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Stability and decay rates of nonisotropic attractive Bose-Einstein condensates
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Nonisotropic attractive Bose-Einstein condensates are investigated numerically with Newton and inverse
Arnoldi methods. The stationary solutions of the Gross-Pitaevskii equation and their linear stability are com-
puted. Bifurcation diagrams are calculated and used to find the condensate decay rates corresponding to
macroscopic quantum tunneling, two-three-body inelastic collisions, and thermally induced collapse. Isotropic
and nonisotropic condensates are compared. The effect of anisotropy on the bifurcation diagram and the decay
rates is discussed. Spontaneous isotropization of the condensates is found to occur. The influence of isotro-
pization on the decay rates is characterized near the critical point.
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I. INTRODUCTION

Experimental Bose-Einstein condensation~BEC! with at-
tractive interactions was first realized in ultracold vapors
7Li atoms @1#, opening a new field in the study of macro
scopic quantum phenomena. Such attractive condensate
known to be metastable in spatially localized systems, p
vided that the number of condensed particles is below a c
cal valueNc @2#. Recently, Feshbach resonances in BEC
85Rb atoms were used to investigate the stability and dyn
ics of condensates with two-body interactions going fro
repulsive to attractive values@3#.

Experimental atomic traps generally use a harmonic
slightly asymmetric potential. Thus, for most of the conde
sates produced so far, the geometry is nearly spherical. H
ever, extremely asymmetric traps have been recently
ployed in experimental investigations of cigarlike@4–6# or
pancakelike@7# condensates.

Various physical processes compete to determine the
time of attractive condensates. The processes considere
this paper are macroscopic quantum tunneling~MQT! @8,9#,
inelastic two- and three-body collisions~ICO! @10–12#, and
thermally induced collapse~TIC! @9,13#. The MQT and TIC
contributions have been evaluated in the literature usin
variational Gaussian approximation to the condensate w
function. However, this approximation is known to be
substantial quantitative error—e.g., as high as 17% forNc
@8,14,15#—when compared to the exact solution of t
Gross-Pitaevskii~GP! equation.

In the nearly spherical isotropic case, both the ellip
~stable! and the hyperbolic~unstable! exact stationary solu
tions of the GP equation were obtained numerically by Ne
ton’s method in Ref.@15#. These solution branches we
shown to meet atNc through a generic Hamiltonian saddl
node~HSN! bifurcation. While the Gaussian approximatio
presents an analogous HSN bifurcation, the amplitudes o
associated scaling laws were found to be insubstan
(>14%) error. A method for computing the unstable bran
1050-2947/2003/68~2!/023609~13!/$20.00 68 0236
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in the isotropic case via a shooting method was outlined
Ref. @16#, but generalizing this procedure to higher dime
sions would be inefficient, and indeed impossible in nonre
angular domains. The decay rates for the processes of M
ICO, and TIC were also computed, in the spherical ca
from the numerical GP solutions. They were shown to ob
universal scaling laws. Experimentally, significant quanti
tive differences were found between the exact rates and th
based on the Gaussian approximation@15#.

In the extreme anisotropic cases, the variational Gaus
approximation has been computed and compared to the
solution on the elliptic~stable! branch@17,18#. This has al-
lowed a more reliable determination of the critical valueNc
than can be obtained by the Gaussian approximation@17#.
However, a faithful determination of the lifetimes requir
the computation of the hyperbolic~unstable! branch @15#,
which has not yet been performed in the anisotropic cas

The main purpose of the present paper is to show that
possible to compute the full HSN bifurcation diagram a
the corresponding lifetimes in extreme anisotropic cases.
will do so by studying a cigarlike and a pancakelike conde
sate, and will obtain their MQT, ICO and TIC decay rate
While we have concentrated, for simplicity, on these tw
axisymmetric cases, the numerical methods developed in
work are capable of solving the general anisotropic proble

The paper is organized as follows. In Sec. II, we pres
the model considered throughout this work. After defini
our working form of the GP equation, we explain the me
ods that we used to obtain the stationary states and t
linearized stability. Section III is devoted to the numeric
determination of the bifurcation diagram and stability of t
stationary states. Isotropic and nonisotropic cases are c
pared and the dynamics is discussed in terms of the H
bifurcation. In Sec. IV, we define and compute the dec
rates. Isotropic and nonisotropic rates are discussed and
similarity is analyzed in terms of the spontaneous isotropi
tion of condensates. Finally, Sec. V is our conclusion. Det
of our numerical methods are given in the Appendix.
©2003 The American Physical Society09-1
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II. PRESENTATION OF THE MODEL

A. Gross-Pitaevskii equation

At low enough temperatures, neglecting the thermal a
quantum fluctuations, a Bose-Einstein condensate can
represented by a complex wave functionC(x,t) that obeys
the dynamics of the GP equation@19,20#. Specifically, we
consider a condensate ofN particles of massm and ~nega-
tive! effective scattering lengthã in a confining harmonic
potential V( x̃)5m(ṽx

2x̃21ṽy
2ỹ21ṽz

2z̃2)/2, where x̃
5( x̃,ỹ,z̃) is the position vector.

These variables can be rescaled with respect to any re
ence frequencyv̂ by using the natural quantum harmon

oscillator units of timet051/v̂ and lengthL05A\/mv̂. In
terms of the nondimensional variablest5 t̃ /t0 , x5 x̃/L0 , a

54pã/L0 , vx5ṽx /v̂, vy5ṽy /v̂, and vz5ṽz /v̂, the
condensate is described by the action

A5E dtH E d3x
i

2
S C̄

]C

]t
2C

]C̄

]t
D 2FJ , ~1!

with

F5E2mN, ~2!

where

N5E d3xuCu2, ~3!

E5E d3xF1

2
u“Cu21V~x!uCu21

a

2
uCu4G , ~4!

V~x!5 1
2 ~vx

2x21vy
2y21vz

2z2!. ~5!

The Euler-Lagrange equation corresponding toA is our
working form of the Gross-Pitaevskii equation:

2 i
]C

]t
52

dF
dC̄

5F1

2
¹22V~x!2~auCu22m!GC. ~6!

