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Reaction-Diffusion Systems

Figure 1: Nullclines of the FitzHugh-Nagumo (left) and Barkley (right) models. The solid curves are

the u-nullclines ∂tu = f(u, v) = 0 and the dashed curves are the v-nullclines ∂tv = g(u, v) = 0. The

intersections of the two types of nullclines are homogeneous steady states.

A reaction-diffusion system is a dynamical system of the form

∂tui = fi(u1, u2, . . .) +Di∆ui (1)

The reaction terms fi couple the different chemical species ui at the same spatial location, and the

Laplacian describes diffusion of ui with species-specific diffusivity Di. Reaction-diffusion equations

describe oscillating chemical reactions, the most famous of which is the Belousov-Zhabotinskii reac-

tion, discovered by two Soviet scientists in the late 1950s and early 1960s. Such systems are also used

to describe phenomena in biology (population biology, epidemiology, neurosciences), social sciences

(economics, demography) and physics.

Commonly studied models have two species:

∂tu = f(u, v) +Du∆u (2a)

∂tv = g(u, v) +Dv∆v (2b)

For the moment, we consider the spatially homogeneous version of (2), where u, v are scalars.

∂tu = f(u, v) (3a)

∂tv = g(u, v) (3b)

Two such systems are the FitzHugh-Nagumo equations:

f(u, v) = u− u3/3− v + I (4a)

g(u, v) = 0.08 (u+ 0.7− 0.8 v) (4b)

and the Barkley model

f(u, v) =
1

ǫ
u(1− u)

(

u− v + b

a

)

(5a)

g(u, v) = u− v (5b)
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Steady states (ū, v̄) are the intersections of the u-nullcline f = 0 and the v-nullcline g = 0, as shown in

figure 1. These are stable if the eigenvalues of

(

fu fv
gu gv

)

(6)

are both negative (or have negative real part).

1 Excitability

Figure 2: Dynamics of the Barkley model. Left: large horizontal arrows indicate where ∂tu = f is

positive or negative. Small vertical arrows indicate where ∂tv = g is positive or negative. The u-

nullcline has three portions: u = 0, u = 1, and the middle branch u = (v+ b)/a, which is the excitation

threshold. Right: Trajectory undergone after excitation. A sufficiently large perturbation from u = v = 0
causes u to cross the middle branch to the excited phase u = 1, during which v increases slowly to near

1. Then u crosses quickly back to the refractory phase at u = 0, during which v decreases slowly to

near 0. When (u, v) ≈ (0, 0), the system is again excitable.

Figure 2 shows the nullclines of the Barkley model (5), along with arrows indicating the direction of

motion in the (u, v) plane, i.e. rightwards (leftwards) arrows where ∂tu = f > (<) 0 and upwards

(downwards) arrows where ∂tv = g > (<)0. Because of the factor 1/ǫ in the u-equation (5a), horizontal

(u) motion takes place on a fast timescale compared to vertical (v) motion, as symbolized by the long

and short arrows. The portions of the (u, v) plane for which vertical (v) motion is important are those

where u motion is zero or negligeable, i.e. on or near the u-nullcline. The u-nullcline is made up of three

branches:u = 0, u = 1 and u = (v + b)/a, which is the excitation threshold. Figure 2 shows that the

middle branch u = (v + b)/a of the u-nullcline acts as a threshold. If the steady state (ū, v̄) = (0, 0)
is slightly perturbed, then the resulting trajectory will converge directly back to the steady state. If,

however, the perturbation is large enough that the middle branch is traversed, then the resulting trajectory

will undergo a long excursion, first quickly rightwards, then slowly upwards along the u = 1 nullcline,

then quickly leftwards, then slowly downwards along the u = 0 nullcline, finally returning to (0, 0).
The dynamics consist of three phases. When (u, v) is near zero, the system is said to be excitable: a

sufficiently large perturbation will lead to an excursion. When u ≈ 1, the system is said to be excited.
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When u ≈ 0, but v 6≈ 0, the system is said to be refractory: the middle branch, i.e. the threshold, is too

far for the system to be excited.

Figure 3: Waves in an excitable medium. Although diffusion from xi acts in both directions, if xi−1 has

recently been excited, then it is refractory and hard to excite. Only xi+1 will be excited and the wave

will continue to propagate to the right.

