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Hydrodynamic Instabilities:

Convection and Lorenz Model

1 Convection

The chapter is devoted to the study of a fluid layer between two plates maingdiddf&rent tempera-
tures. If the lower plate is significantlyy hotter than the upper plate, this will tedidid motion.

1.1 Rayleigh criterion
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Figure 1: Mechanism of convective instability. The gravitational and tkegure forces counterbalance
one another. If a particle is displaced while retaining its temperature anddhreits density, then the
two forces wil not counterbalance one another. If the cold plate is belovte hot plate above, then the
difference between the two forces will be directed in such a way as to eppeslisplacement, meaning
that the original situation is stable. In the case of the reverse configurtt@mthe differences between
the two forces will tend to amplify the displacement, leading to instability.

The fundamental physical mechanism can be understood by an arguoeeit &®ayleigh regarding
inviscid fluids. This mechanism is illustrated in figlde 1. In the fluid layer, éicarpressure gradient
is established which exactly counterbalances gravity. The gravitatiorea@ fo turn depends on the
local density (we assume that the dependence on the distance from teeafehe earth is negligible

compared to the dependence on density). Now imagine displacing verticalljdgpérticle. In the

absence of viscosity or thermal diffusivity, the particle retains its origimapgrature, and hence the
gravitational force acting on it remains the same. However, at its new hdfghtambient pressure
gradient is different and there is no longer equlibrium between the tvee$orThere are two possible



cases. If the resulting force is such as to send the particle back to its bhigight, then the original
stratification is stable. This is the case when the density decreases with higightthe other hand, the
resulting force is such as to send the fluid further in the direction of the displant, then the original
stratification is unstable. This is the case when the density increases with. heigh

We will begin by stating the continuum equations which govern the coupleaitieland temperature
fields, called the Boussinesq equations. With additional hypotheses, wamjilify these equations in
order to carry out a linear stability analysis.

1.2 Boussinesq Approximation

The Boussinesq approximation consists of assuming that all of the fluiceipies in particular the
diffusivity of momentum (viscosity). et and temperature, and the density, are constant and uniform,
except in the buoyancy force which generates convection, whereettsitylis assumed to vary linearly
with temperature:

p(T) = po[l — (T —Tp)] 1)

These approximations are valid when the differefige- 17 between the two temperatures is not too
large. The resulting equations are:

po 0+ (U-V)JU = —VP—gp(T)e, +pAU (2a)
V.U = 0 (2b)
[0+ (U-V)]T = kAT (2c)

with boundary conditions

U = 0atz=0,d (2d)

T = Tyatz=0, T=T) at z=d (2e)
whereU is the velocity vield,I" the temperature fiel& the pressure; the gravitational acceleratiop,
the viscosity and: the thermal diffusivity. The terms iU - V describe thé’ advection: even without
any forces, the velocity and temperature fields evolve due to the fluid motibtrahaports them. The

terms inA describe the diffusion of momentum or of temperature. The equatio®J = 0 describes
incompressibility, or, rather, the version of it implied by the Boussinesqoxjipation.

1.3 Calculation and subtraction of the basic state

System|[(R) has one very simple solution:

motionless: U*=0 (3a)
uniform temperature gradient: T =Ty~ (Tp —Th)Z (3b)
hydrostatic pressure:P* = Py — dgpo [g + 9(To — Th) (5)2} (3¢c)



In (3), a pressure field is established which exactly counterbalancesdyancy force, just as the usual
hydrostatic pressure counterbalances the usual gravitational force.

