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The electrostatic interaction between two charged particles is strongly modified in the

vicinity of a metal. This situation is usually accounted for by the celebrated image

charges approach, which was further extended to account for the electronic screening

properties of the metal at the level of the Thomas–Fermi description. In this paper we

build upon a previous approach [M. A. Vorotyntsev and A. A. Kornyshev, Zh. Eksp. Teor.

Fiz., 1980, 78(3), 1008–1019] and successive works to calculate the 1-body and 2-body

electrostatic energy of ions near a metal in terms of the Thomas–Fermi screening

length. We propose workable approximations suitable for molecular simulations of ionic

systems close to metallic walls. Furthermore, we use this framework to calculate

analytically the electrostatic contribution to the surface energy of a one dimensional

crystal at a metallic wall and its dependence on the Thomas–Fermi screening length.

These calculations provide a simple interpretation for the surface energy in terms of

image charges, which allows for an estimation of the interfacial properties in more

complex situations of a disordered ionic liquid close to a metal surface. The counter-

intuitive outcome is that electronic screening, as characterized by a molecular

Thomas–Fermi length lTF, profoundly affects the wetting of ionic systems close to

a metal, in line with the recent experimental observation of capillary freezing of ionic

liquids in metallic confinement.

1 Introduction
Room-temperature ionic liquids (RTILs)1 are a class of materials with broad
promise for energy storage2 and nanolubrication.3,4 Physically, they are solvent-
less electrolytes which remain liquid at room temperature, as the size of the
constituent species competes with the Coulomb interaction to prevent
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crystallization. Electrostatic interactions make such systems strongly correlated,
even in the liquid phase,5 as highlighted by a number of specic properties
exhibited by RTILs, such as layering,6–9 crowding in the double layer,1 and the
recently observed phenomena of long-range electrostatic interactions in RTILs10

and capillary freezing in connement.11 This points to the peculiar interfacial
properties of RTILs, many aspects of which remain puzzling and defy theoretical
understanding. Such properties are however extremely interesting for their
potential to be harnessed for various applications.12–17

In the present paper, our aim is to explore the impact of the substrate elec-
tronic properties on the interfacial properties of RTILs. This is particularly
motivated by our recent experiments, highlighting the solidication of a RTIL in
connement. This was interpreted in terms of capillary freezing at the nanoscale,
which is found to strongly increase as the conductivity of the substrate
increases.11 These experiments point to the electronic properties of the substrate
having an impact on the phase and interfacial properties of RTILs, which remains
to be thoroughly rationalized.

Our goal is to set up the microscopic foundations to explore, e.g. by means of
molecular simulations, the interface between an ionic system and an imperfect
metallic substrate. The latter is modelled at the Thomas–Fermi (TF) level of theory
for electronic screening, which allows us to interpolate continuously between
insulators to ideal metals.18 Modelling of TF interfaces has drawn attention in the
context of metallic and semiconducting junctions48–50 and electrochemistry,
especially work functions involved in adsorption of charges and their congura-
tion at surfaces.45 In particular we build on the pioneering work by Kornyshev
et al.19–21,43 who, in a series of papers, set up the framework to describe electro-
statics near TF walls, and even the two-dimensional crystallisation of charges
along the surface.45,46 Our objective is to obtain – here, at the level of the Laplace
estimate for interfacial tensions22 – an estimate of the electrostatic contribution to
the interfacial energy of an ionic crystal at a TF substrate, which extends outward
perpendicular to the surface.

We accordingly proceed in several steps: we rst derive the analytical expres-
sions for the 1-body and 2-body electrostatic interactions between two ions close
to a TF substrate (Section 2 of the paper); we also propose further manageable and
versatile expressions for the interaction potential, in a form suitable for imple-
mentation in (future) molecular simulations; then using the proposed frame-
work, we calculate the surface energy of 1D, 2D, and 3D ionic crystals close to a TF
wall, as a function of the TF screening length (Section 3 of the paper). Our theory
predicts a lowering of the electrostatic energy of crystals due to the charge
induced in the substrate, with better conductors leading to better charge
screening and lower interfacial energy. We conclude with general perspectives
and extensions of the proposed framework in the context of a number of recent
experimental observations.

2 Electrostatics close to Thomas–Fermi surfaces
2.1 Thomas–Fermi screening and Green function

Thomas–Fermi screening. In electrostatics at the macroscale, any conductor is
seen as an idealized metal which perfectly screens any external charge at innitely
short distances.23 An external charge close to the ideal metal interface induces
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a charge which is conned to the surface. The potential in the exterior of the
metal can be expressed as a sum of the external-charge potential and the potential
of an image charge of equal but opposite sign, mirrored by the surface. Unlike the
surface charge, this image charge is purely a mathematical tool, as any real charge
in an ideal metal is conned to the surface. The ideal metal limit has been treated
in simulations by methods implementing the image charge method and its
renements in multiple fashions.24–26

The perfect screening picture breaks down at the nanoscale as the screening
charge cannot be localized due to the fundamental principles of quantum
mechanics.27 Delocalisation of the screening charge then results in screening at
a nite wavelength for any external charge perturbing the system. The simplest
screening theory, due to Thomas and Fermi, takes into account the competition
between the energy gain due to screening of the external charge and the energy
cost of localising the screening charge, while neglecting further correlations due
to the wave-like nature of (quasi-)electrons.18

Electrostatics under vacuum or in an insulator next to the surface of
a Thomas–Fermi (TF) metal (located in the half plane z < 0) follows the Poisson
equation of electrostatics, stated here as a Green function problem for a point
charge at z ¼ a,

DjI ¼ "Qdðz" aÞdðRÞ
2p303IR

; (1)

and the Thomas–Fermi equation

DjII " kTF
2jII ¼ 0 (2)

where the Thomas–Fermi wavevector kTF ¼ lTF"1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
33IIe2DðEFÞ

p
expresses the

strength of the screening which increases with the density of states at the Fermi
level DðEFÞ (in the zero-temperature approximation). Increased DðEFÞ permits the
electron density to vary more with a lesser effect on the chemical potential of the
local Fermi liquid, thus reducing the cost of localised screening, and reducing lTF.

Green function of a charge close to a TF substrate. The Green function of
a charge Q at distance a from the surface is central to the derivation of the
potential energies and the thermodynamic properties under investigation. The
conguration is shown in Fig. 1. The Poisson equation (1), and the TF equation (2)
govern the electrostatic potential outside, and inside the TF metal, respectively.

The Green function can be calculated using the Hankel transform method.28

The latter is dened as jðz;KÞ ¼
ð
dRRJ0ðKRÞjðz;RÞ, where R is the radial

component along the surface, and K the corresponding wavevector. Applying the
Hankel transformation, the previous eqn (1) and (2) for the Green function read

#
vzz " K2

$
jI ¼ "Qdðz" aÞ

2p303I
; (3)

(vzz " cTF
2)jII ¼ 0, where cTF

2 ¼ K2 + kTF
2. (4)

Boundary conditions at the surface are given by the continuity of the potential
jI(z ¼ 0+) ¼ jII(z ¼ 0") and the electric displacement eld 3I[vzjI](z ¼ 0+) "
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3II[vzjII](z¼ 0")¼ 0. Moreover, the potential vanishes at innity in all directions. The
resulting Green function reads (as shown in various ways in ref. 19–21, 43, 48 and 50):

j.
I ða|z. a;KÞ ¼ Q

4p303IK

%
eþKa þ 3IK " 3IIcTF

3IK þ 3IIcTF

e"Ka
&
e"Kz

j\
I ða|z\a;KÞ ¼ Q

4p303IK

%
eþKz þ 3IK " 3IIcTF

3IK þ 3IIcTF

e"Kz
&
e"Ka

(5)

jIIða|z;KÞ ¼ Qe"Ka

4p303IK

23IK

3IK þ 3IIcTF

eþcTFz; (6)

where the rst term in the brackets corresponds to the potential of the point
external charge, while the other one to the response of the TF surface. Within the
Thomas–Fermi framework, the physical induced charge is proportional to the
potential in the metal

rindða|z;KÞ ¼ "303IIkTF
2jIIða|z;KÞ ¼ " 3IIkTF

2Qe"Kaþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K2þkTF2

p
z

2p
'
3IK þ 3II

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p ( (7)

which replaces the induced surface charge in the perfect metal case due to the
nite screening length in the metal. In the Thomas–Fermi (TF) case, the induced
charge is no longer conned to the surface but decays exponentially with the
distance from it. As shown in ref. 19–21, one remarkable property is that the
lateral extent of the screening cloud scales as 3IlTF/3II. It can therefore spread out
signicantly in cases of a large dielectric contrast between the insulator and the
conductor 3I > 3II.