How might the system become excited? With the inclusion of spatial variation and diffusion, excitability

leads to propagating waves. If one location (a numerical or biological cell xi) is excited, then diffusion

will cause it to excite its neighbors. If the neighbor on one side (say xi−1) has recently been excited,

then it is in the refractory phase and cannot become excited. Instead, only the neighbor on the other side

(xi+1), where the wave has not yet passed (recently), will become excited. Meanwhile, cell xi enters the

refractory phase and cell xi+1 excites cell xi+2. Thus, the wave propagates in one direction.

Excitability plays an important role in physiology. In particular, cardiac tissue (the heart) is excitable, as

are neurons. A part of the heart serves as the pacemaker, periodically emitting electrical signals, and

these are propagated to the rest of the heart.

2 Turing patterns

We now consider spatially inhomogeneous solutions to reaction-diffusion systems. A steady state Ū =
(ū, v̄) of (3) is also a steady (homogeneous) state of (2), since the Laplacian of a constant is zero.

What about stability? If (ū, v̄) is a stable solution of (3), is it also a stable solution of (2), i.e. is it

stable to spatially dependent perturbations when diffusion is included? In general, diffusion has the

effect of smoothing out variations, so we would expect that the homogeneous steady state would remain

stable. We now carry out a linear stability analysis by substituting u(x, t) = ū + ũeσt+ik·x, v(x, t) =
v̄ + ṽeσt+ik·x into (2) and linearizing:

σũ = fuũ+ fvṽ −Duk
2ũ (7a)

σṽ = guũ+ gv ṽ −Dvk
2ṽ (7b)

where fu, fv, gu, gv are the partial derivatives of f and g evaluated at the steady state (ū, v̄), which may

have either sign. That is, we seek the eigenvalues σk± of the matrix

Mk ≡
(

fu −Duk
2 fv

gu gv −Dvk
2

)

=

(

fu fv
gu gv

)

− k2
(

Du 0
0 Dv

)

(8)
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Figure 4: Simulations from Barkley model. Left: Domain with competing spiral waves in 2D. Right:

scroll waves in 3D. From D. Barkley, Barkley model, Scholarpedia.

If Du = Dv ≡ D then Mk differs from M0 by (−D k2) times the identity. Then Mk has the same

eigenvectors as M0, with the eigenvalues shifted by (−D k2). Since (ū, v̄) is stable to homogeneous

perturbations, the eigenvalues of M0 are negative The eigenvalues of Mk are then also negative and

(ū, v̄) is stable to inhomogeneous perturbations. This can also be seen from the explicit expression for

the eigenvalues of Mk =

(

a b
c d

)

:

σk± =
a+ d

2
±

√

(

a− d

2

)2

+ bc

=
fu + gv

2
− k2

Du +Dv

2
±

√

(

fu − gv − (Du −Dv)k2

2

)2

+ fugv (9)

which shows that σk± = σ0 − D k2 if Du = Dv = D. This confirms the intuition that diffusion is

a stabilizing influence. However, Alan Turing (a famous World War II British cryptologist considered

by some to be the founder of computer science) realized in 1952 that the homogeneous state could be

unstable if Du 6= Dv, leading to what is now called a Turing pattern. We now seek the conditions under

which this can occur.

We recall that a two-by-two matrix has one or more positive eigenvalues (or eigenvalues with positive

real part) if Trk, the sum of the eigenvalues, satisfies Trk > 0 or if Detk, their product, satisfies Detk < 0;

see figure 5. Since Ū is stable to homogeneous perturbations, we already know that

Tr0 = fu + gv < 0 (10)

and that

Det0 = fugv − fvgu > 0. (11)
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Figure 5: Behavior of two-dimensional linear systems as a function of the trace Tr and the determinant

Det of the matrix. For Det < 0, the two eigenvalues are real and of opposite sign, leading to a saddle.

For Det > Tr2/4, the eigenvalues are complex conjugates and the behavior is thus oscillatory. For

Tr > 0 at least one of the eigenvalues has a positive real part and the fixed point is thus unstable.

Limiting cases are non-isolated fixed points (Det = 0), stars and degenerate nodes (Tr2 = 4Det), and

centers (Tr = 0, Det > 0).