— VP* —gp(T*) =0 (4)
We now introduce variables measuring the deviations from the basic[state (3)
T=T+T P=P'+P (5)
Using the calculations
AT +T) = po(l—a(T*+T —Ty))
= po(l —a(T* = Tp)) — poaT = p(T™) — poaT’
—VP —gp(T)e, = —VP*—gp(T*)— VP + gpoale,
(U-)T = (U-V)T*+ (U-V)T
z
= (U-V) (To —(To —T)

d
To — T )
- Od LU e, +(U-V)T

>+(U-V)T

we replace equationsl(2) by

P00+ (U-V)U = —VP+gpyaTe, + pAU (6a)
V.U = 0 (6b)

. To—Th A
0,4+ (U -V)T = U e, +rAT (6c)

with homogeneous boundary conditions

U = 0atz=0,d (6d)
T = 0atz=0,d (6e)
1.4 Nondimensionalisation
By choosing the scales
cedn t=Ti U_fm Fo M5 p_Pip 7)
- Rk o d  dBgpoa  pod?

and introducing them into equatiors (6),

L .oy L Lpons BE e LB AT
72" [0r+(U-V)| U d o2 VP+gp0ad3 poaTez +ud2 dAU (8a)
1l =
22v.U = 0 8b
7qV (8b)
K UK _ 1= kTy—T1 = 77—
— 4+ (U - T - U-e,+kh—5—— 8
d? d3gpoc [+ (T V)] d d © +’£d2 d3gpoa (8c)



as well as the kinematic viscosity= 1./ po, we obtain:

[0+ (U-V)] U = 2 [-VP+Te,+AU] (9a)
V.U = 0 (9b)
0+ (T- V)| T = WU-%MT (90)

The nondimensional parameters appearinglin (9) are:

the Prandtl number: Pr = (10)

the Rayleigh number: Ra=-——"—"— (11)

The Rayleigh numbeRa measures the imposed thermal gradient. It is by increaginthat instabilities
occur. The Prandtl numbé?r is the ratio of the diffusivities of velocity and temperature: féxr large
(small), the temperature (velocity) is more volatile.

1.5 Boundary conditions

We simplify the notation by returning t&J, 7', z, etc. without overbars and we writé = (u, v, w).
We seek solutions that are periodic in the horizontal direction, with periodiaify;. In the vertical
direction, we impose at = 0, 1:

T=0 perfectly conducting plates (12a)
w=0  impermeable plates (12b)

Realistic vertical boundary conditions would be

u=wv =0 rigid boundaries: zero tangential velocity (13)
Instead of[(1B), we will instead impose the following condition:

0.u+ 0,w = 0,v+ 0,w =0 zero tangential stress (14)

Physically, condition[(14) would correspond to a free surfaces. Bsiighdifficult to imagine. Without
a rigid boundary, first of all, the layer would fall down. Secondly, waldaot maintain the surface at a
fixed temperature. We will use_(l14), despite the fact that it is unrealisti@use it greatly simplifies the
calculations.

w|,_gy =0= w|,_g; = Fyw|,_y, =0 (15)

which can be combined with_(I1L4) to yield
Oyu= 0w =0 (16)

The advantage of imposing_(16) instead[of](13) is, as we will see laterwihagan use trigonometric
functionssin(kwz), which are easy to work with.



T=vy=0,,y=0

0 < - _2m/q

 OOO000 S

X —

Figure 3. Boundary conditions of and ¢
obtained by imposing horizontal periodicity
and zero tangential stress (free surfaces) on
the vertical boundaries.

Figure 2: Two-dimensional convection rolls.

1.6 Two-dimensional case

From now on, we will assume that the solution is two-dimensional, i.e &hat 0. We will also assume
thatv = 0. Visually, the solution consists of infinite straight rolls, oriented alongethexis, as shown
in figure[2. We therefore can define the streamfunctiguch that:

U=Vxyey, = { tiu_:_aj (17)

The boundary conditions apatz = 0,1 are

0 = Ou=—0%1 (18a)
Y= atz=1
Y=vYgaz=0

(Note that the realistic conditiom = 0 at rigid boundaries would have led & = 0 instead of[(18a).)

