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Nonlinear flow response of soft hair beds
José Alvarado1, Jean Comtet1, Emmanuel de Langre2 and A. E. Hosoi1*

Weare ‘hairy’ on the inside: beds of passive fibres anchored to a surface and immersed in fluids are prevalent inmany biological
systems, including intestines, tongues, and blood vessels. These hairs are soft enough to deform in response to stresses from
fluid flows. Yet fluid stresses are in turn a�ected by hair deformation, leading to a coupled elastoviscous problem that is
poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear-driven Stokes
flows. We characterize this system with a theoretical model that accounts for the large-deformation flow response of hair
beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers towards the base, widening the gap
through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends
hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to
a rectification nonlinearity. We identify an elastoviscous parameter that controls nonlinear behaviour. Our study raises the
hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the
design of integrated microfluidic components, such as diodes and pumps.

Mechanics has become increasingly soft: research interest in
largely deformable structures has increased over the past
decades. Whereas sti� structures typically deform accord-

ing to linear mechanical frameworks, global deformations of soft
structures often incur geometrical nonlinearities, even while local
strains remain small, in the range of linear response1. One driver
of interest in deformable structures comes from the observation
that deformability characterizes many biological systems2. Studying
the nonlinear deformation of biological structures can supplant
qualitative descriptions with quantitative physical models in a wide
range of systems, such as embryo development3 and microorgan-
ism locomotion4. Mimicking biological behaviour in the lab has
furthermore led to novel engineering designs, such as soft robotic
locomotion5 and anisotropic surface adhesion6.

One prominent example of soft structures in biology is beds
of anchored, elastic fibres (or hairs), which are often immersed in
fluids. Small (⇠1 to 100 µm) hairs coat many biological surfaces.
Examples include brush-border microvilli7, papillae of tongues8,
primary cilia of kidney cells9,10, and hyaluronans of blood vessels’
glycocalyx11–13. These hair beds are usually immersed in fluids, and
su�ciently deformable to bend in response to fluid flow. Seminal
work by Vogel on flexible tree leaves subject to aerodynamic forces
described how fluid stresses induce reconfiguration, or nonlinear
deformations that reduce drag forces14. This work has inspired a
body of research into the reconfiguration of various plants15–17 as
well as idealized systems18–26. However, these studies have been
performed at high Reynolds number (Re), where inertial e�ects
dominate. In contrast, viscous e�ects dominate the physics of
low-Re fluid flows near small biological hairs. We anticipate rich
nonlinear behaviour when deformable solids interact with fluid
viscous e�ects27–29. Yet the reconfiguration problem of hair beds at
low Re remains largely unsolved.

Here we investigate a bio-inspired model system of deformable
hairs subject to low-Re fluid flows. Even though hairs and fluids
are described by linear constitutive properties, we find the flow
response of hair beds can exhibit two types of nonlinearities:
a drag-reducing nonlinearity, which we characterize by the rescaled

flow impedance eZ ; and a rectification nonlinearity, which we find
for angled hairs, and which we characterize by the impedance
ratio Z+/Z� comparing flow with and against the grain. These two
nonlinear responses are functions of the dimensionless parameterev,
which compares fluid and elastic e�ects.

Drag reduction
To investigate the feedback between hair deformation and fluid
flow, we develop an experimental model system of elastomer hairs
immersed in high-viscosity fluids (Fig. 1; Methods). We mount
hair beds onto the inner rotor of a Taylor–Couette geometry
(Supplementary Fig.1; Methods) and determine shear stress ⌧
as a function of velocity v of the hairy surface. Upon first
glance, rheometry experiments appear to exhibit shear thinning
(Fig. 2a). For low velocities up to 0.01m s�1, shear stress ⌧ scales
linearly with v. But at higher velocities, ⌧ deviates from linearity.
We rule out shear thinning of the fluid because we observe
nonlinearity at �̇ = (v/H �L) > 12.5 s�1, well below the fluid’s
known �̇crit =10,000 s�1. Instead, the measured nonlinear response
arises from hair deformation.