We have

Trk = fu + gv − (Du +Dv)k
2 = Tr0 − (Du +Dv)k

2 < Tr0 < 0 (12)

so in order for Ū to be unstable to inhomogeneous perturbations, we must have Detk < 0 for some values

of k.

Detk = fugv − fvgu − (Dvfu +Dugv)k
2 +DuDvk

4

= Det0 +DuDvk
4 − (Dvfu +Dugv)k

2 (13)

We know that Det0 > 0 and that Detk > 0 for large k, so we seek an intermediate range of k for which

Detk < 0. The minimum of Detk is obtained by differentiating (13) with respect to k2:

0 = 2DuDvk
2 − (Dvfu +Dugv)

k2 =
Dvfu +Dugv

2DuDv

(14)

We require that this value of k2 be positive

Dvfu +Dugv > 0 (15)
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Figure 6: Turing pattern in a chlorite-iodide-malonic acid chemical laboratory experiment. From

R.D. Vigil, Q. Ouyang & H.L. Swinney, Turing patterns in a simple gel reactor, Physica A 188, 17

(1992).

and that Detk be negative at this value:

0 > Det0 +DuDv

(

Dvfu +Dugv
2DuDv

)2

− (Dvfu +Dugv)
Dvfu +Dugv

2DuDv

= Det0 +
(Dvfu +Dugv)

2

4DuDv

− (Dvfu +Dugv)
2

2DuDv

= Det0 −
(Dvfu +Dugv)

2

4DuDv

0 > 4DuDv(fugv − fvgu)− (Dvfu +Dugv)
2

(Dvfu +Dugv)
2 > 4DuDv(fugv − fvgu) (16)

Thus, (10), (11), (15), and (16) are the conditions for a Turing pattern.

Note that if Du = Dv, then condition (15) cannot be satisfied since fu+gv =Tr0 < 0. The wavenumbers

of the patterns are given by (14).

Turing patterns were first produced in experiments in 1990 by de Kepper et al. at the University of

Bordeaux and shortly thereafter by Swinney et al. at the University of Texas at Austin, see figure 6. This

mechanism is thought to be responsible for differentiation within embryos and the formation of patterns

on animal coats (such as zebras and leopards).

3 Lyapunov functionals

The behavior of one-dimensional dynamical systems is necessarily simple. There can be no limit cycles,

and generally the behavior consists merely of converging to a fixed point. A class of multidimensional
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systems, called variational, potential, or gradient flows:

du

dt
= −∇Φ ⇐⇒ dui

dt
= − ∂Φ

∂ui
(17)

can also be shown to behave in this way.

The Jacobian of (17) is the Hessian matrix

−







∂2Φ/(∂u1∂u1) ∂2Φ/(∂u1∂u2) . . .
∂2Φ/(∂u2∂u1) ∂2Φ/(∂u2∂u2) . . .

...
...

...






(18)

As a symmetric matrix, the Hessian cannot have complex eigenvalues and hence the gradient system (17)

cannot undergo a Hopf bifurcation. A more general argument forbidding limit cycles is as follows:

dΦ

dt
=

∑

i

∂Φ

∂ui

dui
dt

= −
∑

i

∂Φ

∂ui

∂Φ

∂ui
= −|∇Φ|2 (19)

so that Φ decreases monotonically. Limit cycles cannot occur since Φ decreases, either to −∞ or to a

point where ∇Φ = 0, at which du/dt = 0.

We can generalize (17) to spatially dependent systems, in particular to reaction-diffusion systems whose

reaction term is a gradient of a potential Φ(u):

∂u

∂t
= −∇Φ+

∂2
u

∂x2
(20)

The domain of (20) is the (possibly infinite) interval (xlo, xhi) and either Dirichlet boundary conditions

u(xlo) = ulo u(xhi) = uhi (21)

or homogeneous Neumann boundary conditions

∂u

∂x
(xlo) = 0

∂u

∂x
(xhi) = 0 (22)

are imposed.

To take the place of Φ, we define the free energy or Lyapunov functional,

F(u) ≡
∫ xhi

xlo

dx

[

Φ(u(x, t)) +
1

2

∣

∣

∣

∣

∂u(x, t))

∂x

∣

∣

∣

∣

2
]

(23)

The two terms in the integral in (23) can be thought of as a potential energy and a kinetic energy. (This

will be discussed further below.) In order to show that (20) is variational, we expand:

F(u+ δu) =

∫ xhi

xlo

dx

[

Φ(u+ δu) +
1

2

∣

∣

∣

∣

∂(u+ δu)

∂x

∣

∣

∣

∣

2
]

=

∫ xhi

xlo

dx

[

Φ(u) +∇Φ(u) · δu+ . . .+
1

2

∣

∣

∣

∣

∂u

∂x
+

∂δu

∂x
+ . . .