0 = w:8$¢:>{ (18b)

The value of); — 1) is the horizontal flux:

1 1
| dzuten == [ dz o) =~ vlw )y = - v (19)
z=0 z=0

Sincev is only defined up to an additive constant, we canyset= 0. If we then impose a horizontal
flux of zero, we obtain

o =11 =0 (20)
To use the streamfunction, we compute:

U VT =u0,T +w T = —0.4p 0, T + 0ytb 0.7 = J[ib, T (21)



where J is called the Poisson bracket, which yields, for the temperature governintgthperature
evolution:
0T + J[, T] = Ra 0z¢p + AT (22a)

In order to eliminate the pressure from the momentum equation, we act on iewittV/ x. Let us
calculate the required terms:

ey, - VxU = e, -VxVxye, =AY
ey -V x AU ey -V x AV x pey = —A%)
ey -V xTe, -0, T
ey -V x (U-V)U 0.(U - V)u — 8,(U - V)w
0, (udpu + woyu) — Oy (udzw + W, w)

= 0,u Ogt + 0w Oyt — Opth Opw — Opw Oy + U Opatt + W syt — U Opp — W OpyW
= 0,u (Oyu + Oyw) — Oyw (Oyu + Oyw) + u 0x(0,u — Opw) + w0, ( Oyu — Dyw)
= —J[Y, Ay
Assembling these terms, we obtain:
Ot A + J[p, AY) = Pr[o,T + A (22b)

1.7 Linear stability analysis

Two-dimensional perturbations of a stationary fluid layer with a uniform teaipee gradient (the basic
solution [3)) evolve according to equatiohs (22a) andl(22b). To carrp stability analysis of the basic
state, we neglect terms that are not of linear ordep,ri’ (here, the quadratic terms of the Poisson

brackets) in[(22a) an@ (2Rb), writing:

KAy = Prio, T+ A%)] (23a)
T = Radyh+ AT (23b)

Solutions of[(2B) with vertical boundary conditiofs (l[8a-20) and hot&lgeriodic boundary conditions
are of the form:

Yz, z,t) = Y singz sinkrz e qeR, ke Zt, AeC (24a)
T(z,z,t) = T cosqx sinkmrz e (24b)

(In the left-hand-side of (24)), T are functions ofz, z, t), while in the right-hand-side), 7" are scalar
coefficients.) Trigonometric or exponential dependence on the variables is derived from a very
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Figure 4: Critical thresholda.(q, k) for k =1, 2, 3.
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general principle: the equations are linearimnd7’) and homogeneous (no explicit dependence and
hence no distinguished values) in these three variables. The more spgetfalim inz, > of (24) is
justified by

—periodicity inx with ¢y ~ 9, T andT ~ 0,

—the boundary conditions = ¢ = 0,,4) =0atz =0, 1
Using [24) and defining? = ¢* + (k)?, the partial differential equations (23) are transformed into
algebraic equations:

— M = Prl—qT +~*) (25a)

M = Raqid—~+°T (25b)
or R ) ) R
v | | =Pr~* Prq/y (0

i =l e T (20)

Let us seek ateady bifurcation, that is, a non-trivial solution of (P6) with eigenvalNe= 0. This

requires that:
2

Pr*— Pr Raq—Q:O (27)
Y

and thus that: o ) o3
k
Ra = % g (q_‘_q(Qﬂ-))
The basic state becomes unstable to perturbations of the[folm (24) ¢.@) for Ra > Ra.(q, k). For
the basic state to be stable to perturbationsfog, &, we require that

= Ra.(q, k) (28)

min
Ra < q€R Rac(qk) (29)
ke zZ*



0 - ORac(q. k) _ ?3(q® + (km)?)?2q — 2q(q® + (km)?)?

dq q*

2(¢? + (km)?)? km)?