To characterize this nonlinear behaviour, we develop a simple
model to illustrate how fluid flow a�ects hair deformation. In
Fig. 1d, we consider a stationary planar surface coated with hairs,
immersed in fluid, and facing a smooth surfacemovingwith velocity
vex and separated by a distance H , measured from the hair base
z = 0. No-slip boundary conditions hold at the moving surface.
We further assume no-slip boundary conditions at the plane z =h
containing hair tips, which holds as long as the hair bed is su�-
ciently dense. The resulting flow profile u(z)=v((z�h)/(H �h))
is equivalent to the Couette problem of shear-driven flow between
two plates—except that stresses from fluid flows cause hairs to
bend (or reconfigure). As a result, the position of the hair-tip
plane h depends on shear stress ⌧ . At the same time, ⌧ depends
on h, because lowering the hair-tip plane increases the gap width
H � h and decreases the shear stress. This interdependency re-
flects the elastoviscous coupling between deformable hair beds and
fluid flows.
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Figure 1 | Physical model of deformable hair beds coupled to
low-Reynolds-number fluid flows. a, Photograph of dry elastomer hairs.
b, Close-up micrograph of individual hairs. Scale bar, 1 mm. c, Schematic
depicting seven relevant physical quantities: hair length L, hair diameter 2a,
hair separation � (or equivalently, hair area packing fraction �⇠=a2/�2), hair
elastic modulus E, fluid viscosity ⌘, channel height H, and wall velocity v.
d, Schematic of hairs bending (‘reconfiguration’) in response to a finite
plate velocity v. Hair backbone is characterized by backbone angle ✓ versus
the curvilinear coordinate s. Hair height is given by h. Graph, right: Couette
flow through a gap of width H�h.

We characterize the e�ect of elastoviscous coupling on the
system’s drag response by introducing the area-specific impedanceZ
(Fig. 2b), defined as:

Z(v)= ⌧ (v)
v

= ⌘

H �h(v)
(1)

Z relates the input velocity to the emergent shear stress of the system.
It is related to the Stokes drag coe�cient Fdrag/v by a surface-area
factor, where Fdrag is the fluid force experienced by the hairy surface.
If hairs are rigid, Z maintains a constant value Z0 and Fdrag ⇠⌧ ⇠v,
as expected for linear Stokes flows (Fig. 2a,b; solid grey line).
Meanwhile, if hairs deform, equation (1) shows that changes in the
impedance will arise due to a purely geometrical contribution h, not
from nonlinear viscous properties. As velocity increases, hairs bend
towards the surface and Z approaches the value Z1 corresponding
to a surface without hairs (Fig. 2a,b, dashed grey line).

To predict the form of Z as a function of v one must specify
how hairs deform. By assuming hairs are packed su�ciently close
together and deform identically, we consider a model of a single
hair with shear stress concentrated at the tip. (We consider in
the Supplementary Information a model where flow penetrates
the hair-bed layer.) The curvilinear coordinate s follows the hair
contour from base (s= 0) to tip (s= L; Fig. 1d). The angle ✓(s)
of the backbone with respect to the surface normal characterizes
the hair’s shape. The position of the hair-tip plane is given by
the functional h[✓(s)]= R L

0 cos(✓(s))ds. Hairs are perpendicularly
anchored at the base (✓ |s=0 = 0) and moment-free at the tip
((d/ds)✓ |s=L =0). In the limit where flow does not penetrate the bed
layer, hairs deform elastically in response to a point force F resulting
from the product of fluid shear stress ⌧ and fibre area⇡�2 = (⇡a2/�).
The force F= (⇡a2/�)⌧ex = (⇡a2/�)(⌘v/(H �h))ex is applied at
the hair tip. Note that the force is singular for � ! 0 or h!H .
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Figure 2 | Reconfiguration of beds of straight hairs. a, Shear stress ⌧ (Pa)
versus velocity v (m s�1) of a cylinder coated with deformable, elastomer
hairs subject to low-Re shear flows. Deviations from linearity show
apparent shear-thinning behaviour. ⌘= 104 cSt, �=0.227. Grey solid line
denotes the rigid-hair limit, dashed line the limit of a cylinder without hairs.
b, Same results as a, but plotting area-specific impedance Z=⌧/v
(kg m�2 s�1). Grey solid line denotes impedance Z0 of weakly deformed
hairs, dashed line Z1 of strongly deformed hairs. c, Rescaled impedance
eZ= (Z�Z1)/(Z0 �Z1) as a function of rescaled velocity
ev= (4⌘L2v/E�a2H)(1� (L/H))�3/2. Experimental results (symbols), model
(black solid line), and scaling behaviour at largeev (black dashed line) agree
for hair beds of varying viscosity ⌘, area packing fraction �, and length L.
d, Schematic of the three response regimes based on the rescaled velocityev.