∣

∣

∣

∣

2
]

(24)

=

∫ xhi

xlo

dx

[

Φ(u) +
1

2

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2
]

+

∫ xhi

xlo

dx

[

∇Φ(u) · δu+
∂u

∂x
· ∂δu
∂x

]

+O(δu)2
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We integrate by parts:

∫ xhi

xlo

dx
∂u

∂x
· ∂δu
∂x

=

[

∂u

∂x
· δu

]xhi

xlo

−
∫ xhi

xlo

dx
∂2

u

∂x2
· δu (25)

The surface term in (25) obviously vanishes when homogeneous Neumann boundary conditions are

imposed on u. It also vanishes when Dirichlet boundary conditions are imposed on u, since then homo-

geneous Dirichlet boundary conditions are imposed on the perturbation δu.

We obtain:

F(u+ δu) =

∫ xhi

xlo

dx

[

Φ(u) +

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2
]

+

∫ xhi

xlo

dx

[

∇Φ(u)− ∂2
u

∂x2

]

· δu+O(δu)2 (26)

The functional derivative δF/δu is defined to be such that

F(u+ δu) = F(u) +

∫ xhi

xlo

dx
δF
δu

· δu+O(δu)2 (27)

for every perturbation δu. Comparing (27) with (26), we obtain:

∫ xhi

xlo

dx
δF
δu

· δu =

∫ xhi

xlo

dx

[

∇Φ(u)− ∂2
u

∂x2

]

· δu (28)

Since the integrals in (28) are equal for every perturbation δu, including a delta function centered on any

point x and pointing in any of the vector directions, we must have the pointwise equality:

δF
δu

= ∇Φ(u)− ∂2
u

∂x2
(29)

which, using (20), implies
δF
δu

= −∂u

∂t
(30)

F evolves in time as follows:

dF
dt

= lim
∆t→0

1

∆t
[F(t+ δt)−F(t)] = lim

∆t→0

1

∆t
[F(u(t+∆t))−F(u(t))]

= lim
∆t→0

1

∆t

[

F
(

u(t) +
∂u

∂t
∆t+ . . .

)

−F(u(t))

]

= lim
∆t→0

1

∆t

[

F(u(t)) +

∫ xhi

xlo

dx
δF
δu

· ∂u
∂t

∆t+ . . .−F(u(t))

]

= lim
∆t→0

1

∆t

[∫ xhi

xlo

dx
δF
δu

· ∂u
∂t

∆t+ . . .

]

=

∫ xhi

xlo

dx
δF
δu

· ∂u
∂t

=

∫ xhi

xlo

dx

(

−∂u

∂t

)

· ∂u
∂t

= −
∫ xhi

xlo

dx

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

2

≤ 0 (31)

where we have used (27) and (30). Just as we argued previously, limit cycles cannot occur since F
decreases, either to −∞ or to one of its local minima, where ∂u/∂t = 0. Although we used one spatial

dimension for simplicity, the reasoning above can be applied in higher dimensions, by using volume

integration and Gauss’s Divergence Theorem to generalize (25).
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4 Spatial Analysis and Fronts

We now return to equation

∂u

∂t
= −dΦ

du
+

∂2u

∂x2
(32)

We consider u to be a scalar, although generalizations are possible to a vector u. However, our treatment

is necessarily restricted to the single spatial coordinate x, since the subject of this subsection is to draw

an analogy between space and time.

We consider travelling wave solutions:

u(x, t) = U(x− ct) (33)

which include steady states, for which c = 0. Defining

ξ ≡ x− ct (34)

we have

∂u

∂t
(x, t) = −c

dU

dξ
(ξ) (35a)

∂2u

∂x2
(x, t) =

d2U

dξ2
(ξ) (35b)

The equation obeyed by steady states and travelling waves becomes

d2u

dξ2
=

dΦ

du
− c

du

dξ
(36)

where we have reverted from U to u and where c = 0 for a steady state.