= Ao+ B q@, P 32— @2+ k) — @=L 2) (30)
km (km)?/2 + (km)?)3 27 4
c = —, = = — l
Fac (4= 750) = B = 2k .
The instability threshold is thus:

Ra. = Ra, <q - \% k= 1) - 2{(#)‘l — 657.5 (32)

This calculation was simplified by the free surface hypothesis (zero tdabgness). The calculation us-
ing realistic conditions of rigid plates follows the same principle, but is more coatplic The threshold
Ra,. obtained is higher, because rigid boundaries help to damp perturbatibesrilical wavenumber
q. decreases, so that the rolls become almost circular: the Wifth roll is 7/q.
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Figure 5: Critical width?¢,. of rolls for stress-free (above) and rigid (below) boundary condition

2 Lorenz Model

2.1 Including nonlinear interactions

We will now attempt to reintroduce the nonlinear terms missing fforh (23). Weinsevt the forms(24)
in the Poisson brackets:

T, A =TI, %] = 0u B:(—2) — Bal—P0)000 = 0 (33a)
JW, T] = YT[04(singxsinmz)d,(cosqrsinmz) — dy(cos gr sinmz)0,(singx sinmz)]
= @T qm [cosqr sinTz cosqr cosTz + singr sin7z singr cosmz]
= ¢Tygn (cos? gz + sin? qx) sin 7z cos Tz

= @T% sin 27z (33b)



(As previously, in the left-hand-sides 6f (33), T are functions ofz, z, t), while in the right-hand-sides,
v, T are scalar coefficients.)

We thus see that including the nonlinear teffy, Av] has no effect, but that using the functional forms
(24) is inconsistent with the nonlinear tethfy), T').

Let us generalize the functional fornis{24) to

P(x, z,t) = zﬂ(t) sin gz sinmz (34a)
T(x,z,t) = Ti(t)cosqr sinmz + Th(t)sin 2mz (34b)
We have already calculated the nonlinear interaction betweandT;. Let us do the same fap and
Th:

J[h, To] = Ty [0,(sin gz sin 72)8, (sin 2mz) — 8, (sin 272), (sin gz sin7z)]
= 1/AJT2 q 2™ cosqx sinmwz cos2mz
= Ty q wcosqa (sin 7wz + sin 37z) (35)
The term(cos gz sinwz) is already included in(34b), btos ¢z sin37z) is not. Introducing a term
T3 in (348) would lead to more new terms, ad infinitum. This is a version of whatllisdctne closure

problem of the Navier-Stokes equations, or of nonlinear equations in generb®88, Lorenz suggested
stopping at ternil,, keeping this as the minimal nonlinear term and neglecting the generation of term

(cos gz sin 37z). Using [26), [(3B),[(35), equatioris (22) thus become:

onh = Pr(qﬂ/fy2 — 72@ sin gz sin 7wz (36a)
oIy +qmyTy = Raqi— 72T1 cos qx sinwz (36b)
Ty + qgizjfl = —(27'[')2TQ sin 27z (36¢)
Defining
x="9 4 y= " g g T g (37a)
- \/572 ) - \/576 1’ - \/576 2,
2 4 2
T =%, rEq—GRa, bz%:g o= Pr (37b)
¥ ¥ 3

gives the famous Lorenz model:
X = oY - X) (38a)
Y = —XZ+rX-Y (38b)
Z = XY -bZ (38¢)

We can still see the hydrodynamic origins of these equations. The parasristeften set to 10, which
is the Prandtl number of water. The parametds the Rayleigh number divided by the convection
threshold, which we have previously calculated, so that the threshelekid. The viscous or thermal
damping can be seen in the last, negative, terms of each of the equatib8y. i@ nonlinear terms
arise from advection.