The former limit, however, is not realized in our model because of
the assumption that hairs are packed close together. The latter limit
corresponds to the scenario where the hair tip comes in contact with
the opposing surface. Force balance along ez yields the following
integro-di�erential equation of equilibrium:

0=EI
d2✓(s)
ds2

+ ⇡a
2

�

⌘v cos✓(s)
H �R L

0 cos✓(s)ds
(2)

with I = (⇡/4)a4 the second area moment of the hair’s cross section.
To gain physical insight, we make predictions of the form of the
impedance when taking limiting values of the plate velocity v.

2

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys4225
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS4225 ARTICLES

10−1

0.2

0.0

0.4

0.6

0.8

100 101 102 103

−0.4

−0.3

−0.2

−0.1

Weakly
deformed

Strongly
deformed

Reconfiguration
F ∼ v1+

F ∼ v F ∼ v

Rescaled velocity, v∼

V
ogel exponent, 

Le
ng

th
 ra

tio
, L

/H v∼ ∼ L/H
1 − L/H

2

Figure 3 | The reconfiguration regime of straight hairs is characterized by
a negative Vogel exponent. Numerically computed contour plot of the
Vogel exponent V (given at low Re by F ⇠v1+V ) as a function of the length
ratio L/H and rescaled velocityev= (4⌘L2v/E�a2H)(1� (L/H))�3/2. Dashed
lines correspond to the boundaries of the reconfiguration regime.
Inset: schematic diagram of the reconfiguration regime (red), which is
characterized by a significantly nonzero Vogel exponent, and thus
anomalous scaling of force versus velocity. This behaviour contrasts the
weakly and strongly deformed regimes (grey), where reconfiguration
is negligible.

In the limit v !1, hairs are strongly deformed as they bend
towards the surface, and thus h tends towards zero (Fig. 2d,
right). Because Z tends towards the constant Z1 in this limit,
we instead determine the asymptotic behaviour of the quantity
eZ= (Z�Z1)/(Z0 �Z1)= (h/H)((H �L)/(H �h)), which we
call rescaled impedance. In the strongly deformed limit h! 0, we
have for the rescaled impedance eZ ⇠ h: hair curvature is localized
to a boundary layer of thickness h near the hair base. This scenario
corresponds to the classical problem of a clamped rod pulled in
an oblique direction and can be solved within the boundary layer
(ref. 1, §4.4.1). The applied bending moment Fdragh⇠vh is balanced
by EI/h (with curvature⇠(1/h)), yielding the prediction eZ⇠v�1/2.

In the opposite limit v ! 0, hairs are only weakly deformed
(Fig. 2d, left) and equation (2) can be solved in powers of v.
Perturbation analysis to second order (Supplementary Information)
yields a rescaled impedance eZ that is predicted to depend on only
one quantity, ev = (4⌘L2v/E�a2H)(1� (L/H))�3/2, which we call
the rescaled velocity.

We compute eZ and test the above predictions by numerically
solving equation (2) (Methods). Indeed, we find eZ ⇠ v�1/2 at high
velocities (Fig. 2c, dashed line). We also find that eZ can be well
approximated by a function of ev alone (Supplementary Fig. 2).
We further test the predictions of our model by performing shear
rheology of immersed hair beds with varying L, �, and ⌘. Rescaling
experimentally obtained Z(v) measurements to eZ(ev) collapses the
data (Fig. 2c, symbols) onto a universal curve that agrees with
our model (solid line). We observe that experimental data for the
longest hairs (triangles) deviates from the model’s prediction at
high velocities. One possible reason for this disagreement may
be that the elastomer hairs have a tapered, three-dimensional
cylindrical shape, which contrasts the uniform, one-dimensional
contours in our model. Although we do account for tapered
contours (Supplementary Information), the hairs’ behaviour at large
deformation is probably sensitive to their actual shape.

The rescaled velocity ev is a dimensionless parameter that
controls the response of hair beds (Fig. 2d). The value ev=1
separates the weakly deformed and strongly deformed limits

(Table 1). The rescaled velocity comprises two dimensionless groups
(4⌘L2v/E�a2H) and L/H , each of which have a physical interpreta-
tion. The dimensionless group (4⌘L2v/E�a2H) is an elastoviscous
parameter that compares fluid and elastic e�ects, and bears some
resemblance to elastoviscous parameters in other studies30–32. There
is a roughly one-to-one correspondence between the value of this
group and hair contour shape (Supplementary Fig. 3). Indeed, hairs
bend more when increasing ⌘, L, or v; or when decreasing E, �, a,
or H . Meanwhile, the ratio L/H of hair length to channel width
expresses the e�ect of confinement on eZ . The length ratio L/H
is related to the impedance ratio (Z0/Z1)= 1/(1�L/H) between
undeformed and fully deformed hairs.