The full inversion of the Hankel transforms in terms of analytic functions is
not analytically feasible. But they constitute a starting point for an approximation
scheme. In the latter this allows us to express the single-body electrostatic energy
in terms of simple integral expressions, and expand the two-body part in series in
the Thomas–Fermi length lTF. This expansion also yields new physical insights
into the structure of these potentials, for example, that the Green function can be

Fig. 1 Sketch of two charges close to a Thomas–Fermi metal.
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expressed in terms of an image multipole expansion akin to the image charge
expression for the ideal metal.

A numerical inversion of the potential and the induced charge distribution is also
feasible, but not very efficient for simulation purposes where it needs to be repeated
many times for each time step. Below, we therefore propose approximated forms for
the associated electrostatic energy, which can be handled numerically.

2.2 One-body interaction: a single charge close to a TF surface

We start by considering a single, isolated particle close to a at surface. In the case
of an ideal metal, the potential of a charge can be found from the image charge
method,23 and the electrostatic energy U(1)

ideal ¼ "Q2/[16p3I30a] is half of what an
equivalent pair of real charges would yield.23,29

The total electrostatic energy is half the scalar product of the charge density
and the electrostatic potential, split between the induced charge (rind, jTF ¼ jII, z
< 0 support) and the external charge (rcr, jcr ¼ jI, z > 0 support) parts

U ð1ÞðaÞ ¼ 1

2

ðþN

"N
dz

ðþN

0

2pRdRrða|z;RÞjða|z;RÞ

¼ p

ðþN

"N
dz

ðþN

0

dKK ½rindða|z;KÞ þ rcrða|z;KÞ'jða|z;KÞ
(8)

where we used the Plancherel theorem for the Hankel transform to equalize the
direct and reciprocal space integrations. This expression can be used for TF metal

and is equivalent to
ð

V
3jVjj2=2 because we treat the electrostatics of the system in

the whole space and we have no explicit surface charges.23

The resulting expressions for U(1)(a) are obtained in terms of an integral I ext

over the dimensionless variable l ¼ Ka

U ð1ÞðaÞ ¼ " Q2

16p303Ia
ð1" I ext þ 3II indÞ; where (9)

I extðkTFa; 3I=3IIÞ ¼
ðþN

0

dl
4ð3I=3IIÞle"2lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ ðkTFaÞ2
q

þ ð3I=3IIÞl
(10)

I indðkTFa; 3I=3IIÞ ¼
ðþN

0

dl
2ðkTFaÞ2le"2l)

ð3I=3IIÞlþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q *2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q : (11)

I ext goes to unity for the insulating limit (kTF ¼ 0, 3I ¼ 3II) and vanishes for the
ideal metal (kTF / N). I ind vanishes in both limits. The detailed derivation can be
found in the Appendix A. The total energy reads accordingly U(1) ¼
U(1)
ext + U(1)

ind, separating the two induced and external contributions

Uð1Þ
ext ¼ " Q2

16p303Ia
ð1" I extÞ and Uð1Þ

ind ¼ " Q2

16p30a
I ind. The integral expression I ext

was rst given in ref. 43 and 50, while we are not aware of I ind being discussed in the
literature. In Fig. 2 we show the integrals and their inuence on the total one-body
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energy U(1). The energy is thus expressed in terms of a single-parameter integral with
fast convergence due to the exponential decay of the integrands.

The reduction in energy of a charge close to the metal comes from the lowered
electric eld density, as the grounded surface only permits dipolar terms at long
distances; the presence of the resulting electric eld only in a half-space also
explains why image charges contribute only half the energy when interacting with
real charges. The one-body contribution U(1)(a) for TF metal thus interpolates
between this value and the insulator limit.

At distances a [ lTF ¼ kTF
"1, the TF potential energy approaches the ideal

metal value U(1)
ext(kTF ¼ N). But differences become apparent at shorter distances.

Indeed the ideal metal energy diverges as a becomes small, due to the induced
surface charge being localised laterally at distances comparable to a. But it is
nite in the TF case, because the induced charge always has the extent of lTF, thus
providing a natural ultra-violet cut-off for the energy. Moreover, there is an
additional energy term U(1)

ind associated with the induced TF charge in the metal.
This term vanishes at the ideal metal limit, as the charge is conned to the surface
and occupies no volume. It also vanishes at the insulator limit, where no charge
can be induced. This induced charge energy contributes the most for interme-
diate distances a ( lTF.

From a practical point of view, e.g. for simulation purposes, we propose a more
tractable expression for the interaction energy, in terms of rational functions.
Such a rational function was among approximations for U(1)

ext proposed in ref. 44,
which focused on the role of dielectric contrast. Here we x 3I ¼ 3II ¼ 1 and
approximate the integrals in eqn (10) and (11) to a higher degree of accuracy using
a seven-parameter approximation of U(1)(a), reading

Fig. 2 (a) Dependence of integrals I on the dimensionless distance to surface a/lTF ¼ kTFa;
the TFmetal behaves like ametal at long distances and like an insulator at short distances. The
integrals represent the relative magnitude with regards to U(1) at the ideal metal limit lTF ¼ 0.
Iext and I ind are associated with the external charge and the charge induced in the metal,
respectively. Note the sign inversion for clarity. (b) The single-body electrostatic energy U(1) ¼
U(1)
ext + U(1)

ind as a function of distance a for fixed lTF¼ 1 Å. The finite screening length lTF assures
that U(1) has a finite value at the surface, unlike the divergence in the case of an ideal metal
Uideal. For all quantities shown, we impose no dielectric contrast (3I ¼ 3II ¼ 1).
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U ð1ÞðaÞx" Q2

16p30a

)

"

1" 13:8879ðkTFaÞ3 þ 37:4625ðkTFaÞ2 þ 18:6940ðkTFaÞ þ 1

27:8648ðkTFaÞ4 þ 73:0987ðkTFaÞ3 þ 70:3460ðkTFaÞ2 þ 20:6754ðkTFaÞ þ 1

#

(12)

with a maximal relative error of less than 10"5. We give details of the tting
procedure in the Appendix A.

2.3 Two-body interaction: two interacting charges close to the TF surface

The surface also mediates additional interactions between charges, as the
induced charge on the surface also acts on other external charges. We split
the electrostatic potential energy due to the two-body interaction into three
parts

U(2)(r1,r2) ¼ U(2)
Coul(r1,r2) + U(2)

ext(r1,r2) + U(2)
ind(r1,r2), (13)

where the individual parts represent the following interactions:
* U(2)

Coul ¼ Q1Q2/(4p303I|r1 " r2|) is the direct Coulomb interaction between the
two charges.

* U(2)
ext is the interaction of the charges with the charge induced in the TF

boundary by the other charge. In the case of ideal metal this can be represented as
half the Coulomb energy of each charge with the image charge of the other.

* U(2)
ind is the electrostatic energy of a charge distribution induced by one charge

(and located in the vicinity of the interface inside the TF conductor) within the
potential of the other.