2.2 Calculating bifurcations

Steady states of (88) satisfy
0=0Y -X) = X=Y (39a)
0=—-XZ+rX-Y = X=00rZ=r—1 (39b)
0=XY -bZ — Z=00rX=Y =+b(r—1) (39¢)
The steady states are therefore:
0 b(r —1) —/b(r —1)
01, Vb(r—1) |, —/b(r—1) |, (40)
0 r—1 r—1
The Jacobian of (38) is
—0 o 0
r—2 -1 —-X (41)
Y X -b

For the steady stateX, Y, Z) = (0,0, 0), this matrix becomes

—0 o 0
r —1 0 (42)
0 0 —-b

The matrix [42) is block-diagonal, so its eigenvalues are such that

M+ = Tr=—0-1<0 (43&)
AMAy = Det=o(1-r) (43b)
A3 = —b<0 (43c)

The steady state will therefore first be a stable node({fer » < 1), then a saddle (for > 1). A
pitchfork bifurcation takes place at= 1 which creates the two new fixed poims=Y = +,/b(r — 1),
Z =r — 1. The occurrence of a pitchfork bifurcation is related to the symmetry bet@EeY, Z) and
(—X,-Y,Z): if (X,Y,Z)is a solution to[(3B), then so {s-X,—Y, Z). This symmetry is in turn a
consequence of the geometrical and physical symmetry which implies theakade of the two flows
shown on figuré€l6.

For the stateXX =Y = +./b(r — 1), Z = r — 1, the Jacobian becomes

—0 o 0
( 1 ~1 F/b(r —1)X ) (44)
+/b(r —1) £/b(r—1) —b

whose eigenvalues are solutions to the cubic equation:

N (o +b+ 1A+ (r+0)bA + 2bo(r —1) =0 (45)

10



Figure 6: Convection rolls. The two configurations are dynamically etprivaand correspond to the
transformation(v, 1) — (=, —T1).

Rather than calculating the solutions bf](45), we seek eigenvalusmresponding to a bifurcation,
i.e. with zero real part. We therefore substitiite- iw, which yields:

—iw? — (0 + b+ 1w +i(r+o)bw+2bo(r—1) =0 (46)

Separating the real and imaginary parts leads to:

—(e+b+ 1w+ 2b0(r—1) = 0 (47a)
—WBH(r+o)w = 0 (47b)
which yields:
200(r—1) 5
oot W E ol
200(r—1) = (r+o)blc+b+1)
2bor —2boc = rb(c+b+1)+oblc+b+1)
r= W — 2474 for o =10, b=8/3 (48)
o _b_

Therefore, at = 24.74, the two steady states each undergo a Hopf bifurcation, leading to osgillator
behavior. It can be shown that this bifurcation is subcritical, creatingpabteslimit cycles which exist
forr < 24.74.

11
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Figure 7: Bifurcation diagram for the Lorenz model for lowg 25, showing supercritical pitchfork and
subcritical Hopf bifurcations. Fror®@rder within Chao$y P. Ber@, Y. Pomeau, C. Vidal, Wiley, 1986.
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3 Some properties of the Lorenz model

Figure 8: 3D view of chaotic Lorenz attractorrat 28.
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Figure 9: TimeserieX (¢) for Lorenz model at = 28.
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metastable chaos strange attractor
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Figure 10: Regimes for the Lorenz model for< 220, showing ranges of existence of fixed points (FP),
strange attractors (SA), and periodic attractors (PA). F@mater within Chao®y P. Berg, Y. Pomeau,
C. Vidal, Wiley, 1986.

Figure 11: The Lorenz model does not provide a good description yieRRh-Bénard convection past
threshold, but it does describe this waterwheel of leaking cups, peday W.V.R. Malkus.
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4 Examples of complex spatial patterns in convection

Actual Rayleigh-Enard convection leads to straight rolls only at very low Rayleigh numimersiader

carefully controlled conditions. Other possibilities are illustrated below.

4.1

Instabilities of straight rolls: “Busse balloon”

Rayleigh cross-roll
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Figure 12: Instabilities of straight rolls. Froffransition to Turbulence in RayleighéBard Convection
by F.H. Busse. IrHydrodynamic Instabilities and the Transition to Turbulerde H.L. Swinney and

J.P. Gollub, Springer 1981.
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Figure 13: Instabilities of a striped pattern in a vertically-vibrated granuiaarlaTop: skew-varicose
instability. Bottom: cross-roll instability. From J. de. Bruyn, C. Bizon, M.aguck, D. Goldman,
J.B. Swift & H.L. Swinney,Continuum-type stability balloon in oscillated granulated lay@ls/s. Rev.