Our goal is to numerically determine the stable and
stable stationary states of Eq.~6! and the eigenvalues of Eq
~6! linearized about these stationary states. We will carry
this calculation for various values of a cylindrical potent
defined by v r[vx5vy and vz : the isotropic casev r
5vz , a cigar casev r /55vz , and a pancake casev r
5vz /5. We will then use these results to calculate the c
densate decay rates and compare these decay rates to
produced by the Gaussian approximation.

B. Stationary states

Stationary states of Eq.~6! corresponding to minima ofE
at a given value ofN can be obtained by integrating to re
laxation the diffusion equation
02360
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]C

]t
52

dF
dC̄

5F1

2
¹22V~x!2~auCu22m!GC, ~7!

]N
]t

50, ~8!

using initial dataC(t50) with a total number of particles
N. Condition ~8! fixes the value of the Lagrange multiplie
m during the relaxation. This relaxation method yields bo
the solutionC and the Lagrange multiplierm. It is equiva-
lent to that used in Ref.@14# and can only reach the stab
stationary solutions of Eq.~7!. Unstable stationary solution
to Eqs.~6! and~7! are obtained by a Newton branch follow
ing method detailed in the Appendix.

Note that the Lagrange multiplierm can only affect the
solutions of Eq.~6! through a homogeneous rotating pha
factor eimt, in contrast to its particle number conservatio
effect on Eq.~7!. However, every stationary solution to Eq
~6! is indexed by the uniquem value that makes it time
independent, as shown in Fig. 1.

C. Linearized stability

We now turn our attention to computing the linear stab
ity of the GP equation about a stationary state. We first w
Eq. ~6! in the abbreviated form

2 i
]C

]t
5LC1W~C!, ~9!

where

LC[ 1
2 ¹2C, ~10!

W~C![@2V~x!2auCu21m#C. ~11!

FIG. 1. Particle numberN as a function ofm for the exact
solutions ~solid curves! and the Gaussian approximation~dashed
curves! presented in Sec. III. From top to bottom: pancake (v r

5vz/5), cigar (v r /55vz), and isotropic (v r5vz) geometries.
9-2
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The stationary states of Eq.~9! satisfy

05LC1W~C!. ~12!

Without loss of generality,C can be chosen to be rea
Our objective is to calculate the eigenpairs (l,c) of the op-
erator that results from linearizing~9! about a stationary stat
C. @We useC to designate solutions to the nonlinear pro
lem ~12! and c to designate eigenvectors, which are so
tions to the linear problem to be defined below.# In order to
correctly formulate the linear stability problem, it is nece
sary to first decomposec5cR1 ic I . We write the linearized
evolution equation

]c

]t
5 i @L1DW~C!#~c R1 ic I !, ~13!

whereDW(C) is the Fréchet derivative, or Jacobian, ofW
evaluated atC. DW(C) acts onc via

DWc5DWRcR1 iDWIc I , ~14!

where we have omitted the functional dependence ofDW,
DWR, andDWI on C, and where

DWR[m2V~x!23aC2, ~15a!

DWI[m2V~x!2aC2. ~15b!

Equation~13! is then written in matrix form as
to

-
-

.

W

o

02360
-
-

-

]

]t S c R

c I D 5F 0 2~L1DWI !

L1DWR 0 G S c R

c I D . ~16!

The eigenmodes (l,c R,c I) satisfy

lS c R

c I D 5F 0 2~L1DWI !

L1DWR 0 G S c R

c I D . ~17!

Note that this eigensystem is usually presented in the lite
ture ~see, for example, Ref.@21#! in terms of the variables

~vB,c,c* ![~2 il,c R1 ic I ,c R2 ic I !, ~18!

as the equivalent Bogoliubov–de Gennes coupled equat

vBS c

c* D 5FL1DWB 2aC2

aC2 2~L2DWB!
G S c

c* D , ~19!

where

DWB[m2V~x!22aC2. ~20!

In the following, we will work with matrix formulation~17!
because it avoids a potential notational inconsistency of
~19! arising from the fact thatc andc* are complex conju-
gates only whenvB is imaginary.

It is more convenient to work with the square of the m
trix in Eq. ~17!:
l2S c R

c I D 5F2~L1DWI !~L1DWR! 0

0 2~L1DWR!~L1DWI !
G S c R

c I D . ~21!
m.

nit

se-
Because Eq.~21! is block diagonal, it can be separated in
two problems

l2c R52~L1DWI !~L1DWR!c R, ~22a!

l2c I52~L1DWR!~L1DWI !c I . ~22b!

Problems~22a! and ~22b! are closely related. Since the op
eratorsL, DWI , andDWR are all self-adjoint under the stan
dard Euclidean inner product, the operators in Eqs.~22a! and
~22b! are adjoint to each other. Ifc R is an eigenvector of Eq
~22a! with nonzero eigenvaluel2, then (L1DWR)c R is an
eigenvector of Eq.~22b! with the same eigenvalue.@Simi-
larly, if ( l,c R,c I) is an eigenmode of Eq.~17!, then
(2l,c R,2c I) is also an eigenmode of Eq.~17!.# Thus, we
solve only Eq.~22a!. The eigenvaluesl2 of Eqs. ~22a! and
~22b! must be either complex-conjugate pairs or real.
find them to be real and~almost all! negative, perturbed only
slightly from the eigenvalues of2L2. The eigenvaluesl of
Eq. ~17! are therefore found to be either pure imaginary
pure real, with most imaginary.
e

r

Problems~17!, and ~22a! and ~22b! have neutral eigen-
modes that reflect the physical invariances of the proble
SinceDWIC5W(C), then the stationary stateC is a neu-
tral mode ofL1DWI and hence of problem~22b!. This neu-
tral mode is the phase mode of Eq.~6!, since its existence is
a consequence of the invariance of solutionsC to Eq. ~12!
under multiplication by any complex number on the u
circle. The corresponding eigenmode of problem~22a! is
dC/dm. This neutral mode can be understood as a con
quence of differentiating~6! with respect tom,

05
d

dm
@~L1W!C#5~L1DWR!

dC

dm
1C. ~23!

Thus,

2~L1DWI !~L1DWR!
dC

dm
5~L1DWI !C50. ~24!