As in eqn (8), the energy U(2) is a convolution of charge distribution with the

potential. The terms U(2)
ext and U(2)

ind are of the form ð1=2Þ
ð ​
ðjð2Þr

ð1Þ
ind þ jð1Þr

ð2Þ
indÞ,

comprising two contributions each. However, the two terms are equal, and we

need to calculate only one of them,
ð ​
jð2Þr

ð1Þ
ind. Altogether, the formal expressions

for the two terms U(2)
ext and U(2)

ind are obtained as:

U
ð2Þ
ext ðr1; r2Þ ¼

Q1Q2

4p303I

ðN

0

dKJ0
'
K
+++rðkÞ1 " r

ðkÞ
2

+++
( 3IK " 3II

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p

3IK þ 3II
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p e"Kðz1þz2Þ; (14)

where r(||) denotes the projection of r parallel to the surface. And, using eqn (6)
and (7), one has

U
ð2Þ
indðr1; r2Þ ¼

1

2

ð
drrindðr2|rÞjIIðr1|rÞ

jIIðr1|rÞ ¼
Q

2p30

ðN

0

dKJ0
'
K
+++rðkÞ " r

ðkÞ
1

+++
( Keþz1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K2þkTF2

p
e"Kz

3IK þ 3II
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p

rindðr2|rÞ ¼ "3IIkTF
2Q

2p

ðN

0

dKJ0
'
K
+++rðkÞ " r

ðkÞ
2

+++
( Keþz2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K2þkTF2

p
e"Kz

3IK þ 3II
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p

(15)
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Formally, these terms can be presented once again as inverse Hankel transforms,
but we could not succeed in inverting the integrals analytically. To proceed further,
we explore the far-eld behavior by formally expanding the integrals in powers of the
TF length, lTF, in the equivalent of a multipole expansion. This allows us to inves-
tigate the limit where lTF is nite, but small, corresponding to a good, but not ideal,
metal.

In order to simplify notations, we consider in the following a pair of charges Q1

and Q2 at respective positions r1 ¼ [x1, y1, z1] ¼ [0, 0, a] and r2 ¼ [x2, y2, z2] ¼ [d, 0,
b]; see Fig. 1 and 3a for sketches of this coordinate system used in deriving the
two-charge energy terms.

“Image charge” contribution U(2)
ext. The integral in eqn (14) closely resembles

inverse transforms of functions of the type KMe"Kz, which can be resolved
analytically. Thus, expanding the integrand in powers of lTF, the resulting
expansion in real space is a multipole series centred at the image charge location
r01 ¼ [0, 0, "a], with the distance between the image multipole and the charge

being rim ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðaþ zÞ2

q
. This yields immediately:

U
ð2Þ
ext ðr1; r2Þ ¼

Q1Q2

8p303I

"

" 1

rim
þ 23I

3IIkTF

cos j

rim2
" 23I

2

ð3IIkTFÞ2
3 cos2 j" 1

rim3

þ
3
#
23I

3 " 3I3II
2
$

ð3IIkTFÞ3
5 cos3 j" 3 cos j

rim4
þO

)
1

kTF4rim5

*#

; (16)

where cos j¼ (a + b)/rim; see Appendix B for details. The series is convergent for
rim > lTF, which we nd by comparing it with the expansion of the single body
term U(1)

ext. For practical implementation, a large margin rim > 2lTF is suitable.
Altogether, this means that the image charge is replaced by an image multipole
series at long distances. We note that the multipole expansion constitutes an
alternative derivation of the previously observed strong lateral dependence of
the potential along the surface,19,43 as evidenced by the dipolar term scaling as
lTF3I/3II.

“Induced charge” contribution U(2)
ind. The integrals in eqn (15) for the two-body

potential energy of the induced charge distribution cannot be expanded via the
same method as for U(2)

ext, because cTF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p
appears in the exponential in

the integral expressions for the potential and induced charge, see eqn (15): the term
ecTFz has an essential singularity at lTF / 0 and as such does not allow for an
expansion in lTF.

However one may remark that physically, any perturbing charge is screened
at the Thomas–Fermi length lTF ¼ 1/kTF, and similarly, the external potential
will decay exponentially away from the surface over a length lTF. The charge
distribution can thus be approximated by projecting the charge along the z-axis
onto a single plane, and placing this at distribution at the surface. This
approximation amounts to the assumption that the induced charge varies in
a thin layer, and moreover in a slow and controlled fashion; it follows that it is
valid at distances larger than TF length and its relative error scales as
min(a,b)/lTF.

We approximate accordingly the induced charge as an innitesimally thin
layer rappind (z,R) ¼ sind(R)d(z).
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Fig. 3 (a) The coordinate system used in the main text to derive U(2). (b–g) Electrostatic
two-body energy terms U(2)

ext (panels b, d and f) and U(2)
ind (panels c, e and g) due to the

presence of TF metal, with examples given for lTF ¼ 0.5 Å (b and c), lTF ¼ 1 Å (d and e), and
lTF ¼ 2 Å (f and g). The charges are placed at [0, 0, a ¼ 1 Å] and [d, 0, b], respectively. Only
absolute values are plotted, and both terms are of the opposite sign to the direct Coulomb
interaction, i.e. positive for q1 ¼ "q2 ¼ e. At long distances, Uext converges to the image
charge picture of the ideal metal limit, while U(2)

ind decays as b
"2 perpendicular, and as d"3

parallel to the surfacewith a shape that represents the lateral extent of the induced charge.
The dashed white line corresponds to b ¼ 2lTF, giving an estimate of the convergence of
the series for U(2)

ext and U(2)
ind, as the series represents a long-range limit.

Paper Faraday Discussions

ART ! C6FD00256K

This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, xx, 1–30 | 9

1

5

10

15

20

25

30

35

40

45

50



sindðRÞ ¼ b

ð0

"N
dzrindðz;RÞ ¼ "b

kTF
2Q

2p

ð0

"N
dz

ðN

0

dKJ0ðKRÞ
3IIKeþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K2þkTF2

p
ze"Ka

3IK þ 3II
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p

¼ "b
Q

2p

ðN

0

dKJ0ðKRÞ
3IIkTF

2Ke"Ka'
3IK þ 3II

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p ( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p :

(17)

Because the projection is not an exact procedure, we introduce a scaling factor,
b which we will x a posteriori by examining some exact limiting cases.

This form can now be subject to the expansion in the Thomas–Fermi length lTF
resulting in

sindðrim;jÞ ¼ "b
Q

2p

%
cos j

rim2
" 3Ið3 cos2 j" 1Þ

3IIkTFrim3
þ

3
#
3I

2 " 3II
2
$
ð5 cos3 j" 3 cos jÞ

3II2kTF2rim4

þO
)

1

kTF3rim5

*&
; for r confined to the planeðz ¼ 0Þ:

(18)

Along the same lines, in the thin layer approximation the potential writes

jIIða|R; zÞxkTF
Q

2p3II30kTF2

"
cos j

rim2
" 3Ið3 cos2 j" 1Þ

3IIkTFrim3

þ
3
#
3I

2 " 3II
2
$
ð5 cos3 j" 3 cos jÞ

3II2kTF2rim4
þO

)
1

kTF3rim5

*#

(19)

This term scales with the dielectric contrast lTF3I/3II, paralleling eqn (16).
Combining these two contributions provides an expansion in powers of 1/kTF.

Focusing here on the lowest order term, proportional to 1/kTF, the corresponding
“dipolar” term of the convolution of sind and jII reads in the coordinate system
introduced above:

U
ð2Þ
indða; b; dÞx" bQ1Q2

8p3II30kTF

1

p

ðN

0

dR

)
ð2p

0

dc
Ra

ða2 þ R2Þ3=2
b

ðb2 þ d2 þ R2 " 2Rd cos cÞ3=2
þO

)
1

kTF2

*

¼ " bQ1Q2ab

8p3II30kTF

1

p

ðN

0

dR

4R3

 
4dR

b2 þ ðd þ RÞ2

!

ða2 þ R2Þ3=2
'
b2 þ ðd " RÞ2

('
b2 þ ðd þ RÞ2

(1=2

þO
)

1

kTF2

*
(20)

where 3 is the complete elliptic integral. This integral is not expressible in a closed
form, but converges quickly due to its d"5 asymptotics.

Interestingly, for the specic case of d / 0 and a ¼ b (same axis), the
expansion for U(2)

ind converges to a nite value which can be obtained readily as
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U
ð2Þ
indða; b ¼ a; d ¼ 0Þ ¼ " bQ2

16p3II30a

"
1

kTFa
" 23I

3II

1

ðkTFaÞ2
þO

)
1

kTF3

*#

: (21)

This corresponds to two coinciding charges and this should match the cor-
responding series for the self-energy term U(1)

ind in eqn (9), which is shown to
behave as

U
ð1Þ
indðaÞ ¼ " Q2

16p30a

"
1

2kTFa
" 3I

3II

1

ðkTFaÞ2
þO

)
1

kTF3

*#

: (22)

So the comparison between the two expressions conrms the thin layer
expansion as a valid approach, and allows the scaling factor b to be xed to a value
b ¼ 3II/2.