The rescaled impedance eZ is a function of one variable: the
rescaled velocity ev. However, the (dimensional) impedance Z
includes an additional dependence on the length ratio L/H :

Z
Z1

= eZ
L/H

1�L/H
+1 (3)

The longer the hairs (L ! H ), the stronger the e�ect of
reconfiguration (expressed by eZ) on Z . Conversely, if the opposing
surface is far away (H !1), impedance tends to Z1 ! 0. The
latter limiting scenario, which is reminiscent of Stokes’ paradox33,
highlights the importance of confinement due to the channel width
H in this low-Re problem32.

Several studies have investigated the deformation of flexible
solid objects subject to high-Re flows. These studies have
established that deformation typically leads to a reduction of
the drag coe�cient14–19,21–24,26 (although increases have also been
measured22). Changes in the drag coe�cient lead to anomalous
scaling Fdrag ⇠v2+V , where the so-called Vogel exponent V captures
the e�ect of reconfiguration on drag response.

Here we define the Vogel exponent at low Re by the
relation Fdrag ⇠ v1+V , or equivalently, Z ⇠ vV and thus
V = (d logZ/Z1)/(d logev). In the two opposing limits of
undeformed and fully deformed hairs, both of which have constant
impedance, V vanishes. Significantly nonzero Vogel exponents
occur only in a crossover region around ev ⇠ 1, which we call
the reconfiguration regime (Fig. 3). Within the reconfiguration
regime, the Vogel exponent V attains negative values (Fig. 3,
red areas). Negative V corresponds to apparent shear-thinning
behaviour, or equivalently, drag reduction. The boundaries of
the reconfiguration regime are given by the following arguments.
L/H & 1/2 holds, otherwise the constant term in equation (3)
dominates. The weakly deformed assumption breaks down when
ev exceeds one. The strongly deformed regime begins when the
left-hand term in eZ of equation (3) is much less than one, yielding
v1/2 � (L/H)/(1�L/H). Although the value of V varies within the
reconfiguration regime, equation (3) produces V ! �1/2 when
L!1 inside the reconfiguration regime. A numerical computation
of V agrees with this limiting value and the boundaries of the
reconfiguration regime (Fig. 3, dashed lines). The value �1/2 of
the Vogel exponent in our low-Re problem stands in contrast to the
values of �2/3 to �4/3 found in reconfiguration studies at high
Re21,22,24,26. The lower Vogel exponent we find at low Remay indicate
a more limited contribution of reconfiguration to the system’s flow
response compared to the high-Re case.

Rectification
So far we have considered hairs that are anchored perpendicularly to
the surface, with anchoring angle ✓0 =0 (Fig. 4a). This configuration
is invariant to reflections across certain symmetry planes normal to
the surface. Angled hairs, which are anchored subnormally to the
surface with finite ✓0, break reflection symmetry (Fig. 4b). Does the
asymmetry in geometry yield an asymmetric drag response? At high
Re, changing the sign of v a�ects vortex shedding and thus drag
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Figure 4 | Angled hairs break reflection symmetry, both in geometry as well as in drag response. a, Schematic of straight hairs, cantilevered
perpendicularly to the base. This configuration is invariant to reflections about hair axes (dashed line). b, Schematic of hairs anchored at an angle ✓0
with respect to the surface normal, which break reflection symmetry. c, Photograph of elastomer hairs with ✓0 =30�. d, Schematic of angled hairs
bending down in response to flow with the grain. e, For flow against the grain, hairs bend up and decrease the gap through which fluid flows. This results in
an impedance (Z�) that is larger than for flow with the grain (Z+). f, Impedance ratio Z�/Z+ as a function of the rescaled velocity
ev= (4⌘L2v/E�a2H)(1� (L/H) cos✓0)�3/2. Larger values of Z�/Z+ correspond to increased rectification. Experimental results (symbols) and numerical
results (lines) for hair beds of di�erent anchoring angles ✓0 (legend, top left). Hair dimensions satisfy L cos✓0/H=0.47.

Table 1 | Scaling of dynamical quantities.