In terms of the original problem~17!, the phase mode
(l,c R,c I)5(0,0,C) is a neutral eigenvector, while Eq.~23!
9-3
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shows that (l,c R,c I)5(0,dC/dm,0) is a neutral general
ized eigenvector, the two modes forming a Jordan block
Eq. ~17!.

In practice, we fixm to calculate the stationary statesC
and the eigenvalues. The operators of Eqs.~22a! and ~22b!
depend onm both explicitly and throughC. For m above a
critical valuemc , all eigenvaluesl are imaginary, i.e.,C is
an elliptic stationary state of Eq.~9!. As m crossesmc , we
will see that one imaginary pair fuses at zero, and beco
real, with one positive and one negative value ofl for m
,mc . Stationary states form,mc are thus hyperbolic in the
directions corresponding to these eigenvalues.

III. BIFURCATION AND STABILITY OF CONDENSATES

In this section, we will find the stationary solutions an
study the stability of isotropic (v r5vz), cigarlike (v r /5
5vz), and pancakelike (v r5vz /5) condensates. These r
sults were obtained by solving Eq.~12! for the stationary
states and Eq.~17! or Eq. ~22a! for the corresponding bifur-
cating eigenvalues. The system is discretized using p
dospectral methods in a spherical domain for the isotro
case and in a periodic Cartesian domain for the nonisotro
cases. We use Newton’s method to calculate the branche
stationary states. The bifurcating eigenvalue is found in
isotropic case by diagonalizing the matrix corresponding
Eq. ~17!. In the nonisotropic case, we use instead the ite
tive inverse Arnoldi method, which requires only actions
the operator in Eq.~22a!. The BICGSTAB variant of the con-
jugate gradient method is used to solve the linear syst
required by both Newton’s method and the inverse Arno
method. The numerical methods we use are describe
greater detail in the Appendix.

A. Isotropic condensate

In order to compare our results with the existing expe
ments on quasi-isotropic condensates, we will use the
lowing physical constants, corresponding to7Li atoms in a
radial trap:m51.16310226 kg, ã5227.3a0 ~with a0 the
Bohr radius!, and v̂5(ṽxṽyṽz)

1/35908.41s21. These val-
ues yield a525.7431023. With these parameters, th
mean-field approximation~6! is expected to be very reliable
Note that we ignore the contributions of noncondensed
oms. They interact with the condensate only through a ne
constant background density term, inducing no signific
change in the dynamics of the system@22#.

The values of the energy functionalE and the~smallest
absolute value! square eigenvaluel2 versus particle numbe
N are shown as solid lines in Fig. 2~top and bottom, respec
tively!. The eigenvalues are imaginary on the metastable
liptic lower branch (l2,0) and real on the unstable hype
bolic upper branch (l2.0). Using Eq. ~2! on stationary
solutions, we obtaindE/dN5m. Thus,m is the slope ofE
and the lower branchesE2 , l2

2 ~respectively, upper branche
E1 ,l1

2 ) are scanned form.mc ~respectively,m,mc). The
point m5mc determines the maximum number of particl
N5Nc for which stationary solutions exist. We hav
checked that all the other pairs of eigenvalues are imagin
02360
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on both branches~data not shown!.
The dashed curves in Fig. 2 are derived from the Gaus

variational approximation that will be defined in Sec. III
for the general anisotropic case. In the present isotropic c
this approximation can be solved in closed form, yielding t
expressions@15#

N~m!5
4A2p3~28m13A714m2!

7uãu~22m1A714m2!3/2
, ~25!

E5N~m!~2m13A714m2!/7. ~26!

The number of particles N is maximal at N c
G

58A2p3/u55/4au for m5mc
G51/2A5. The eigenvalues can

also be obtained in closed form from the linearized equati
of motion @15#:

l2~m!58m224mA714m212. ~27!

By inspection of Fig. 2 it is apparent that both the soluti
of the GP equation and the Gaussian variational approxi
tion share the same qualitative behavior, with quantitat
discrepancies. Figure 3 shows the physical origin of
quantitative errors in the Gaussian approximation. It is
parent that the exact solution is well approximated by
Gaussian only for smallN on the stable~elliptic! branch.

B. Hamiltonian saddle-node normal form

The qualitative behavior displayed in Fig. 2 by the phy
cal quantitiesE andl2 near the critical valueN5Nc is the
generic signature of a HSN bifurcation defined, at low
order, by the normal form@23,24#

FIG. 2. Stationary solutions of the GP equation versus the p

ticle numberN for the isotropic potential case withv̂ r5v̂z5v̂.
Top: value of the energy functionalE1 on the unstable~hyperbolic!
branch andE2 on the stable~elliptic! branch. Bottom: square of the
bifurcating eigenvalue (l6

2 ). Note thatul2u is the energy of small
excitations around the stable branch. Solid lines: exact solutio
the GP equation. Dashed lines: Gaussian approximation.
9-4
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q̈5d2bq2, ~28!

where d5(12N/Nc) is the bifurcation parameter,b is a
dimensionless constant, andq is the coordinate describin
the state of the system in the direction of the phase space
becomes unstable. Indeed, introducing the additional no
mensional quantitiesE andg to define the appropriate energ

E5E01 1
2 q̇22dq1 1

3 bq32gd, ~29!

it is straightforward to derive from Eq.~28! that, close to the
critical point d50, the universal scaling laws are given b

E65Ec2Eld6E Dd3/2, ~30!

l6
2 56lD

2 d1/2, ~31!

whereEc5E0 , El5g, ED52/3Ab, andlD
2 52Ab. Note that

these relations can be inverted to obtain the parameter
Eq. ~28! from the critical data. For the Gaussian approxim
tion, the critical amplitudes can be computed from Eqs.~25!
and ~26!. One finds

Ec5
4A2p3

53/4uau
, ~32!

ED5
64Ap3

59/4uau
, ~33!

lD
2 54A10. ~34!

For the exact solutions, we obtain the critical amplitud
ED51340 andlD

2 514.68 by performing fits on the numer
cal data. Comparing both results, we find that the Gaus
approximation captures the bifurcation qualitatively, but w
quantitative errors of 17% forNc @14#, 24% for ED , and
14% for lD

2 in the isotropic case@15#.
The phase portrait of the normal form is shown in Fig.