Altogether, and to the lowest order in kTF
"1 (“dipolar contribution”), we

accordingly obtain the expression:

U
ð2Þ
indða; b; dÞx" Q1Q2

16p30kTF

1

p

ðN

0

dR

4Rab3

 
4dR

b2 þ ðd þ RÞ2

!

ða2 þ R2Þ3=2
'
b2 þ ðd " RÞ2

('
b2 þ ðd þ RÞ2

(1=2

þO
)

1

kTF2

*
:

(23)

This leading term decays as b"2 perpendicular, and as d"3 parallel to the
surface (see Fig. 3); the subsequent corrections are of higher order in the charge
distance. Better apparent from the expression (14), UTF(a,b,d) is a function of a +
b and d only. It can again be well approximated by rational functions of these
variables, thus allowing for a more efficient evaluation in molecular simulations.
This expression is provided in the Appendix B.

We nally mention that higher order terms in 1/kTF2, . can be obtained by
combining corresponding terms in eqn (18) and (19). We however leave these
technical but straightforward calculations for future work.

Summary: total electrostatic interaction. The expression for the total electro-
static interaction potential, expressed formally in eqn (13), can be obtained as the
sum of the coulombic interaction, U(2)

Coul ¼ Q1Q2/(4p303I|r1 " r2|), and two
contributions resulting from image and induced charges, U(2)

ext and U(2)
ind. Analytical

expressions for these interaction energies can be obtained in the limit of small TF
length, lTF (or large kTF) in terms of amultipole-like expansion. The corresponding
expressions are obtained in eqn (16) and (23). It is provided at the lowest (dipolar)
order in 1/kTF for U(2)

ind. Higher order terms can be obtained by going up in the
expansion. They constitute practical expressions which can be used to calculate
the many-body electrostatic energy of multiple charges in interaction, when
located in the vicinity of a TF metal.

Altogether, the electrostatic interaction potential is plotted in Fig. 4 for various
distances and TF lengths.
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3 The one dimensional ionic crystal and the role
of electronic screening in interfacial energy
The previous calculations do show that the interaction of charges in the vicinity of
a TF substrate can be formally complex and non-trivial. In this section, we use the
previous framework on a simplied one dimensional crystal system. This allows
us to gain many physical insights into the behavior of the TF screening and will
provide explicit expressions for the electrostatic contribution to the crystal-
substrate surface tension, as a function of the electronic structure of the walls.

We consider a one-dimensional electroneutral crystal of N/2 cations and N/2
anions with a TF boundary. The inter-ion lattice spacing is denoted as a and the
crystal charge distribution reads

rðNÞ
cr ðz; RÞ ¼

XN

n¼0

ð"1Þn Qdðz" ðnaþ hÞÞdðRÞ
2pR

: (24)

Fig. 4 The total electrostatic energy of two-charge configurations at [0, 0, a¼ 1 Å] and [d,
0, b] for lTF ¼ 0 (a), lTF ¼ 0.5 Å (b), lTF ¼ 2 Å (c), and lTF ¼ N (d). The long-range dipolar
character from the ideal metal case is preserved for small TF lengths, while the absolute
values shift. This is representative of the perturbation approach we take. The dashed white
line corresponds to b ¼ 2lTF, giving an estimate of convergence of the series.
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Here h is the shi of the rst layer close to the wall; in the following we will mostly
focus on the case where h ¼ a/2.

From a technical point of view, calculating energies of such long-range inter-
acting crystals requires precise denition of the convergence of the sums
involved.30 One of the key observations is that boundary conditions need to be
imposed even for an innite system,31 resulting in surface energy terms for pairs
of boundaries that cannot be disentangled to single boundary values. We analyze
carefully the meaning of these surface terms, and use this framework to discuss
surface energy and disjoining pressure.32

3.1 Surface tension of an ionic crystal close to an insulating surface

The electrostatic energy of a crystal with nite thickness N, immersed in
a dielectric with relative permittivity 3I can be calculated as

UðlTF/N;NÞ ¼ Q2

4p3I30a

XN

n¼1

Xn"1

m¼1

ð"1Þn"m

n"m

¼ Q2

16p3I30a

%
"4N ln 2þ 2" 1

N
þO

#
N"3$

&
; (25)

where we recall that a is the inter-ion lattice spacing. The sum is conditionally
convergent, but we calculate the asymptotics by xing the physical order of
summation given by adding pairs of positive and negative charges. The potential
energy per particle converges to the Madelung constant 3Mad ¼ "Q2 ln 2/4p3I30a
for N / N.

The surface energy for a crystal–insulating wall interface is then identied as

gins ¼ gðlTF/NÞ ¼ Q2

8p3I30a
(26)

and for large lm thickness, D¼ Na, this value is approached with a long range 1/
D correction as

W ðlTF/N;D[aÞ ¼ gins "
Q2

16p3I30D
þ. (27)

Several remarks are in order. First, the nite thickness correction to the surface
energy (corresponding to an insulator–crystal–insulator interface) is shown to
vanish with the inverse thickness D"1 and is therefore of considerably long range,
longer than van der Waals interactions which decay with D"2. Furthermore the
electrostatic nature of the interaction leads to typical surface energies in the order
of Q2/16p3I30a3 (normalizing by an elementary area a2). For a ¼ 3 Å, a typical
inter-ion spacing in ionic liquids, this yields large values for the surface energy, of
the order 2 J m"2, comparable with the adhesion energy of two metals.32 This is
also much higher than the typical surface energy of a free ionic liquid interface,
which is of the order of 50 mJ m"2.33

3.2 Surface tension of an ionic crystal close to a perfect metal surface

Wenow consider the situation of an ionic crystal with nite thickness sandwiched
between a perfect metal surface on one side and a dielectric semi-innite medium
on the other. The potential energy of each charge in the crystal gains an additional
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term, expressed as an interaction with image charges, although with half the
energy of interaction with a real charge.23,29

The energy can be summed to yield

UðlTF/0;NÞ ¼ Q2

4p3I30a

"
XN

n¼1

Xn"1

m¼1

ð"1Þn"m

n"m
þ 1

2

XN

n¼1

XN

m¼1

ð"1Þnþm"1

nþm" 1

#

¼ Q2

16p3I30a

%
"4N ln 2þ 1" 1

4N
þO

#
N"3$

&
:

(28)

Subtracting the Madelung contribution, N ) 3Mad, one obtains the surface
energy for a crystal–metal wall interface as

gmetal ¼ gðlTF/0;N[1Þ ¼ Q2

16p3I30a
(29)

Again this value for the energy is reached asymptotically – in this metal–
crystal–dielectric geometry – with a long range correction scaling like the inverse
lm thickness

WðlTF/0;DÞ ¼ gmetal "
Q2

64p3I30D
þ. (30)

(again with D ¼ Na the lm thickness).

3.3 Surface tension of an ionic crystal close to a TF surface

Beyond these limiting situations, we now consider the more complex case of ionic
crystals at the interface with a TF wall.