We now carry out the fundamental, but merely notational, transformation used in spatial analysis, also

called the mechanical analogy: we consider u to be like a position and ξ to be like a time. The me-

chanical interpretation of (36) is clear: the derivatives du/dξ and d2u/dξ2 are like the velocity and the

acceleration, respectively. The potential energy is −Φ, rather than Φ, because of the sign convention

used for Φ in the original reaction-diffusion system. The term −c du/dξ is like a frictional damping

force, which is proportional to velocity. We can define something like an energy, which obeys:

dE

dξ
=

d

dξ

[

−Φ+
1

2

(

du

dξ

)2
]

= −dΦ

du

du

dξ
+

du

dξ

d2u

dξ2

=

[

−dΦ

du
+

d2u

dξ2

]

du

dξ
= −c

(

du

dξ

)2

(37)

so it is conserved if c = 0, decreases if c > 0 and increases if c < 0. The fact that E can increase

underlines the fact that the identification of u, ξ, and E with position, time, and energy is only an

analogy. In terms of the original problem, c < 0 implies only motion towards the left.
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It is possible to integrate (36) analytically for the case c = 0, when E is a constant. Starting from (37),

we have

E = −Φ(u(ξ)) +
1

2

(

du

dξ

)2

E +Φ(u(ξ)) =
1

2

(

du

dξ

)2

√

2(E +Φ(u(ξ))) =
du

dξ
∫

dξ =

∫

du
√

2(E +Φ(u))

[ξ] ξξlo =

∫ u(ξ)

ulo

du
√

2(E +Φ(u))
(38)

For Φ(u) = u3, as in the Ginzburg-Landau equation, the integral on the right of (38) is an elliptic

integral, one of the standard special functions. However (38) is not immediately helpful in understanding

the qualitative behavior of solutions to (36).

For more insight, we turn to the dynamical systems approach. Introducing

v ≡ du

dξ
(39)

we can rewrite (36) as the dynamical system

u̇ = v (40a)

v̇ =
dΦ

du
− cv (40b)

where u̇, v̇ are derivatives with respect to ξ. If c = 0, then the system (40) is Hamiltonian, i.e. there

exists a Hamiltonian H(u, v) such that

u̇ =
dH
dv

(41a)

v̇ = −dH
du

(41b)

which here is

H = −Φ+
1

2
v2 (42)

Let us analyze the reaction-diffusion system that results from adding diffusion to the normal form for a

supercritical pitchfork bifurcation, leading to the Ginzburg-Landau equation:

∂u

∂t
= µu− u3 +

∂2u

∂x2
(43)

We integrate to obtain the potential

−dΦ

du
= µu− u3 =⇒ −Φ =

µ

2
u2 − 1

4
u4 (44)
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Steady states obey

0 = −dΦ

du
+

d2u

dx2
(45)

Performing the transformation from space into time and separating (45) into two equations yields

u̇ = v (46a)

v̇ =
dΦ

du
(46b)

As usual, we begin our analysis of (46) by finding its fixed points:

v = 0 (47a)

dΦ

du
= 0 =⇒ ū3 − µū = 0 =⇒ ū = 0 or ū = ±√

µ (47b)

These values of ū are the fixed points for the usual normal form without diffusion. The stability of (ū, v̄)
under the dynamics (46) is, however, quite different from that under the dynamics of the original system

(43). The Jacobian of (46)

(

0 1
Φ′′ 0

)

=

(

0 1
3ū2 − µ 0

)

=

(

0 1
−µ 0

)

or

(

0 1
2µ 0

)

(48)

(where Φ′′ ≡ d2Φ/du2) has eigenvalues

λ = ±
√
Φ′′ =

{

±√−µ for ū = 0
±√

2µ for ū = ±√
µ

(49)

Note that the eigenvalues come in ± pairs, either imaginary or real (the trace of (48) is zero). This is

typical for Hamiltonian systems, but rare for dissipative systems. Fixed points whose eigenvalues are

imaginary pairs, i.e. centers, are called elliptic, while those whose eigenvalues are real pairs, i.e. saddles,

are called hyperbolic.