When d5(12N/Nc).0, Eq. ~28! admits two fixed points

FIG. 3. Condensate densityucu2 as a function of radiusr, in
reduced units~see text!. Solid lines: exact solution of the GP equ
tion. Dashed lines: Gaussian approximation. Stable~elliptic! solu-
tions are shown for particle numberN5252 ~a! andN51132 ~b!,
and ~c! is the unstable~hyperbolic! solution for N51132 ~see in-
set!.
02360
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Q657Ad/b, as shown in Fig. 4~a!. Thus, a hyperbolic sta
tionary state and an elliptic stationary state coexist. T
phase space is separated into two regions by a separatrix
is a homoclinic orbit linking the hyperbolic stationary sta
to itself. Trajectories inside the orbit remain bounded n
the elliptic fixed point. If the condensate is taken beyond
separatrix by a perturbation~e.g., thermal excitations o
quantum tunneling, see Sec. IV below!, it will fall into un-
bounded~hyperbolic! trajectories and collapse. AsN is in-
creased, the hyperbolic and elliptic stationary states appro
one another,@Fig. 4~b!# and the homoclinic orbit inside
which orbits are bounded is reduced. The two station
states join atN5Nc @Fig. 4~c!#, at which the HSN occurs
No stationary state exists forN.Nc .

C. Nonisotropic condensates

We now briefly present the main expressions obtain
from a Gaussian variational analysis of the GP equation w
a cylindrical potential trap. Some of these results have b
previously obtained by other authors@17,18,25–28#. We
therefore restrict our discussion to the equations that will
used in our analysis of the condensate lifetimes.

The trial function is a Gaussian solution to the lineara
50) Schrödinger equation in which we incorporate eig
variational parameters in order to take into account the
isotropy of the system. The form of the ansatz is given b

FIG. 4. Phase portraits of the Hamiltonian saddle-node nor

form ~28!, with p5q̇. ~a! d50.2, ~b! d50.1, ~c! d50. ~d! Corre-
sponding potentialF associated with each phase portrait~a!, ~b!, or

~c!, with ṗ52]F/]q. An elliptic region bounded by the separatr
that starts and ends on the fixed pointQ1 ~homoclinic orbit! is
present in~a! and ~b!. Phase portrait~c! displays the critical merg-
ing of fixed pointsQ1 andQ1 , and the disappearance of the ellip
tic region.
9-5
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C~x,y,z,t !5@Ar~ t !1 iAi~ t !#expH 2S 1

X~ t !2
1 ifX~ t !D x2

2

2S 1

Y~ t !2
1 ifY~ t !D y2

2

2S 1

Z~ t !2
1 ifZ~ t !D z2

2 J , ~35!

where the real parameters$Ar ,Ai%, $fX ,fY ,fZ%, and
$X,Y,Z% are related to the amplitude, the phase and
width of the Gaussian profile, respectively. The Eul
Lagrange equations associated with the trial function~35!
and the action defined in Eq.~1! can be reduced to the fol
lowing system of second-order differential equations:

d2X

dt2
52vx

2X2
n

X2YZ
1

1

X3
,

d2Y

dt2
52vy

2Y2
n

XY2Z
1

1

Y3
,

d2Z

dt2
52vz

2Z2
n

Z2XY
1

1

Z3
, ~36!

where

n5A2

p

m~vxvyvz!
1/3

\
uãuN. ~37!

The evolution of the condensate is better understood
drawing an analogy between its width and the motion o
particle with coordinates (X,Y,Z) moving in the potential

U~X,Y,Z!5
1

2
~vx

2X21vy
2Y21vz

2Z2!2
n

XYZ

1
1

2 S 1

X2
1

1

Y2
1

1

Z2D . ~38!

Indeed, definingPx5dX/dt, Py5dY/dt, Pz5dZ/dt, and
the Hamiltonian

H~Px ,Py ,Pz ,X,Y,Z!5 1
2 ~Px

21Py
21Pz

2!1U~X,Y,Z!,

we find that Eqs.~36! transform into Hamiltonian equation
of motion.

If we consider now a potential trap~5! with cylindrical
symmetry (v r[vx5vy) Eqs.~36! can be simplified by us-
ing X(t)5Y(t). We thus find that Eq.~36! yields two fixed
points (X1 ,Z1) and (X2 ,Z2), which describe the station
ary solutions forC(x,y,z,t). These obey

05v r
22

4m

7X6
2

2
5

7X6
4

1
2

7 S 1

X6
2

1
1

Z6
2 D 1

X6
2

, ~39a!
02360
e
-

y
a

05vz
22

4m

7Z6
2

2
5

7Z6
4

1
4

7 S 1

X6
2 Z6

2 D , ~39b!

where the chemical potentialm is related to the total numbe
of particles through

N5
2L0

7uãu
A2pX2ZS 1

X2
1

1

2Z2
2m D . ~40!

The fixed points correspond to a metastable center (X1 ,Z1)
and to an unstable saddle point (X2 ,Z2), respectively. They
are analogous to theQ1 and Q2 points appearing in the
phase portraits in Fig. 4. The solutions to Eq.~39! can be
computed numerically, together with the linearized var
tional equations evaluated at every stationary point.

Figures 5 and 6 showE andl2 for the cigar and pancake
cases, respectively. The solid lines present the values
tained by discretizing and solving numerically the origin
differential equations~12! and ~22a!, using the methods de
scribed in the Appendix. The dashed lines were compu
using the Gaussian approximation described above. Both
isotropic and nonisotropic cases display saddle-node bifu
tions. This is to be expected, since the saddle-node bifu
tion is the generic way in which stable and unstable branc
meet@23#.

It is apparent from Figs. 2, 5, and 6 that the exact criti
number of particlesN c

E is smaller than the Gaussian valu
N c

G for all three geometries@8,14,17,18#. Table I compares
the different criticalN values obtained.