The expression of the energy is a charge–potential convolution, of the same
form as for the one-body energy, eqn (8). We will use the ideal metal limit as
a reference for the energy, as it greatly simplies the calculations. Following the
same procedures as in the previous section, the Hankel transform of the resulting
“excess” potential of the nth charge is

djIðnaþ h|z;KÞ ¼ jIðz;KÞ " jmetal
I ðz;KÞ ¼ Q

4p303IK

23IK

3IIcTF þ 3IK
e"KðnaþhÞe"Kz

djIIðnaþ h|z;KÞ ¼ jIIðz;KÞ " jmetal
II ðz;KÞ ¼ Q

4p303IK

23IK

3IIcTF þ 3IK
e"KðnaþhÞeþcTFz:

(31)

Differently to the metal case, the bulk Madelung term cancels out and this
allows us to calculate directly the surface energy, g(lTF,N). A straightforward
calculation shows that the latter can then be written as the sum of three terms:

g(lTF,N) ¼ g(lTF ¼ 0,N) + gext(lTF,N) + gind(lTF,N). (32)

The “external charge” contribution gext(lTF,N) involves a double sum evaluating
N contributions to the potential at N point charge positions. This yields
a geometric sum, which can be brought under the integral to give
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gextðlTF;NÞ ¼ Q2

8p303I

ðþN

0

dK
23IK

3IIcTF þ 3IK
e"2Kh

XN"1

n¼0

XN"1

m¼0

#
"e"Ka

$nþm

¼ Q2

16p303Ia

ðþN

0

dl
4ð3I=3IIÞl

ð3I=3IIÞlþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q
e"2lðh=aÞ

#
1þ ð"1ÞNe"Nl

$2

ð1þ e"lÞ2
:

(33)

On the other hand, the energy shi due to the induced charge can be written as

gindðlTF; NÞ ¼ "p303IIkTF2

ð0

"N
dz

ðþN

0

dK

"
XN

n¼0

djIIðnaþ h|z;KÞ

#2
K

¼ " Q2

16p30a

ðþN

0

dl
2lðkTFaÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q %
3I

3II
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q &2
e"2lðh=aÞ

#
1þ ð"1ÞNe"Nl

$2

ð1þ e"lÞ2
:

(34)

Fig. 5 The surface energy of a one-dimensional crystal close to the TF interface, as
a function of its thickness N. (a) Schematic representation of the one-dimensional crystal
and its limits. A crystal close to a metallic interface has a substantially lower energy than
that close to an insulator, and TF theory interpolates between the two. (b) The surface
energy g as a function of crystal thickness N, for various TF lengths lTF. The surface energy
is adimensionalized by Q2/(16p303Ia). The dashed and dash-dotted lines show the ideal
metal limit (lTF ¼ 0), and the insulator limit (lTF / N), respectively. (c) Dependence of the
surface energy (N ¼ N) versus the TF length.
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where we recast the integral into a dimensionless form.
The surface tension gTF(lTF) is obtained as the limit of this surface energy when

N ¼ N and it takes the expression:

gTFðlTFÞ ¼
Q2

16p3I30a
Fða=lTFÞ (35)

where F ða=lTFÞ ¼ ½1þ GextðlTF;NÞ " GindðlTF;NÞ' and Gext and Gind are the
integrals in eqn (33) and (34), respectively, taken here in their N ¼ N limit.

We plot in Fig. 5b the dependence of the surface energy as a function of
number of layers N for various TF lengths lTF. In Fig. 5c, we then plot the
dependence of gTF(lTF) as a function of the TF length lTF. This plot highlights that
the TF interpolates smoothly between the insulating and ideal metal cases, as the
TF length is varied between innity and zero.

It is also interesting to extract the dependence of the electrostatic energy as
a function of the number of layers N, i.e. the crystal thickness D ¼ Na. Such an
expansion can be derived from the evaluation of a dipolar Ewald sum equivalent
to eqn (28), yielding

U(lTF;D) ¼ N ) 3Mad + W(D) (36)

where the interfacial energyW(D) of the TFmetal–crystal–dielectric sandwich now
writes

WðDÞ ¼ gTFðlTFÞ "
Q2

256p3I30D
" 7Q2lTF

128p3I30D2
þO

#
D"3$; (37)

As for the perfect metal and insulating cases, the rst correction to the surface
tension scales as a long-range 1/D term. But an interesting remark is that the thick
lm expansion for the crystal–TF metal interface reveals also the emergence of
a term proportional to D"2 which is absent in both ideal metal and pure insulator
cases. This term is akin to an attractive van der Waals potential, both in structure
and in origin, as it follows from the interaction of charges with their image
dipoles. It can be written in terms of a Hamaker constant for the TFmetal–crystal–
dielectric system, and takes the expression:

ATF"C"D ¼ 21lTFQ
2

32303Iak2
; (38)

where TF–C–D stands for the TF metal–crystal–dielectric sandwich; we
assumed that the lateral surface area corresponding to the one-dimensional
crystal is a||

2, the lateral size of the elementary cell. This yields ATF z 5 )
10"18 J for typical values a|| ¼ 2 Å and lTF ¼ 1 Å. So not only is the TF Hamaker
contribution long-ranged, but it is of unusually high magnitude with this
interfacial conguration.

3.4 Comparison to the direct numerical summation

As a nal check for the previous approach, we compare in this section the exact
result for the metal–crystal surface tension, in eqn (35), to the direct numerical
summation of one body and two body interactions on a 1D crystalline structure,
which are calculated using the TF formalism above. As described above, we
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consider accordingly a one-dimensional electroneutral crystal of N/2 cations
and N/2 anions (with position zn, n ¼ 1, ., N) at the interface with a TF metal
wall.

The total energy is calculated via the direct summation of one-body and two-
body interactions between ions.

UðNÞ ¼
X

i

U ð1ÞðziÞ þ
1

2

X

isj

U ð2Þ#zi; zj
$

(39)

where the expressions for U(1) and U(2) are given previously. Note that previously,
we limited ourselves to a rst order (in 1/kTF) expression for U(2). This implies that,
in order to be consistent, we only keep terms up to the dipolar order (linear in
kTF

"1) in both expressions of U(2)
ext and U(2)

ind in eqn (16)–(23). The surface tension is
deduced from the expression

gTF ¼ lim
N/N

½UðNÞ "N ) 3Mad' (40)

and in Fig. 6, we compare the exact result in eqn (35) to the direct numerical
summation using the one body and two body interactions calculated over the ion
structure. Note that the surface tension is made dimensionless according to

gTF ¼ Q2

16p30a
) ~gTF. As expected, both results are shown to match for kTFa [ 1.

Typically a 10% agreement is found for kTFa > 1.3. This comparison therefore
validates the previous framework developed for the calculation of TF interactions.

We conclude with two remarks. First, the agreement can be in principle
improved by expanding the two-body interaction term further in powers of
kTF

"1. We leave this development for future work. Second the results can be
easily extended to higher dimensions. We have used the previous framework
with approximated forms for the one-body and two body interactions to

Fig. 6 Comparison of the 1D metal–crystal surface tension, from eqn (35) (green line),
versus the direct summation of one body and two body interactions, from eqn (40) (blue
line). As discussed in the text, the latter are calculated to first, dipolar, order in kTF

"1. A 10%
agreement is found for kTFa > 1.3. The surface tension is made dimensionless as ~gTF ¼ gTF/
[Q2/16p3I30a]. The horizontal dashed lines are the 1D limits for insulating walls (~gins ¼ 2,
top) and perfect metals (~gid.met ¼ 1, bottom). Two- and three-dimensional crystals (dotted
lines) can be rescaled to closely follow the 1D energy function F , as shown in (b). The
rescaling parameters are ~gins ¼ 2~gid.met x 0.46, Cx0:39 for 2D square lattice, and ~gins ¼
2~gid.met x 0.26, Cx0:26 for 3D cubic lattice.
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calculate the energy in 2D and 3D semi-innite system, from which we extract
the surface energy according to eqn (40). In Fig. 6, we show the numerical
estimate of the surface tension in 2D and 3D as a function of the TF screening
parameter, kTF. According to the theoretical framework (and in line with the 1D
results), we expect that the results are valid for sufficiently large TF screening
parameter, kTFa[ 1 with a the lattice spacing. Independently, the calculations
can also be performed for an insulating substrate, i.e. kTF ¼ 0. An interesting
result is that whatever the dimension, we nd that the surface tensions for the
perfect metal and insulating cases obey ~gins ¼ 2~gid.met. Here ~gins ¼ 2~gid.met x
0.46, for the 2D square lattice, and ~gins ¼ 2~gid.met x 0.26, for the 3D cubic
lattice. This result calls for further analytical investigations. Finally, another
interesting result highlighted in Fig. 6b is that the surface tensions for the 2D
and 3D cases follow the same general scaling form versus kTF as the 1D case, up
to a simple rescaling: F 2D;3DðkTFaÞxF 1DðC2D;3D ) kTFaÞ, with F 1D given in eqn
(35) and the rescaling constants provided in Fig. 6. This result highlights the
fact that although simplied, the 1D geometry captures the physics involved in
more complex interaction behavior with larger dimensions. We leave more
detailed calculations of surface tensions for a more exhaustive study involving
nite-temperature calculations using molecular simulations.