Figure 7 illustrates the behavior of the Ginzburg-Landau equation for the two values µ = −1 and µ =
+1. The top row illustrates the mechanical analogy. The potential −Φ(u) is shown as a function of u,

along with the hyperbolic fixed points: ū = 0 for µ = −1 and ū = ±√
µ for µ = +1. Trajectories

emanating from these fixed points are displayed. For µ = −1, the trajectory leaving ū = 0 is unbounded

and goes to −∞. For µ = +1, the trajectory leaving ū = −√
µ at zero velocity arrives exactly at

ū =
√
µ with zero velocity, since there is no friction. Figure 8 illustrates two more types of trajectories

that may exist in the µ = +1 case. On the left is a periodic oscillation: if u and u̇ are sufficiently small,

then the trajectory oscillates within the potential well, forever since there is no dissipation. On the right

is an unbounded trajectory: if the initial position u and the initial velocity u̇ are sufficiently large, then

the trajectory can cross the potential well. Another type of unbounded trajectory also exists, in which the

trajectory remains either to the left or to the right of the well.

The middle row of figure 7 illustrates this behavior from the dynamical systems point of view, by showing

phase portraits of the two-dimensional dynamical system for (u, u̇). For µ = −1, the fixed point (ū, ˙̄u) =
(0, 0) is a hyperbolic fixed point: the trajectories surrounding it are hyperbolas. The trajectory shown

above it leaves u = 0 with a small positive velocity u̇ = 0.1 (otherwise it would not go anywhere) and

goes to positive infinite (u, u̇). For µ = +1, the fixed point (0, 0) is elliptic. Trajectories in the (u, u̇)
phase plane are elliptical. In the picture above, the particle would oscillate back and forth in the potential
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Figure 7: Behavior of the Ginzburg-Landau equation for µ = −1 and for µ = +1.

Top row: potential −Φ(u) with fixed points ū = 0 for µ = −1 and ū = ±√
µ = ±1 for µ = +1. For

µ = −1, a portion of a trajectory is shown which originates at u = −∞ and goes to u = +∞. For

µ = +1, the trajectory shown goes from ū = −1 to ū = +1.

Middle row: phase portraits in the (u, u̇) plane. (0, 0) is a hyperbolic fixed point for µ = −1 and an

elliptic fixed point for µ = +1. (
√
µ, 0) are hyperbolic fixed points for µ = +1 and are connected by a

heteroclinic orbit.

Bottom row: for µ = −1, profile through u = 0 goes from u = −∞ to u = +∞. Profile through u = 0
is a front joining ū = −1 and ū = +1.
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Figure 8: Behavior of the Ginzburg-Landau equation for µ = +1 (continued).

First row: trajectory on left oscillates periodically in the potential well. Trajectory on right is unbounded.

Bottom row: Profile on left is a periodic wave. Profile on right is unbounded.

well. The elliptical trajectories are bounded by a limiting heteroclinic orbit joining the two hyperbolic

fixed points (ū, ˙̄u) = (
√
µ, 0) and illustrated in the row above it. There are also unbounded trajectories

for |u| > √
µ (to the left or right of the potential hills) or for u̇ sufficiently large (the velocity is large

enough for the trajectory to escape the potential well).

The bottom row illustrates the spatial analysis point of view, by considering the trajectories as u-profiles.

For µ = −1, the profile has u = −∞ on the left, has an extended phase in the vicinity of u = 0 and then

goes to +∞ on the right. For µ = +1, the profile has ū = −1 = −√
µ on the left and, after a relatively

narrow transition, attains the asymptotic value u = 1 =
√
µ. That is, from the point of view of the

original reaction-diffusion equation, the trajectory (heteroclinic orbit) at µ = +1 is a front connecting

the stable steady states ū = ±√
µ of the spatially homogeneous reaction equation. Figure 8 shows two

more profiles, one periodic and one unbounded, which can also exist for µ = +1.

Figures 7 and 8 show many possible trajectories (from the temporal point of view) or profiles (from

the spatial point of view). Which one occurs is determined by the initial conditions (from the temporal

point of view) or the boundary conditions (from the spatial point of view). For example, for µ = +1,

the boundary conditions u(±∞) = ±1 lead to the profile on the right of figure 7. Periodic boundary

conditions on a domain of fixed wavelength select the periodic profile on the left of figure 8.