In order to compare properly the HSN bifurcations o
tained for the three aspect ratios studied, we can rescale
intensity of the potential to obtain the sameN c

E for all cases.
In general, any confining harmonic potential with freque

FIG. 5. Stationary solutions of the GP equation versus the p

ticle numberN for a nonisotropic potential case withv r5v̂ and

vz5v̂/5 ~cigar!. Top: value of the energy functional. Bottom
square of the bifurcating eigenvalue (l6

2 ). Solid lines: exact solu-
tion of the GP equation. Dashed lines: Gaussian approximation
9-6
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cies v r and vz that produces a critical number of particle
Nc can be rescaled by a factor

c5S Nc

N c*
D 2

, ~41!

to obtain a new potential with frequenciesv r* 5cv r and
vz* 5cvz , which will have the critical number of particle
N c* . The remaining physical quantities for the new poten
are obtained through the following transformations:

C* 5
C

c1/4
, ~42!

N * 5
N
Ac

, ~43!

E* 5
E
Ac

, ~44!

l* 5l. ~45!

FIG. 6. Stationary solutions of the GP equation versus the

ticle numberN for a nonisotropic potential case withv r5v̂/5 and

vz5v̂ ~pancake!. Top: value of the energy functional. Bottom
square of the bifurcating eigenvalue (l6

2 ). Solid lines: exact solu-
tion of the GP equation. Dashed lines: Gaussian approximation

TABLE I. Critical number of particles obtained for the isotropi
cigar, and pancake geometries by using the exact solution of the
equation (N c

E) and the Gaussian approximation (N c
G)

v r vz N c
E N c

G

v̂ v̂ 1258.5 1467.7

v̂ v̂/5 1460.3 1646.6

v̂/5 v̂ 1885.6 2080.5
02360
l

We choose arbitrarily to rescale the potential intensity so t
all N c

E are equal to that for the isotropic caseN c
iso. Table II

shows the value of the rescaling factorsccig andcpan for the
cigar and pancake cases, respectively, as obtained from
~41! using N c* 5N c

iso. The last two columns of this table
show the critical amplitudes obtained for the rescaledE and
l2 curves. These were obtained by fitting the HS
asymptotic forms given in relations~30! and~31! to the res-
caled data.

IV. LIFETIME OF CONDENSATES

In this section, we first find expressions for the TI
MQT, and ICO decay rates. Using the numerical data p
sented in the preceding section, we then compute these d
rates for thev r5vz ~isotropic!, v r /55vz ~cigar!, and v r
5vz /5 ~pancake! cases. Finally, we compare the results o
tained for these three potential geometries by studying
spontaneous isotropization of the condensates.

A. Definition and computations of decay rates

The TIC ~thermally induced collapse! decay rateGT is
estimated using the formula@29#

GT

v̂
5

ul1u
2p

expF2\v̂

kBT
~E12E2!G , ~46!

where \v̂(E12E2) is the ~dimensionalized! height of the
nucleation energy barrier~with v̂ the reference frequenc
introduced in Sec. II A!, T is the temperature of the conden
sate, andkB is the Boltzmann constant. Note that the prefa
tor characterizes the typical decay time which is control
by the slowest part of the nucleation dynamics: the top-
the-barrier saddle-point eigenvaluel1 and notl2 as used in
Ref. @9#. However, near the bifurcation both eigenvalu
scale in the same way and the behavior ofGT can be ob-
tained directly from the universal saddle-node scaling la
~30! and~31!. Thus, the exponential factor and the prefac
vanish, respectively, asd3/2 andd1/4.

We estimate the MQT~macroscopic quantum tunneling!
decay rate using an instanton technique that takes into
count the semiclassical trajectory giving the dominant c
tribution to the quantum action path integral@8,9#. We ap-
proximate this so-called bounce trajectory by the solution
the equation of motion

r-

P

TABLE II. Rescaling factors required for havingNc5N c
iso in

the cigar and pancake cases. ColumnsED and lD
2 show critical

amplitudes at the bifurcation for the rescaledE andl2 curves, re-
spectively.

v r vz Rescaling factor ED lD
2

v̂ v̂ 1340 14.68

ccig v̂ ccig v̂/5 ccig51.3463 1000 4.00

cpanv̂/5 cpanv̂ cpan52.2447 550 1.05
9-7



e

he

fo
nu

-

ce

ca

th

e
. To
de-

r
sly

TIC
g

s for
aled
e
cal-
—
At
to

l

the

r

l

e at

HUEPEet al. PHYSICAL REVIEW A 68, 023609 ~2003!
d2q~ t !

dt2
5

2dF̃~q!

dq
, ~47!

starting and ending at the fixed pointqf of the phase spac
whereE(qf)5E2 . The Euclidean potentialF̃(q) is defined
so that2F̃(q) reconstructs the Hamiltonian dynamics in t
region scanned by the bounce trajectory~see Fig. 7!. We
represent it by a fourth-order polynomial of the form

F̃~q!5a01a2q21a3q31a4q4, ~48!

coefficientsa0 , a2 , a3, anda4 chosen such that

F̃~0!52E1 , ~49a!

F̃~qf !52E2 , ~49b!

]q
2F̃~0!52l1~N !, ~49c!

]q
2F̃~qf !52l2~N !. ~49d!

We thus obtain a semianalytic polynomial expression
F̃(q) where the coefficients are determined through the
merical values presented in Figs. 2, 5, and 6.

OnceF̃(q) and the bounce pointqb @defined through the
relation F̃(qb)5F̃(qf)] are known, the MQT rate is esti
mated as

GQ

v̂
5Aul2uv0

2

4p
expF24

A2
E

qf

qbAF̃~q!2F̃~qf !dqG , ~50!

wherev0 is defined by the asymptotic form of the boun
trajectory q(t) as it approachesqf @9#, given by q(t);qf
1(v0 /ul2u)exp@2ul2tu#.

In the same way as was done for the TIC, universal s
ing laws can be derived close to criticality from Eq.~28!,
~30!, and~31!. We find that the exponential factor in Eq.~50!
follows the same scaling asAuE12E2udq. It therefore van-
ishes asAd3/2d1/25d5/4. The asymptotic form ofq(t) shows
thatdq follows the same law asv0 /ul2u. Thus,v0;d3/4 and
the prefactor vanishes asAd1/4d3/45d7/8. Note that these uni-
versal scaling laws agree with those already derived in
Gaussian case in Ref.@8#.