4 Towards the wetting properties of ionic liquids
and crystals on metals
In this section we build on the previous results to discuss physically the relative
wetting of ionic liquids versus ionic crystals on metallic substrates.

This is motivated by our recent experimental results,11 which point to the
capillary freezing of ionic liquids in connement. These experiments highlight
the impact of the metallicity of the conning substrate to facilitate solidication
in a conned geometry. Capillary freezing can be interpreted in terms of the shi
of the freezing transition induced by surface wetting: while the stable phase in the
bulk is the ionic liquid, surface terms may become predominant in connement,
favoring the thermodynamically less favored phase, which here is the crystal. This
mechanism is summarized by the so-called Gibbs–Thomson relationship
accounting for freezing in connement.11

At the core of this experimental result, the key question is to understand the
relative wettability of the crystal phase of the ionic system versus its liquid phase.
Our results above provide some key information on the wetting behavior of the
crystal phase. However, calculating analytically the surface tension for the ionic
liquid at a metal surface remains a tremendous task. Still, the high correlation
existing in an ionic liquid would suggest that the interfacial energy should behave
in quite a similar way to that of the crystal.

In the following, we discuss a simple framework allowing us to predict the
scaling behavior for the surface wettability of ionic systems on a metal, by taking
inspiration from the previous results for the crystal.

4.1 Approximated scaling of surface energies of crystals and liquids

Our approach is based on the following observation for the energetics of the ionic
crystal: the transition between metal and insulator follows a remarkably similar
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function for the single-body potential energy U(1) in eqn (9)–(11) and for the
surface tension gTF of the 1D crystal in eqn (33) and (34). This result is not
coincidental and can actually be read directly from the detailed denitions of
these terms, in terms of their integral expressions which are remarkably similar –
compare eqn (9)–(11) with eqn (33) and (34). Graphically, this is also evidenced by
comparing Fig. 5c and 2a.

Combined with the re-scaling of 2D and 3D surface tensions to match them
with the 1D crystal function in Fig. 6, this allows us to propose that the surface
tension follows a general scaling form

gTF
cr " gins

cr x rcr ) a ) U(1)(lTF,a) (41)

where ginscr is the surface tension with the insulating wall, here considered as
reference.

But beyond the mathematical coincidence, the physical meaning behind
this simple approximated form is simple and transparent. It shows that the
dominant part of the surface energy originates in the interaction of ions in the
vicinity of the walls with their image charges – via U(1). These contributing
charges are typically at a molecular distance a from the surface – as evidenced
by eqn (41) – their interaction energy scales accordingly with their number Ncr

( a ) rcr. The contribution of the layers beyond a molecular distance a is
screened out due to the compensation of near charges due to electroneutrality.
This simple result is quite remarkable in the sense that it captures the main
behavior for a complex interface between a dense and strongly interacting
phase and an imperfect metal.

We note that this approximation of the surface tension curves corresponds
to a situation where all of the individual surface-mediated interactions decay in
a common way with the strength of the screening. The pre-factor is then given
mainly by the geometry of the charge congurations. The independence of the
geometry of the transition from an insulator to a metal thus requires that the
two-body interactions are either sufficiently isotropic or weak (compared to
one-body terms). Equivalently, we expect this assumption to fail if the effect of
the surface leads to a great anisotropy. As the strongest lateral interaction
scales as lTF3I/(3IId3), see eqn (16), this approximation is expected to break down
in the situations of a large dielectric contrast 3I [ 3II. This regime was
examined in detail and shown to exhibit a range of unique behaviour in ref. 19
and 43.

Coming back to the wetting of the ionic system, one may then remark that
being physically simple, the previous scaling argument can be extended to any
conguration of charges, and notably for the surface energy of an ionic liquid
phase close to a TF metal. Following the above qualitative argument, the
surface energy in excess to the insulating case is expected to scale as

gTF
liq " gins

liq x rliq ) a ) U(1)(lTF,a). (42)

where the density of the liquid rliq replaces the crystal one. The physical meaning
is the same as above: it states that the main behavior for the liquid–wall inter-
action stems from the interaction of ions in the liquid phase located in
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a molecular volume of extension a close to the metal. As for the crystal phase, the
size of this volume is xed by electroneutrality which leads to a cut-off of inter-
action beyond amolecular length a. Being a dense phase, the characteristic length
a is expected to be typically of the order of the molecular size of the ions. This
range is thus expected of the same order of magnitude as the crystal lattice
spacing ax a. We can take the same value of ax a for both the liquid and crystal
(chosen here as the crystal lattice spacing in the crystal), since this choice does not
make a strong difference in the functional dependence of U(1).

We emphasize that this expression is only approximate, but that this approx-
imation is expected to capture the main contributions for the surface energy, as
validated by the exact benchmarking calculations above for the crystal–metal
interface. We discuss below the implications of this result for the wetting prop-
erties of ionic systems on metallic surfaces.

4.2 Discussion: relative wetting of ionic crystal and liquid phases on a metal

The previous results suggest that an increased ‘metallicity’ of the metals does
reduce the interfacial energy, thus stabilizing dense ionic phases close to metallic
substrates. Furthermore the decrease in surface energy is expected to be higher
for the denser crystal phase than its disordered liquid counterpart (rcr > rliq). This
is highlighted by the comparison of eqn (41) and (42). The difference becomes
more signicant with decreasing lTF (increasing kTF), and the metallicity of the
substrate thus promotes the wetting of the metal by the crystal phase, hereby
yielding ionic liquid crystallisation in connement. This prediction, while based
on a simple mechanism, is in agreement with the experimental results obtained
in ref. 11.

Going beyond would require full molecular simulations to be performed to
study the relative wetting of the two phases at a metal surface. This will be the
objective of a future and dedicated study using molecular simulations, based on
the TF interaction potentials derived above.

5 Conclusions and perspectives
Our results above constitute a thorough exploration of the energetics of
charged systems in contact with Thomas–Fermi metal substrates, building on
and extending the previous theoretical work. We focus not only on the potential
outside of the metal, but also on the energy associated with inducing the TF
charge distribution in the surface, which is absent from previous work on the
subject. We put emphasis on deriving the results in a form applicable in
molecular simulations. Our analysis of the two-body potential energy reveals
a hitherto unknown structure involving a multipole expansion, which provides
a physical intuition into the far-eld structure of the potential. It complements
the previous models of the “image charge on a line” approach of ref. 50 and the
“sandwich” of a dielectric and a perfect metal layer,43 while being simpler than
the former and more precise than the latter. The expansions open the way for
simulations of conducting surfaces that are cheaper than full DFT, yet more
versatile than simulation methods for ideal (insulating or perfect metal)
surfaces. While the presented results involve a single conducting and a single
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metallic wall, the approximation procedures can be repeated for combinations
of conducting walls.

Then, we have made use of this framework to obtain approximate expressions
for the surface tension of ionic systems at a metal wall, both for their ordered
crystal phase, and their disordered liquid phase. This is based on an analysis of
the crystal–metal interface, for which analytical results can be obtained with
simple physical interpretation in terms of the interaction of ions with their image
charges at the interface. It suggests an extension to the interface between an ionic
liquid and the metal substrates. This study indicates that wall metallicity favors
the denser crystal phase, and this effect is promoted for better metals. Altogether
it is particularly interesting, and quite counter-intuitive, that the electronic
screening in the metal, as characterized by a molecular length lTF, profoundly
affects the interfacial energy of a crystal.

