XZ+rX-Y\ \dot{Z}&=&XY-bZ \end{array}$$

 $\sigma = Pr$ (often set to 10, its value for water)

 $r = Ra/Ra_c$

Damping $\Longrightarrow -\sigma X, -Y, -bZ$

Advection $\Longrightarrow XZ, XY$

Symmetry between (X, Y, Z) and (-X, -Y, Z)

Lorenz Model

Pitchfork Bifurcation

Steady states:

$$\begin{array}{rcl} 0 = \sigma(Y - X) \implies X = Y \\ 0 = -XZ + rX - Y \implies X = 0 \ \ \text{or} \ \ Z = r - 1 \\ 0 = XY - bZ \implies Z = 0 \ \ \text{or} \ \ X = Y = \pm \sqrt{b(r - 1)} \end{array}$$

$$egin{pmatrix} 0\ 0\ 0\ 0 \end{pmatrix}, \quad egin{pmatrix} \sqrt{b(r-1)}\ \sqrt{b(r-1)}\ r-1 \end{pmatrix}, \quad egin{pmatrix} -\sqrt{b(r-1)}\ -\sqrt{b(r-1)}\ r-1 \end{pmatrix} \end{pmatrix}$$

Jacobian:

$$Df=egin{pmatrix} -\sigma & \sigma & 0\ r-Z & -1 & -X\ Y & X & -b \end{pmatrix}$$
 For $(X,Y,Z)=(0,0,0)$:

$$Df(0,0,0) = egin{pmatrix} -\sigma & \sigma & 0 \ r & -1 & 0 \ 0 & 0 & -b \end{pmatrix}$$

Eigenvalues:

$$egin{array}{rl} \lambda_1+\lambda_2&=&Tr=-\sigma-1<0\ \lambda_1\lambda_2&=&Det=\sigma(1-r)\ \lambda_3&=&-b<0 \end{array}$$

$$0 < r < 1 \Longrightarrow \lambda_{1,2,3} < 0 \Longrightarrow$$
 stable node

$$r>1\Longrightarrow\lambda_{1,3}<0,\lambda_2>0\Longrightarrow ext{saddle}$$

Pitchfork bifurcation at r = 1 creates

$$X = Y = \pm \sqrt{b(r-1)}, Z = r-1$$

Lorenz Model: Hopf Bifurcation

For
$$X=Y=\pm\sqrt{b(r-1)}, Z=r-1,$$

 $Df=\left(egin{array}{ccc} -\sigma & \sigma & 0 \ 1 & -1 & \mp\sqrt{b(r-1)} \ \pm\sqrt{b(r-1)} & \pm\sqrt{b(r-1)} & -b \end{array}
ight)$

Eigenvalues:

 $\lambda^3+(\sigma+b+1)\lambda^2+(r+\sigma)b\lambda+2b\sigma(r-1)=0$ Hopf bifurcation $\lambda=i\omega$:

$$-i\omega^3-(\sigma+b+1)\omega^2+i(r+\sigma)b\omega+2b\sigma(r-1)=0$$

$$egin{array}{lll} -(\sigma+b+1)\omega^2+2b\sigma(r-1)&=&0\ -\omega^3+(r+\sigma)b\omega&=&0 \end{array}$$

$$\begin{array}{ll} \displaystyle \frac{2b\sigma(r-1)}{\sigma+b+1} &=& \displaystyle \omega^2=(r+\sigma)b\\ \displaystyle 2b\sigma(r-1) &=& \displaystyle (r+\sigma)b(\sigma+b+1)\\ \displaystyle 2b\sigma r-2b\sigma &=& \displaystyle rb(\sigma+b+1)+\sigma b(\sigma+b+1) \end{array}$$

$$r = rac{\sigma(\sigma+b+3)}{\sigma-b-1} = 24.74 \;\; {
m for} \;\; \sigma = 10, \; b = 8/3$$

At r = 24.74, the two steady states undergo a Hopf bifurcation (shown to be subcritical)

 \implies unstable limit cycles exist for r < 24.74

Lorenz Model: Bifurcation Diagram

Lorenz Model: Strange Attractor for r = 28

Lorenz Model: Time Series for r = 28

motion described by Lorenz model

Instabilities of straight rolls: "Busse balloon"

skew-varicose instability

cross-roll instability

Continuum-type stability balloon in oscillated granulated layers, J. de Bruyn, C. Bizon, M.D. Shattuck, D. Goldman, J.B. Swift & H.L. Swinney, Phys. Rev. Lett. 1998.

Complex spatial patterns in convection

Experimental spiral defect chaos Egolf, Melnikov, Pesche, Ecke Nature 404 (2000)

Spherical harmonic $\ell = 28$ P. Matthews Phys. Rev. E. 67 (2003)

Convection in cylindrical geometry. Bajaj et al. J. Stat. Mech. (2006)

Small containers: multiplicity of states cylindrical container with R = 2H

experimental photographs by Hof, Lucas, Mullin, Phys. Fluids (1999) numerical simulations by Borońska, Tuckerman, Phys. Rev. E (2010)

Small containers: a SNIPER bifurcation in a cylindrical container with R = 5H

Pattern of five toroidal convection cells moves radially inwards in time. From Tuckerman, Barkley, Phys. Rev. Lett. (1988).

Timeseries

fast away from SNIPER slow near SNIPER

Phase portraits

before SNIPER after

Geophysics

Numerical simulation of convection in earth's mantle, showing plumes and thin boundary layers. By H. Schmeling, Wikimedia Commons.