FIG. 7. Bounce trajectory~dashed! over the Euclidean potentia

F̃(q). Pointsqf , qm , andqb indicate the fixed point, the minimum

of F̃(q), and the bounce point, respectively.
02360
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The TIC ~46! and MQT~50! decay rates obtained for th
exact and Gaussian stationary states are shown in Fig. 8
validate these results, we checked that the Gaussian TIC
cay rates computed in Ref.@13# are found when we~incor-
rectly at a finite distance from criticality! replacel1 by l2

in Eq. ~46! ~data not shown!. We also checked that ou
Gaussian MQT decay rate agrees with the one previou
computed in Ref.@8#.

The ICO ~inelastic two- and three-body collision! atomic
decay rates are evaluated using the formuladN/dt5 f C(N )
with

f C~N !5KE uCu4 d3x1LE uCu6 d3x, ~51!

whereK53.831024 s21 andL52.631027 s21 as in Refs.
@10,11#. In order to compare the particle decay rate~51! to
the condensate collective decay rates obtained for the
and MQT, we compute the condensate ICO half-life usin

t1/2~N !5E
N / 2

N dn

f C~n!
, ~52!

and plott1/2
21 in Fig. 8.

Figures 8 and 9 compare the condensate decay rate
the isotropic and the cigar and pancake potentials, resc
by ccig andcpan as described in Sec. III C. We note that th
three aspect ratios generate very similar results after res
ing. The relative magnitudes of the different decay rates
TIC, MQT, and ICO—are the same for the three cases.
T<1 nK, the MQT effect becomes important compared
the ICO decay in a region very close toN c

E (d<8
31023). This was shown in Ref.@8# using Gaussian

FIG. 8. Condensate decay rates versus particle number for

isotropic potentialv r5vz5v̂ ~solid!, and for the rescaled ciga

potential v r5ccigv̂, vz5ccigv̂/5 ~dashed!, and pancake potentia

v r5cpanv̂/5, vz5cpanv̂ ~dotted!. ICO, inelastic collisions; MQT,
macroscopic quantum tunneling; TIC, thermally induced collaps
temperatures 50 nK~3!, 100 nK ~4!, 200 nK ~5!, 300 nK ~6!, and
400 nK ~7!.
9-8
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computations but evaluating them with the exact maxim
number of condensed particlesN c

E . Figure 9 shows tha
even for temperatures as low as 2 nK, the TIC decay
exceeds the MQT rate except in a region extremely clos
Nc (d,531023), where the condensates will live less th
1021 s. Thus, in the experimental case of7Li atoms, the
relevant effects are ICO and TIC, with the crossover tha
shown in Fig. 9.

B. Spontaneous isotropization of condensates

The decay rates of the isotropic and nonisotropic ca
shown in Fig. 8 are quite similar, despite the fact thatvz and
v r differ by a factor of 5. We have investigated this questi
by examining the wave functionsC for the pancake and
cigar cases. These wave functions are peaked at the origi
shown in Fig. 3. Their characteristic length scales in the a
and radial directions,,z and , r , can be measured by com
puting the ratios of the value ofC to its curvature at the
origin.

More specifically, we define

,z
2[CS ]2C

]z2 D 21

~r 50, z50!, ~53a!

, r
2[CS 1

r

]

]r
r
]C

]r D 21

~r 50, z50!. ~53b!

We then obtain the ellipticity of the wave function as t
ratio , of these length scales:,5, r /,z for the cigar and,
5,z /, r for the pancake. These ellipticity ratios are shown
Fig. 10 as a function ofm. For largem, i.e., away from the
saddle-node bifurcation along the stable branch,, decreases
rapidly away from one, indicating that the wave function
highly nonisotropic. At the saddle-node bifurcation,,
50.89 atm50.38 for the cigar and,50.80 atm50.31 for

FIG. 9. Enlargement of the crossover region between the qu
tum tunneling and the thermal decay rate. ICO, inelastic collisio
MQT, macroscopic quantum tunneling; TIC, thermally induced c
lapse at temperatures 1 nK~1!, 2 nK ~2!, and 50 nK~3!.
02360
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the pancake. Asm is decreased, i.e., as we leave the sadd
node bifurcation along the unstable branch,, approaches 1
as the wave function becomes more spherically symme
This trend is present both in the numerical solution to the
equation and in the Gaussian approximation, as can be
in Fig. 10. Since the decay rates result from the scaling
havior near the saddle-node bifurcation, where the cond
sate is fairly isotropic, it follows that the decay rates a
similar for the cigar, pancake, and spherically symmetric
ometries, as we have shown in Figs. 8 and 9.

The spontaneous isotropization of condensates whenm is
decreased can be understood by the following phenome
logical reasoning. When2m grows, the balance of terms o
the right-hand side of Eq.~6! changes. For small2m, it is
dominated by the isotropic¹2 and the anisotropicV(x)
terms. But for large2m, the wave functionC is strongly
peaked and the¹2 and nonlinear terms, both isotropic, b
come dominant.

Figure 10 also provides a test of our numerical spa
resolution. By computing the ellipticity, for different Fou-
rier truncation levels, we show that, changes with the reso
lution for low m, especially for the pancake case, where
used fewer Fourier modes than in the other calculatio
Note, however, that our decay rate calculations only use
sults near the saddle-node bifurcation, where, varies by less
than 0.1% when different truncation levels are used. T
indicates thatC was adequately resolved in the region
interest.

As m is decreased, the wave functions become m
highly peaked for both our numerical results and for t
Gaussian approximation~see Figs. 3 and 11!. This is the
main reason for the declining accuracy. To continue the co

n-
s;
-

FIG. 10. Ellipticity ratio, as a function ofm. Solid curves show
numerical results and dashed curves the Gaussian approxima
For the cigar,,[, r /,z ~upper curves! and for the pancake,,
[,z /, r ~lower curves!. Dots show results obtained by using su
cessively fewer Fourier modes in the numerical results; dots ne
to ~further from! each curve correspond to retaining 7/8~6/8! of the
Fourier modes., changes by less than 1% form.20.8 (m.
20.2) for the cigar~pancake! case and by less than 0.1% at th
saddle-node bifurcation atm50.38 (m50.31) for the cigar~pan-
cake! case.
9-9
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HUEPEet al. PHYSICAL REVIEW A 68, 023609 ~2003!
putations further, the size of the periodic box should be
duced along withm. We believe that, with adequate resol
tion, all of the exact wave functions would becom
spherically symmetric asm decreases, as do the Gauss
approximations.