These results call for further extension in various directions. First, as discussed
above, it is now required to assess this scenario using molecular simulations and
perform a complete study of the wetting of ionic systems at (imperfect) metals.
Beyond the relative wettability of the ionic crystal versus the ionic liquid, it would
be also interesting to consider the wetting of thick lms of crystal on the metal
surface. As we have shown above, asymptotic expansions for the 1D crystal case
show that the thickness dependence of the interfacial energy of a metal–crystal–
dielectric sandwich behaves as

WðDÞ ¼ gTFðlTFÞ "
Ael

D
" ATF"C"D

D2
þ. (43)

where Ael is a pure electrostatic constant, and ATF–C–D is a Hamaker-like constant
for the TF metal–crystal–dielectric sandwich, whose expression is given in eqn
(38) and depends linearly on the TF length lTF (for small lTF). This suggests long-
range electrostatic interactions within the lms (here calculated in the metal–
crystal–dielectric geometry). However this behavior needs to be conrmed in
molecular simulations in a more pertinent conguration, involving a metal–
crystal–liquid sandwich, at nite temperature. To some extent, these results echo
long-range electrostatic interactions observed recently;10 a relation between
connement and correlations yet to be assessed in detail.

Taking a broader perspective, we conclude with several remarks about several
experimental situations, involving solid–electrolyte interfaces, where the elec-
tronic properties of the conning system could play a role.15,35–38 Recent experi-
mental work highlighted much faster hydrodynamic water ows inside single
(semi-metallic) carbon nanotubes as compared to (insulating) boron-nitride
nanotubes.35 This puzzling result points to the fact that the understanding of
the interfacial interactions of charged and polarizedmolecules as well as the ionic
adsorption at metallic versus insulating surfaces is of primary interest in the
context of nanouidic transport.40,41 Altogether, whether electronic properties
may affect hydrodynamics remains an open question. Using the simplied TF
model for the electronic properties of the substrates, as developed in the present
framework, could provide the rst hints into the microscopic phenomena at
stake.

We nally quote that the present results could be generalized to alternative
experimental situations. Indeed our results apply for any boundary between
Laplace and Helmholtz equations. Accordingly the Thomas–Fermi framework
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discussed here also applies to electrolyte solutions with a differential salt
concentration, as evidenced by electrode adsorption being one of the original
contexts for this model.45,47 From a practical point of view, the TF model is
formally equivalent to the Debye–Hückel model for weak electrolytes,34 where
a metallic wall is equivalent to a salt solution with a corresponding Debye
screening parameter, now dened in terms of the salt concentration. The subtle
impact of the TF screening on the charge interactions obtained here suggests that
similar effects could occur whenever charges are in the presence of an electrolyte
with a differential salt concentration. In particular, this raises a number of
questions about ionic interactions in the presence of salinity gradients, which
would be interesting to explore more specically. Moreover, the theory can be
extended to the interface between a Debye–Hückel electrolyte and a Thomas–
Fermi metal.51 Such situations are in particular relevant to a number of recent
experimental observations associated with (diffusio-)osmosis and osmotic power
generation under salinity gradients.42

A Appendix: one-body potential energy
In this appendix, we detail how the denition of one-body potential energy in eqn
(8) leads to eqn (9).

A.1 External charge potential energy

We begin with the energy of the external charge

U
ð1Þ
ext ðaÞ ¼ p

ðþN

"N
dz

ðþN

0

dKK

)
Qdðz" aÞ

2p

*)
Q

4p303IK
e"Kz

%
eþKa " 3IIcTF " 3IK

3IIcTF þ 3IK
e"Ka

&*

(44)

U
ð1Þ
ext ðaÞ ¼

Q2

8p303I

ðþN

0

dK

"

1" 3II
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p
" 3IK

3II
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p
þ 3IK

e"2Ka

#

(45)

The rst term is the divergent part of the self energy which is independent of
the surroundings of the charge and can be therefore neglected. We recast the
remaining part in terms of a dimensionless variable l ¼ Ka

U
ð1Þ
ext ðaÞ ¼ " Q2

16p303Ia

ðþN

0

dl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q
" ð3I=3IIÞl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q
þ ð3I=3IIÞl

2e"2l (46)

U
ð1Þ
ext ðaÞ ¼ " Q2

16p303Ia
þ Q2

16p303Ia

ðþN

0

dl
2ð3I=3IIÞlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ ðkTFaÞ2
q

þ ð3I=3IIÞl
2e"2l (47)

U
ð1Þ
ext ðaÞ ¼ " Q2

16p303Ia
½1þ I ext'; (48)

which we separated into the ideal metal part and its correction. The limits yield
correct results for the well-known cases of ideal dielectric and ideal metal
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U
ð1Þ
ext ða; kTF ¼ 0Þ ¼ " Q2

16p303Ia

3II " 3I

3II þ 3I

ðþN

0

dl2e"2l ¼ " Q2

16p303Ia

3II " 3I

3II þ 3I
(49)

U
ð1Þ
ext ða; lTF ¼ 0Þ ¼ " Q2

16p303Ia

ðþN

0

dl2e"2l ¼ " Q2

16p303Ia
: (50)

The integral (46) can be easily evaluated numerically due to its exponential
decay and can be either tabulated for a convenient set of surface distances a, or
approximated by a rational function. We give the expansion of the pre-factor of
the exponential in lTF/a

U
ð1Þ
ext ðaÞ ¼ " Q2

16p303Ia

ðþN

0

dl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q
" ð3I=3IIÞl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q
þ ð3I=3IIÞl

2e"2l (51)

U
ð1Þ
ext ðaÞ ¼ " Q2

16p303Ia

ðþN

0

dl2e"2l
%
1" 23I

3II

lTF
a

lþ 23I
2

3II2
lTF

2

a2
l2 "

#
23I

3 " 3I3II
2
$

3II3
lTF

3

a3
l3

þO
)
l4lTF

4

a4

*&

(52)

U
ð1Þ
ext ðaÞ ¼ " Q2

16p303Ia

%
1" 3I

3II

lTF
a

þ 3I
2

3II2
lTF

2

a2
"

3
#
23I

3 " 3I3II
2
$

43II3
lTF

3

a3
þO

)
lTF

4

a4

*&

(53)

which we will show below to exactly match the prediction from the two-body
potential imagined as an image multipole series.

A.2 Induced charge potential energy

For the energy of the charge induced in the boundingmaterial, we use the charge–
potential relation (7) yielding

U
ð1Þ
indðaÞ ¼ "p303IIkTF

2

ð0

"N
dz

ðþN

0

dK ½jTFðz;KÞ'2K (54)

U
ð1Þ
indðaÞ ¼ "3IIkTF

2Q2

4p30

ð0

"N
dz

ðþN

0

dK
Ke"2Kaþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K2þkTF2

p
z

'
3IK þ 3II

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p (2
(55)

U
ð1Þ
indðaÞ ¼ " Q2

16p30a

ðþN

0

dl
2ðkTFaÞ2le"2l)

ð3I=3IIÞlþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q *2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q (56)

U
ð1Þ
indðaÞ ¼ " Q2

16p30a
I ind; (57)

which vanishes in the limits of ideal metal and ideal dielectric interfaces. This
integral can be tabulated as a function of a/lTF or approximated by a rational
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function as well. We also provide its expansion in TF length, obtained from the
power series of the prefactor of the exponential

U
ð1Þ
indðaÞ ¼ " Q2

8p30a

ðþN

0

dl
ðkTFaÞ2le"2l)

ð3I=3IIÞlþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q *2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðkTFaÞ2

q (58)

U
ð1Þ
indðaÞ ¼ " Q2

8p30a

ðþN

0

dle"2l

"
l

kTFa
" 23I

3II

)
l

kTFa

*2

þO

 )
l

kTFa

*3
!#

(59)

U
ð1Þ
indðaÞ ¼ " Q2

16p30a

"
lTF
2a

" 3I

3II

)
lTF
a

*2

þO

 )
lTF
a

*3
!#

; (60)

which we use for the comparison with the equivalent contribution to the two-body
potential energy in eqn (22).

A.3 Rational function approximation

For simulations, we require fast evaluation of the total one-body energy
Uð1Þðr1Þ ¼ Uð1Þ

ext ðr1Þ þ Uð1Þ
indðr1Þ ¼ "½Q2=ð16p303IaÞ'½1" I ext þ 3II ind'. The integral

expression I ext " 3II ind converges to its limiting values linearly in lTF in the ideal
metal limit, and linearly in kTF ¼ 1/lTF in the ideal dielectric limit, which leads us
to propose its approximation in terms of rational functions which interpolate
between these two approaches. For the one-body energy, we use

U ð1Þ
apxðaÞx" Q2

16p30a

)

"

1" 13:8879ðkTFaÞ3 þ 37:4625ðkTFaÞ2 þ 18:6940ðkTFaÞ þ 1

27:8648ðkTFaÞ4 þ 73:0987ðkTFaÞ3 þ 70:3460ðkTFaÞ2 þ 20:6754ðkTFaÞ þ 1

#

:

(61)

This is because the higher order approximations do not yield substantial
improvement in precision, as shown in Fig. 7.