Weakly deformed Reconfiguration Strongly deformed
eZ⇠v0 Crossover eZ⇠v�1/2

Z⇠v0 Z⇠vV Z⇠v0

Fdrag ⇠v1 Fdrag ⇠v1+V Fdrag ⇠v1

Z�/Z+ ! 1 Z�/Z+ � 1 Z�/Z+ ! 1

response. At low Re, the reversibility of Stokes’ equation dictates
that changing the sign of v would leave Z una�ected—provided
hairs are rigid. It is well known in the context of swimmers at low
Re that flexibility introduces nonlinearities that can break Stokes’
symmetry and allow forward locomotion34. However, it remains
unclear under which conditions, and to what degree, flexibility
results in an asymmetric drag response in the context of hair beds.
In the following, we show that hair beds with a nonzero anchoring
angle ✓0 give rise to an axially asymmetric drag response in the
reconfiguration regime.

To this end, we replace the first boundary condition of
equation (2) with ✓ |s=0 = ✓0. As a result, the quantity ✓0 appears in
the impedances Z0, eZ , and Z/Z1, as well as the rescaled velocity
ev (Methods). We again solve numerically for impedance. We also
modify our manufacturing process to produce hair beds with a
nonzero anchoring angle ✓0 up to 40� (Methods; Fig. 4c). Di�erent
behaviour emerges depending on the sign of the velocity.

When fluid flows in the same direction as hair tilt (flow with
the grain), hairs bend down towards the base. This scenario is
similar to the case of reconfiguration of straight hairs. (Fig. 4d and
Supplementary Fig. 4). As a result, varying ✓0 does not significantly
change the form of eZ (Supplementary Fig. 5), and the Vogel
exponent remains negative (Fig. 5a).

When flowopposes hair tilt (flow against the grain), hairs initially
bend up away from the base (Fig. 4e). Upward bending increases
hair height h and decreases the gap widthH �h. The narrowing gap
implies that impedance against the grain (Z�) is greater compared

to flow with the grain (Z+). This results in positive values of the
Vogel exponent (Fig. 5b). This behaviour occurs until hair height
and impedance approach a maximum, which occurs near ev ⇡ 1.
Further increasing flow velocity causes hairs to bend back towards
the base, and negative Vogel exponents are again recovered. This
behaviour is qualitatively similar to high-Re results in ref. 22.

We express directionality of drag response with the ratio Z�/Z+
(Fig. 4f) of impedances against and with the grain, respectively. This
ratio is identical to one for straight hairs (✓0 = 0). For angled hairs
in the weakly and strongly deformed limits, Z�/Z+ is approximately
equal to one. Only for angled hairs in the reconfiguration regime
does Z�/Z+ exhibit a peak centred near ev⇡1. The maximum value
of this peak depends on L/H and ✓0 (Supplementary Fig. 4b). We
find reasonable agreement between experimental (symbols) and
numerically computed (lines) values of Z�/Z+. However, at high
velocity, we find that experimental values deviate from our model’s
prediction. One possible reason for this disagreement may again
be the tapered, three-dimensional cylindrical shape of hairs, whose
behaviour at large deformation is not captured by our simplemodel.

In our experiments, we attained a maximal peak value of
Z�/Z+ ⇡1.5 with L/H =0.62 and ✓0 =40�. Improved rectification
could be attained by increasing hair length L or anchoring angle ✓0. It
is interesting to note that our simple model encounters a singularity
as h!H , where Z�/Z+ would become arbitrarily large. In reality,
one must consider penetration of flow into the hair bed, which
removes this singularity (Supplementary Information).

Discussion
To summarize, we have shown that beds of deformable hairs
can reconfigure in response to fluid flows. We identified a
dimensionless, elastoviscous parameter ev, which defines di�erent
response regimes. When ev is of order one, hair reconfiguration
results in a nonlinear response. When hairs are straight, or when
fluid flows with the grain of angled hairs, we find a drag-reducing
nonlinear response, characterized by a negative Vogel exponent V .
In contrast, drag-increasing response and positive V occur when
fluid flows against the grain of angled hairs. We were able to
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Figure 5 | The reconfiguration regime of angled hairs is characterized by a Vogel exponent that can attain positive values when flow is against
the grain. a, Numerically computed contour plot of the Vogel exponent V as a function of the length ratio L/H and rescaled velocity
ev= (4⌘L2v/E�a2H)(1� (L/H)cos✓0)�3/2 for hairs with ✓0 =30� and flow with the grain. b, V for flow against the grain. Blue areas denote a positive
Vogel exponent.

probe these nonlinear responses by assuming that shear stress is
concentrated at the hair tip. This simplifying assumption dispenses
with the need to integrate stresses over the entire hair surface, and
allows us to probe beyond the linear regime35.