V. CONCLUSION

We have demonstrated that it is possible to numeric
compute the stationary states, the bifurcating eigenval
and the lifetime of anisotropic attractive Bose-Einstein co
densates.

The Gaussian mean-field approximation was found
have significant quantitative errors for all the different co
fining potential geometries that were studied, when co
pared with numerical solutions to the GP equation.

Spontaneous isotropization of the metastable conden
was found to occur as the critical number of particles
approached, yielding a lifetime that depends weakly on
anisotropy of the confining potential.

Direct methods—Gaussian elimination an
diagonalization—were used in treating the spherically sy
metric case, of size 128, but are far too costly for the thr
dimensional case, of size 106. In fact, since we only calcu
lated axisymmetric stationary states and eigenvectors wit
additional midplane symmetry, an intermediate tw
dimensional axisymmetric cylindrical representation co
have been implemented, of size 5000, permitting the us
direct methods. Our purpose, however, has been to cons
and explore numerical methods appropriate for a gen
nonisotropic case.

The methods used to compute stationary states and b
cating eigenvalues for the nonisotropic cases are essen
analogous. Each consists of a powerful and rapid outer it
tion: Newton’s method for the stationary states and the
verse Arnoldi method for the eigenvalues. The large lin

FIG. 11. Length scales, r ,,z as a function ofm. Solid curves
show numerical results and dashed curves the Gaussian appro
tion. The cigar case is shown in lower curves~with , r,,z) and the
pancake in upper curves~with ,z,, r). The size of the condensat
decreases drastically asm decreases, i.e., away from the sadd
node bifurcation along the unstable branch.
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systems that need to be inverted within each method
solved by the same inner biconjugate gradient iteration
BICGSTAB—and constitute the main numerical difficulty. It
convergence is greatly improved by an inverse Laplac
preconditioning which is empirically tuned by adjusting th
pseudotime steps in Newton’s method or the shifts in Ar-
noldi’s method.

Our results and implementation have demonstrated
all these numerical techniques can be successfully comb
to calculate the stationary states and eigenvectors for the
equation in a confining potential with an arbitrary thre
dimensional geometry.
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APPENDIX: NUMERICAL METHODS

1. Spatial discretization

The operatorsL andW defined in Eqs.~10! and ~11! are
spatially discretized using the pseudospectral method@30#.
For the isotropic case, the spherically symmetricC(r ,t) is
expanded as a series of even Chebyshev polynom
T2n(r /R), on which the boundary conditionC(R,t)50 is
imposed. The domain is taken to be 0<r<R54 and the
resolution used isNR5128. For the nonisotropic cases, w
use a three-dimensional periodic Cartesian domain andC is
expanded as a three-dimensional trigonometric~Fourier! se-
ries. The cigar case is solved in a periodic domain of s
(Lx ,Ly ,Lz)5(5.39,5.39,12.04) in units ofL0, using
(Nx ,Ny ,Nz)5(96,96,96) grid points or trigonometric mode
~with a 2/3 dealiasing rule!, so the total number of grid
points or trigonometric functions is as high asN3D5106.
@The more poorly resolved pancake case was calculated
ing (Lx ,Ly ,Lz)5(12.04,12.04,5.39) and (Nx ,Ny ,Nz)
5(48,48,96).# The harmonic potential~5! is approximated
by a periodic potential by writingx5arcsin@sin(x)# and Tay-
lor expanding the arcsin function. This leads to a Four
series for the potential, which is truncated according to
resolution used.

Pseudospectral methods require performing overC, at
every iteration, a Chebyshev transform in the isotropic c
or a Fourier transform in the nonisotropic case. These op
tions consume a time proportional toNR ln NR or
N3D ln(N3D), respectively. Actions and inversions of the L
placianL are carried out on the Chebyshev or Fourier rep
sentations ofC, while actions of the multiplicative operato
W are carried out on its grid representations. The time
quired by these operations scales approximately linearly
NR or N3D .

a-
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9-10



n

s

(
p

b
la

e
E
n

m

e
a
-
y

e.

ian

of

is

y:
the

ar
are
d-

ar
em

of
e.
ent
ons

nite
f

.e.,
ust
es
g
as
to
r.

o

at

ors,
ell

urier
ex-
is
ible

ng
ally

for
ere

STABILITY AND DECAY RATES OF NONISOTROPIC . . . PHYSICAL REVIEW A68, 023609 ~2003!
2. Stationary states

As stated in Sec. II B, the stationary states of Eq.~6! that
correspond to minima ofE at a given value ofN can be
obtained by integrating to relaxation the diffusion equatio

]C

]t
5LC1W~C!, ~A1!

where the initial dataC(t50) has a total number of particle
N and the value of the Lagrange multiplierm is fixed during
the relaxation by the condition]N/]t50.

To integrate Eq.~A1!, a mixed implicit-explicit first-order
time-stepping scheme is used:

C~ t1s!5~ I 2sL !21~ I 1sW!C~ t !, ~A2!

where I is the identity operator. The Helmholtz operatorI
2sL)21 is easily inverted in the Chebyshev or Fourier re
resentation. The motivation for integratingL implicitly is to
avoid the extremely small time steps that would otherwise
necessitated by the wide range of eigenvalues of the Lap
ian.

This relaxation method is equivalent to that used in R
@14# and can only reach the stable stationary solutions of
~A1!. In order to also capture unstable stationary solutio
@31#, we implemented a Newton branch-following algorith
@15,32#. We search for fixed points of Eq.~A2!, a condition
strictly equivalent to the stationarity of Eq.~6!:

05BC~ t ![C~ t1s!2C~ t !

5~ I 2sL !21~ I 1sW!C~ t !2C~ t !