Fig. 7 Absolute error of the rational function approximation of the integral expression
Iext " 3II ind˛½0; 1' for increasing orders of approximation.
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B Appendix: two-body potential energy
For congurations of charges that do not share the same axis, we cannot repre-
sent the energy in terms of an integral purely in the Hankel picture. For example
the electrostatic energy of a charge Q2 at r2 in the potential j of a charge Q1 at r1
reads, in general,

U ð2Þðr1; r2Þ ¼ Q2

ðN

0

dKJ0ðKRÞjðQ2; z2|z1;KÞ: (62)

This is a function of the distances z1, z2 of the two charges from the surface and
their mutual distance along it R ¼ |r(||)1 " r(||)2 |, and as such involves a larger
parameter space than U(1). Moreover, the direct integration is more involved as it
includes oscillating terms due to the Bessel function J0. In this appendix, we detail
approximation schemes for the two contributions U(2)

ext and U(2)
ind.

B.1 Multipole expansion

The potential jI outside of an ideal metal, can be found by the image charge
method. To generalise it to the case of TF metal, it is instructive to compare the
Hankel forms of Green functions, eqn (5) and (6),

potential ideal metal ideal dielectric

j.
I ðz. a;KÞ Q

4p303IK
e"Kz

,
eþKa " e"Ka

- Q

4p303IK
e"Kz

%
eþKa " 3II " 3I

3II þ 3I
e"Ka

&

j\
I ðz\a;KÞ Q

4p303IK
e"Ka

,
eþKz " e"Kz

- Q

4p303IK
e"Ka

%
eþKz " 3II " 3I

3II þ 3I
e"Kz

&
(63)

TF metal

Q

4p303IK
e"Kz

%
eþKa " 3IIcTF " 3IK

3IIcTF þ 3IK
e"Ka

&

Q

4p303IK
e"Ka

%
eþKz " 3IIcTF " 3IK

3IIcTF þ 3IK
e"Kz

&
; (64)

which allows us to identify the second term in the brackets with a generalised
image charge potential

jimðz;KÞ ¼ Q

4p303IK

3IK " 3II
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p

3IK þ 3II
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p e"KðaþzÞ; (65)

which in the case of the dielectric–dielectric interface (kTF / 0) corresponds to
the well known result of image charge Q(3I " 3II)/(3I + 3II) and, for the perfect metal
limit, to the image charge "Q. Its inverse

jimðz;RÞ ¼
Q

4p303I

ðN

0

dKJ0ðKRÞ
3IK " 3II

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p

3IK þ 3II
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ kTF2

p e"KðaþzÞ (66)

is a function of two parameters, which cannot be inverted in terms of analytic
functions.

Nevertheless, for a well-dened set of functions we will show that the inversion
can be obtained in the form of a series related to the spherical multipole
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expansion. The key identity is the Hankel transform of powers of Kn with the
exponential envelope e"K(a+z) expressed in terms of conuent hypergeometric
functions 2F1
ðN

0

dKJ0ðKRÞKne"KðaþzÞ ¼ Gðnþ 1Þðaþ zÞ"ðnþ1Þ
2F 1

 
nþ 1

2
;
nþ 2

2
; 1; "

)
R

aþ z

*2
!

(67)

which, for n as a positive integer, reduces to functions in the form
ð ​ N

0

dKJ0ðKRÞKne"KðaþzÞ ¼ Pnðaþ z;RÞ
h
R2 þ ðaþ zÞ2

inþ1=2
(68)

where Pn(a + z,R) are polynomials in (a + z) and R, the rst few of which are

P0(a + z,R) ¼ 1 (69)

P1(a + z,R) ¼ a + z (70)

P2(a + z,R) ¼ "R2 + 2(a + z)2 (71)

P3(a + z,R) ¼ "9(a + z)R2 + 6(a + z)3 (72)

P4(a + z,R) ¼ 9R4 " 72R2(a + z)2 + 24(a + z)4. (73)

Using this knowledge we can now expand the integrand in eqn (66) in powers
of lTF ¼ kTF

"1,

3I=3II "
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkTF=KÞ2

q

3I=3II þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkTF=KÞ2

q ¼ "1þ 23I
3IIkTF

K " 23I
2

ð3IIkTFÞ2
K2 þ 23I

3 " 3I3II
2

ð3IIkTFÞ3
K3

þO
)

K4

kTF4

*
; (74)

and obtain a series for the generalised image potential

jimðz;RÞ ¼
Q

4p303I
"

"
1

R2 þ ðaþ zÞ2
h i1=2 þ

23I
3IIkTF

aþ z
h
R2 þ ðaþ zÞ2

i3=2

þ 23I
2

ð3IIkTFÞ2
R2 " 2ðaþ zÞ2
h
R2 þ ðaþ zÞ2

i5=2 "
23I

3 " 3I3II
2

ð3IIkTFÞ3
9ðaþ zÞR2 " 6ðaþ zÞ3
h
R2 þ ðaþ zÞ2

i7=2

þO

 
R4

kTF4
,
R2 þ ðaþ zÞ2

-9=2

!3

75:

(75)

The rst term can be identied with the "Q ideal metal image charge. We
rewrite the series using that the distance from the ideal image charge position
reads r¼ [R2 + (a + z)2]1/2 and the related angle f from the z-axis, where cos f¼ (z +
a)/r. The potential transformed to these variables reads
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jimðz;RÞ ¼
Q

4p303I

"

" 1

r
þ 23I

3IIkTF

cos f

r2
" 23I

2

ð3IIkTFÞ2
3 cos2 f" 1

r3

þ
3
#
23I

3 " 3I3II
2
$

ð3IIkTFÞ3
5 cos3 f" 3 cos f

r4
þO

)
1

kTF4r5

*#
; (76)

resulting in eqn (16) of themain text. The terms correspond to the potentials of point
charge "Q, a dipole 2Q3IlTFẑ/3II oriented along the z-axis, a ẑẑ-quadrupole 2Q3I2lTF2/
3II

2, and a ẑẑẑ-octupole 3Q(23I3 " 3I3II
2)lTF3/3II3, etc. The derivation of higher order

terms is thus simplied even further, as the polynomials (70–74) are revealed to be
closely related to Legendre polynomials of cos j by the transformation to angular
variables and expressing all sines in terms of cosines. The shape of the potential is
then given by the corresponding spherical harmonics Y0nwhich are also the only ones
allowed by the cylindrical symmetry around the z-axis. It also matches the expansion
in eqn (53) where the self-energy is obtained asUext¼ Qjim/2 for r¼ a and cos j¼ 1.

B.2 Rational function approximation of U(2)
ind

The nal expression (23) for the “induced charge” part of the two-body energy is
given in terms of an integral of elliptic integrals. While rapidly convergent, the
evaluation of this integral is numerically costly. For numerical applications, we
remark that by denition it is a function of d and (a + b), exclusively,

UTFðr1; r2Þx" Q1Q2lTF
4p30

) 1

p

) 6:3794d2ðaþ bÞ þ 5:0213ðaþ bÞ3

d5þ 0:218699d4ðaþ bÞ þ1:38638d3ðaþ bÞ2 þ1:71388d2ðaþbÞ3þ 0:820837ðaþbÞ5
:

(77)

For most practical purposes, this approximation results in a smaller error than the
initial expansion in lTF, whose relative error scales linearly with a/lTF, and b/lTF,
approximately as 3; 2a/lTF. This limits the closest approach to the TF metal boundary
for this expression. For lTF ¼ 0.5 Å and therefore a > 1 Å for an error of about 10
percent. Note, that the term that we are approximating is already an order of lTF lower
than the leading term inU(2)

ind, therefore its error is of proportionally lower importance.
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