The drag-reducing response of straight hairs, whichwe described
with the rescaled impedance eZ (see Fig. 2c), provides experimental
evidence that hairy surfaces reconfigure to reduce the shear stress
experienced by the anchoring surface. Hair beds such as the
hyaluronan brushes of blood vessels11,13 or brush-border microvilli
of kidney tubules7 have been implicated in mechanotransduction,
in analogy to experimental systems where hair deflection is used
to sense fluid forces36–41. Our work raises the hypothesis that the
drag-reducing nonlinearity of biological hair beds protects sensitive
mechanotransductive mechanisms from excessive stresses.

Additionally, the drag-reducing and drag-increasing response
of angled hairs amounts to rectification, or an axially asymmetric
flow response, which we express by the impedance ratio Z�/Z+
(see Fig. 4f). Prior studies have shown that control over a
rectification response can lead to the development of diverse
microfluidic components, such as pumps and diodes42–44. Typically,
rectification at low Re is challenging to attain because the governing
Stokes equations are linear and time-reversible. Existing designs
have overcome this di�culty by employing viscoelastic fluids42
or anisotropic surface-wetting properties43,44. The rectification
response we report here instead relies on a geometric nonlinearity,
whose operating range can be controlled by the geometric factors
embedded in ev. The rectification nonlinearity of angled hairs
holds at arbitrarily low Reynolds number and is compatible with
Newtonian fluids and conventional surfaces. Future work could lead
to the design of integrated microfluidic components such as diodes
and pumps.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Hair beds.Hair beds are fabricated based on a previously published protocol45. In
short, we cut a hexagonal array of holes in a clear acrylic sheet using a laser cutter
(VersaLaser, Universal Laser Systems) and cast with polydimethylsiloxane
elastomer (Dow Corning; E=2MPa). Hairs have length L=3.1–5.6mm, diameter
2a⇡0.29mm, and hair separation �=0.50–1.38mm (resulting in area packing
fraction �= (2⇡/

p
3)(a2/�2)⇡0.03–0.3). Hairs have a tapered thickness profile,

which we measure to compute e�ective diameters and lengths (Supplementary
Information). Hair beds are mounted onto the inner cylinder of a Taylor–Couette
geometry (inner radius Ri =15mm, outer radius Ro =22mm, length
Lcyl =42.2mm; N ⇠104 hairs) and immersed in silicone oil (Gelest, viscosity
⌘=103–104 cPs, density ⇢ =970 kgm�3). For angled hairs, we custom-built
supports that hold the acrylic stock at an angle while laser cutting.

Rheometry.Wemeasure torque T as a function of rotational velocity ! using a
magnetic-bearing rheometer (AR-G2, TA Instruments). We then determine shear
stress ⌧ = (T/2⇡LcylR2

base) and velocity v=Rbase!, where Rbase is the radius of the
base of the hairs. The impedance of undeformed hairs Z0 is determined by
computing the mean of Z in a plateau around ev⇡10�1, and
Z1 = c((R2

out �R2
tip)/(R

2
out �R2

base))Z0, where Rout is the inner radius of the outer
cylinder and Rtip is the radius of the tip of undeformed hairs, and c=0.7 a fit
parameter. All radii are taken with respect to the cylindrical axis of the rheometer.
Velocities v=!Ri correspond to Reynolds number Re=⇢vH/⌘=0.001–2. For
Fig. 2c, rescaled velocity v=k(4⌘L2v/E�a2H)(1�L/H)�3/2, with k=2 a fit
parameter, is computed by using e�ective values of L and a
(Supplementary Information).

Numerics.We numerically solve equation (2) with Mathematica (v. 11.0). We first
guess a constant value for the initial hair height h1 =L. Next, we solve for ✓(s) using

the ‘NDSolve’ function of Mathematica (‘Shooting’ method, starting from an
undeformed hair tip). We then compute h2 with the resulting solution, which is
used as a guess for the next iteration. We perform iterations until hi �hi�1

converges to the third decimal.

Impedance for angled hairs. Introducing the parameter ✓0 introduces extra
trigonometric factors in the following impedance definitions:

Z0 =
⌘

H �Lcos✓0

eZ= h
Lcos✓0

H �Lcos✓0
H �h

Z
Z1

=eZ
✓ Lcos✓0
H �Lcos✓0

◆
+1

ev= 4⌘L2v
E�a2H

✓
1� Lcos✓0

H

◆�3/2

Data availability. The data that support the plots within this paper and
other findings of this study are available from the corresponding author
upon request.
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