5@~ I 2sL !21~ I 1sW!2I #C~ t !

5~ I 2sL !21@~ I 1sW!2~ I 2sL !#C~ t !

5~ I 2sL !21@~s~L1W!#C~ t !. ~A3!

Solutions to Eq.~A3! are found using Newton’s method. W
begin with an initial estimateC, in our case the solution at
neighboring value ofm. Newton’s method calls for approxi
mating the nonlinear operatorB whose roots are sought b
its linearizationBC aboutC. We seek a decrementc such
that C2c solves this linearized equation

05B~C2c!'B~C!2BCc,

BCc5B~C!. ~A4!

C is then replaced byC2c and Eq.~A4! is solved again for
a further decrement. The process is iterated untilB(C) or c
is sufficiently small. In our case, Eq.~A4! takes the form

~ I 2sL !21s~L1DW!c5~ I 2sL !21s~L1W!C.
~A5!

We will explain how we solve the large linear problem~A5!
in the following section.

The role ofs is formally that of the time step in Eq.~A2!,
but in Eq.~A5!, its value can be taken to be arbitrarily larg
For s→`, Eq. ~A5! becomes
02360
-

e
c-
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L21~L1DW!c5L21~L1W!C. ~A6!

For the spherically symmetric case, the linear system~A6!
is of sizeNR5128 and can be solved by standard Gauss
elimination. The boundary conditionc(r 5R)50 is imposed
by modifying the operatorL21 or (I 2sL)21, as it is in the
time-stepping algorithm~A2!.

To compute the full branch of solutions as a function
m, we begin from a stable state of Eq.~A1! at a small value
of N obtained by time integration. Each stationary state
computed in three to five Newton iterations.

3. Conjugate gradient solution of linear systems

For the periodic Cartesian case, the linear system~A6! of
sizeN3D5106 is too large to be stored or inverted directl
the operation count for Gaussian elimination would be of
order ofN3D

3 . Instead, we useBICGSTAB @33#, a variant of the
well-known conjugate gradient method, developed for line
systems that are not symmetric definite. Such methods
matrix-free, meaning that they require only the right-han
side of Eq.~A6!, and a subroutine that acts with the line
operator of the left-hand side. A solution to the linear syst
is constructed as a carefully chosen linear combination
powers of the linear operator acting on the right-hand sid

For a periodic Cartesian geometry, conjugate gradi
methods are particularly economical, since operator acti
are all accomplished in a time proportional toN3D . How-
ever, conjugate gradient methods for nonsymmetric defi
systems may converge slowly~requiring a large number o
evaluations of the linear operator! or even not at all. This
happens when the operator is poorly conditioned, i
roughly when it has a wide range of eigenvalues. One m
then precondition the linear system, i.e., multiply both sid
of the system by a matrix which improves its conditionin
and accelerates convergence. Since for operators suchL
1DW, the wide range of eigenvalues is due primarily
those ofL, we expectL21 to be an effective preconditione
From Eq.~A5!, it can be seen thats allows us to interpolate
between linear operatorss(L1DW) andL21(L1DW). We
vary s empirically to optimize the convergence ofBICGSTAB.
A few hundredBICGSTAB iterations are usually required t
solve the linear system.

A further advantage of iterative inversion methods is th
they can produce a~nonunique! solution even when the lin-
ear operator is singular. This is the case for our operat
which have the neutral modes described in Sec. II C, as w
as other neutral modes related to symmetries and the Fo
representation. The preconditioner, however, is inverted
actly. If Eq. ~A6! is used, the constant Fourier mode
treated separately which allows us to construct an invert
version of the singular operatorL.

4. Eigenvalue problem

We now describe our numerical method for calculati
the linear stability of the stationary states. For the spheric
symmetric case, the eigenvalues of Eq.~17! are computed by
constructing and diagonalizing the corresponding matrix
each converged stationary solution. The results reported w
9-11
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generated with aMATHEMATICA code running on a worksta
tion. With the valuesR54, NR5128, the first two eigenval-
ues of the harmonic oscillator are obtained with a precis
better than 0.05%.

For the three-dimensional case, it is again not possibl
construct and diagonalize the matrix of sizeN3D5106 di-
rectly: the operation count for diagonalization is also of t
order ofN3D

3 . Instead, we calculate only eigenvalues of
terest, using a variant of the iterative inverse power meth
The inverse power method calculates the eigenvalues
matrix M closest to a values by means of the sequenc
defined by

~M2sI!c j 115c j . ~A7!

The sequence$c j% converges rapidly to the eigenvect
whose eigenvalue is nearest tos, with the eigenvaluel of M
estimated by (l2s)21'^c j 11 ,c j&/^c j ,c j&.

In order to calculate complex or multiple eigenvalues a
to obtain more precise eigenvalues and error estimates
use the sequence generated by Eq.~A7! to implement the
more general Arnoldi or Krylov method@32,34#. Instead of
retaining only the last two members of the sequence, the
K members~typically 4 or 6! are orthonormalized and the
ys

et
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assembled into theK3K matrix H jk[^c j ,(M2sI)21ck&.
The eigenvalues ofH provide estimates of up toK of the
eigenvalues (l2s)21 of (M2sI)21.

In our implementation of the Arnoldi method for Eq
~22a!, we seek the eigenvaluesl2 of the matrix 2(L
1DWI)(L1DWR). Rather than solving Eq.~A7!, we solve
the equivalent preconditioned problem@32#

L22@2~L1DWI !~L1DWR!2sI#c j 115L22c j ,
~A8!

by usingBICGSTAB. From Eq.~A8!, we obtain a sequence o
vectors containing an increasing proportion of the desi
eigenvectors, but since our solution of Eq.~A8! is not exact,
we then constructH by multiplication rather than inversion
via H jk[^c j ,Mck&. We can then estimate the eigenvalu
l2 by those ofH. Although the formal role ofs is that of a
shift which focuses the inverse iteration on the eigenval
being sought, here we also use it empirically to improve
convergence ofBICGSTAB.

The inverse Arnoldi method requires between three a
ten iterations to converge, each of which requires sev
hundredBICGSTAB iterations in order to solve its associate
linear system.
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