Lett. 81, 1421 (1998).
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4.2 Other patterns and flows

Q\

Figure 15: Convection pattern on sphere cor-

Figure 14: Spiral defect chaos in experi- responding to spherical harmonic = 28,

mental convection. From Egolf, Melnikov, constructed by P. Matthews. From Phys. Rev.

Pesche, Ecke, Natud®4, 733-736 (2000). E. 67, 036206 (2003); Nonlinearity 16, 1449-
1471 (2003);

Figure 16: Convection in cylindrical geometry. From Bajaj, Mukolobwieh, @hlers, J. Stat. Mech.
(2006)
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4.3 Geophysics

Figure 17: Convection and plate tectonics.
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Figure 18: Numerical simulation of convection in the earth’s mantle, contain-
ing plumes and thin boundary layers. By H. Schmeling, Wikimedia Commons.

Ihttp://en.wikipedia.org/wiki/File:Convection-snapshot.gif
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4.4 Small containers: multiplicity of states

Figure 19: Left: experimental photographs of convection patterns ifiradeizal container whose radius
is twice the height, all at the same Rayleigh numBer= 14 200 by Hof, Lucas, Mullin, Phys. Fluids
11, 2815 (1999). Dark areas correspond to hot (rising) and brighola @escending) fluid. Right:

O

twg;fcori

mercedes four rolls

@0

CcO asym three rolls

numerical simulations by Boftska, Tuckerman, Phys. Rev. E (2010).
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4.5 Small containers: a SNIPER bifurcation

Figure 20: Left:(r, z) cut of toroidal convection cells in a in a cylindrical container whose radifise
times the height aRa = 1.39Ra.. The pattern moves radially inwards in time.

Right: Bifurcation diagram showing supercritical pitchfork bifurcation to states with five convective
rolls, followed by another supercritical pitchfork bifurcation, followedapair of SNIPER bifurcations
leading to a limit cycle. From Tuckerman, Barkley, Phys. Rev. Lett. (1988)

80— a0 e 80 100 120 140
Time

Figure 21: Left: phase portraits &u = 1.38 Ra,. (left) and Ra = 1.39Ra, (right).
Right: Timeseries aRa = 2.60Ra. (above) andRa = 1.39Ra. (below). From Tuckerman, Barkley,
Phys. Rev. Lett. (1988).

20



5 Web sites used in demonstrations

Spiral defect chaos:
http://www.youtube.com/watch?v=DxQ1BjQcicg

Lorenz model:

http://www.cmp.caltech.edu/"mcc/ChaGsurse
http://en.wikipedia.org/wiki/Lorenattractor
http://people.web.psi.ch/gassmann/waterwheel/WaterwheelLab.html
http://www.youtube.com/watch?v=zhOBibeW5J0
http://to-campos.planetaclix.pt/fractal/loreamg.html

6 Exercises

6.1 Convection between rigid boundaries

We adapt the linear stability analysis of the Boussinesq equations to the agisielmthe boundaries at
z = 0,1 arerigid.

a) What are the boundary conditionszat 0, 1 which ) must satisfy?
b) We write
O(x,z,t) = f(2) singz e (49a)
T(x,z,t) = g(z) cosqx e (49b)
Obtain a sixth-order differential equation whighmust satisfy at the convection threshold, assuming that
the bifurcation issteady (not oscillatory). Write the boundary conditions to be imposed on
c) Write the general solution fgf, without taking into account the boundary conditions.
Optional, more difficult:
d) Apply the boundary conditions to derive a transcendental equatiboghanly be solved numerically.

e) Minimization of Ra. overq gives (numerically);. = 3.117 et Ra. = 1707. Compare these values to
those arising from the stress-free cgse= 7/v/2 = 2.22 et Ra, = 277%/4 = 657.5 and discuss the
possible reasons for these differences.
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