Note that the front solutions connect two maxima of −Φ, i.e. hyperbolic – and hence unstable – fixed

points of (47). The reason for this is that these correspond to the stable spatially homogeneous solutions

to the original system (32), as we now demonstrate. Spatially homogeneous solutions ū to (32), i.e.

solutions to
du

dt
= −dΦ

du
(50)
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are extrema of Φ, satisfying dΦ/du = 0. Their stability is determined by

−d2Φ

du2
(ū)

{

< 0
> 0

}

=⇒ ū

{

stable

unstable

}

(51)

Thus, homogeneous stable steady states are maxima of −Φ, with −d2Φ/du2 < 0.

So far, we have only considered the stationary case c = 0. We now focus on the effect of c 6= 0.

We consider a front between u−∞ and u+∞, which are stable solutions to the spatially homogeneous

equations. To do so, we impose boundary conditions

u(ξ = ±∞) = u±∞ (52)

with u±∞ the values at which −Φ attains its maximum values, which we denote by Φ±∞ ≡ Φ(u±∞).
Dirichlet conditions (52) at infinity necessarily imply homogeneous Neumann conditions:

du

dξ
(ξ = ±∞) = 0 (53)

Travelling wave solutions obey

0 = c
du

dξ
− dΦ

du
+

d2u

dξ2
(54)

We multiply (54) by du/dξ to obtain

0 = c

(

du

dξ

)2

− dΦ(u(ξ))

dξ
+

1

2

d

dξ

(

du

dξ

)2

(55)

We integrate over the entire ξ interval, leading to:

0 = c

∫ +∞

−∞

dξ

(

du

dξ

)2

−
∫ +∞

−∞

dξ
dΦ(u(ξ))

dξ
+

∫ +∞

−∞

dξ
1

2

d

dξ

(

du

dξ

)2

= c

∫ +∞

−∞

dξ

(

du

dξ

)2

− [Φ]+∞

−∞
+

1

2

[

(

du

dξ

)2
]+∞

−∞

(56)

The last term in (56) vanishes due to (53), and we obtain

c =
Φ+∞ − Φ−∞

∫ +∞

−∞
dξ

(

du
dξ

)2 (57)

Equation (57) shows that the front velocity is positive if Φ−∞ < Φ+∞, i.e. if −Φ−∞ > −Φ+∞. If the

front velocity is positive, then the front moves from left to right and the domain over which u = u−∞

increases while the domain over which u = u+∞ shrinks. Thus the front moves so as to increase the size

of the domain with greater −Φ. In terms of the mechanical analogy, the trajectory goes from u−∞, with

potential −Φ−∞, to u+∞, with lower potential −Φ+∞. In order for the “velocity” du/dξ, and thus the

kinetic energy, to vanish at both endpoints, energy must be lost via friction. Hence c is positive.

In this context, “negative friction” is possible since c negative merely means that the front moves towards

the left. According to (57), this happens when −Φ+∞ > −Φ−∞, i.e. when the trajectory goes to a

location with higher potential energy.
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Figure 9: Behavior of perturbed Ginzburg-Landau equation. A trajectory leaving the hill on the left

arrives at the higher hill on the right, using “negative friction” to increase its energy. In the phase portait,

it can be seen that the former center has become a focus, surrounded by spiralling trajectories.

Figure 9 illustrates the behavior of the perturbed Ginzburg-Landau equation

0 = c
du

dξ
+ µu− u3 − 0.1 +

d2u

dξ2
(58)

whose potential

−Φ =
1

2
µu2 − 1

4
u4 − 0.1u (59)

has two maxima of different heights. The trajectory goes from the lower hill to the higher hill, increasing

its “energy” via “negative friction”.
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5 Exercises

1. Consider the solution of equation

0 = −dΦ

du
+

d2u

dx2
(60)

for the function Φ(u) shown on figure 10.

Figure 10: Potential −Φ(u).

a. Write (60) as a two-variable dynamical system in (u, v = du/dx). Show that this dynamical system

is Hamiltonian.

b. State the location and the nature of the fixed points of the dynamical system in a.

c. Construct a phase-plane portrait in the (u, v) parameter plane. Include all heteroclinic and homoclinic

orbits.

d. Draw the qualitative form of possible profiles u(x) corresponding to the trajectories in the (u, v) phase

plane. Indicate these profiles on graphs of −Φ(u).

2. Show that the system

ẋ = sin y (61a)

ẏ = x cos y (61b)

is a potential system (and thus has no limit cycles).
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